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Abstract: The risk for metabolic and cardiovascular complications of obesity is defined by body
fat distribution rather than global adiposity. Unlike subcutaneous fat, visceral fat (including hepatic
steatosis) reflects insulin resistance and predicts type 2 diabetes and cardiovascular disease. In hu-
mans, available evidence indicates that the ability to store triglycerides in the subcutaneous adipose
tissue reflects enhanced insulin sensitivity. Prospective studies document an association between

ARTICLE HISTORY larger subcutaneous fat mass at baseline and reduced incidence of impaired glucose tolerance.
Case-control studies reveal an association between genetic predisposition to insulin resistance and

Received: January 12, 2023 a lower amount of subcutaneous adipose tissue. Human peroxisome proliferator-activated receptor-
izzi;i‘e‘ﬁg;;szfZO@ gamma (PPAR-y) promotes subcutaneous adipocyte differentiation and subcutaneous fat deposi-
tion, improving insulin resistance and reducing visceral fat. Thiazolidinediones reproduce the ef-

DOI: fects of PPAR-y activation and therefore increase the amount of subcutaneous fat while enhancing
10.2174/1573399820666230816111624 insulin sensitivity and reducing visceral fat. Partial or virtually complete lack of adipose tissue
(lipodystrophy) is associated with insulin resistance and its clinical manifestations, including es-

@ CrossMark sential hypertension, hypertriglyceridemia, reduced HDL-c, type 2 diabetes, cardiovascular dis-

ease, and kidney disease. Patients with Prader Willi syndrome manifest severe subcutaneous obesi-
ty without insulin resistance. The impaired ability to accumulate fat in the subcutaneous adipose
tissue may be due to deficient triglyceride synthesis, inadequate formation of lipid droplets, or de-
fective adipocyte differentiation. Lean and obese humans develop insulin resistance when the ca-
pacity to store fat in the subcutaneous adipose tissue is exhausted and deposition of triglycerides is
no longer attainable at that location. Existing adipocytes become large and reflect the presence of
insulin resistance.
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1. INTRODUCTION insulin sensitivity [1-4]. Second, human peroxisome prolif-
erator-activated receptor-y (PPAR-y) is a transcription factor
that promotes subcutaneous adipocyte differentiation and
enhances insulin sensitivity, linking the ability to store fat in
> 3 the subcutaneous adipose tissue with insulin sensitivity (Fig.
subcutaneous adipose cells to store fat in response to excess 1). The effects of PPAR-y are highlighted by the clinical
energy 18 varla.b.Ie. among 1nd1V1duals and reflects .the degree consequences of its congenital deficiency and by the effects
of insulin sensitivity. Humans with a greater capacity to store of its exogenous agonists, the thiazolidinediones. PPAR-y

triglycerides in the subcutaneous adipose tissue in response deficiency due to inactivating mutations in the PPARG gene
to caloric overload exhibit enhanced insulin sensitivity. Sev- cause loss of subcutaneous adipose tissue and insulin re-

In humans, surplus energy is normally deposited as tri-
glycerides in the subcutaneous adipose tissue to be used
when exogenous food is in short supply. The capacity of

eral lines of evidence support that notion and establish a sistance [5-10], whereas thiazolidinediones replicate the ef-
connection between the ability to store fat in the subcutane- fects of PPAR-y and therefore facilitate subcutaneous fat
ous adipose tissue and enhanced insulin sensitivity. First, a deposition, improve insulin sensitivity, and decrease non-
number of investigations document a positive association subcutaneous fat. Furthermore, the increase in subcutaneous
between greater subcutaneous adipose tissue mass and fat 1 or the decrease in non-subcutaneous fat [11-14]. corre-

late with the improvement of insulin sensitivity elicited by
thiazolidinediones, suggesting that the restoration of the ca-
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disorders such as lipodystrophy and Prader-Willi syndrome
further highlights the connection between subcutaneous fat
mass and insulin sensitivity. The lack of subcutaneous adi-
pose tissue in patients with congenital lipodystrophy is asso-
ciated with insulin resistance [15-22] while patients with
Prader-Willi syndrome typically manifest pronounced subcu-
taneous obesity in the absence of insulin resistance, suggest-
ing that the ability to store triglycerides in the subcutaneous
adipose tissue associates with insulin sensitivity [23-25].
Fourth, multiple cross-sectional and prospective studies
demonstrate an independent association between visceral fat
and insulin resistance and establish that visceral fat precedes
complications of insulin resistance, such as type 2 diabetes
(T2D), [4, 26-29]. cardiovascular disease (CVD), [30-33]
and kidney disease [34].

Thiazolidinediones

Fig. (1). Excess energy is normally stored in the subcutaneous adi-
pose tissue as triglycerides. Peroxisome proliferator-activated re-
ceptor-gamma (PPAR-vy) facilitates this process. Thiazolidinediones
are exogenous agonists of PPAR-y. (A higher resolution / colour
version of this figure is available in the electronic copy of the arti-
cle).

A restricted ability to store triglycerides in the subcuta-
neous adipose tissue is associated with insulin resistance and
fat deposition in other locations following overfeeding, such
as the intra-abdominal cavity (visceral fat), liver, skeletal
muscle, or heart. Lean or obese humans develop insulin re-
sistance (and visceral fat accumulation) whenever fat deposi-
tion in the subcutaneous adipose tissue is impaired [3, 35-
39]. Causes that restrain fat accretion in the subcutaneous
adipose tissue include deficient triglyceride synthesis, anom-
alous lipid droplet formation, and defective adipocyte differ-
entiation. A limited capacity to store fat in the subcutaneous
adipose tissue compromises the ability of this tissue to re-
spond to surplus energy demand. Existing adipocytes enlarge
to accommodate maximal lipid deposition and therefore
large adipocytes become visible in the subcutaneous adipose
tissue when no further triglyceride deposition is achievable.
Subcutaneous adipocyte enlargement signals the presence of
insulin resistance due to the exhausted capacity to store tri-
glycerides. While adipocyte hypertrophy is observed in pa-
tients with insulin resistance, smaller subcutaneous adipo-
cytes are identified in subjects with enhanced insulin sensi-
tivity and unrestricted capacity to store subcutaneous fat.
Cross-sectional studies indicate that large adipocytes are
associated with insulin resistance [35, 37, 38, 40, 41], while
prospective investigations establish that subcutaneous adipo-
cyte hypertrophy precedes T2D in different population
groups, regardless of body mass index (BMI) [35, 42]. Fur-
thermore, larger subcutaneous adipocytes are present in
young South Asians (mean age 27 years) compared to
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matched Caucasians, suggesting that South Asians have a
lower capacity to store subcutaneous fat than Caucasians
with similar age and BMI. In addition, adipocyte size corre-
lated with insulin resistance (evaluated by hyperinsulinemic-
euglycemic clamps), such that South Asian subjects demon-
strated more pronounced insulin resistance than their Cauca-
sian counterparts [43]. Likewise, the size of subcutaneous
adipocytes is increased in patients with Alstrdm syndrome
compared to matched controls, confirming a status of more
severe insulin resistance among Alstrom patients compared
to controls [44].

In this review, we examined information available on the
relationship between insulin resistance and obesity in human
diseases highlighting the connection between the ability to
store fat in the subcutaneous adipose tissue and insulin sensi-
tivity. A comprehensive literature search was conducted on
the PubMed database from its inception up to February 2023
that included articles containing the terms obesity, insulin
resistance, diabetes, subcutaneous adipose tissue, visceral
adipose tissue, fatty liver, hepatic steatosis, lipodystrophy,
thiazolidinediones, PPAR-gamma, Prader-Willi syndrome,
leptin, leptin receptor, pro-opiomelanocortin, melanocortin-4
receptor, insulin receptor, Bardet-Biedl syndrome, Alstrdm
syndrome, and other pertinent terms related with the rela-
tionship between insulin resistance and obesity in humans.
Articles written in English concerning human subjects were
included. Further relevant articles were identified by search-
ing reference lists of the papers retrieved. Articles resulting
from these searches were reviewed. At first, investigations
on the association between visceral fat (as opposed to subcu-
taneous fat) and insulin resistance are reported. Then, the
role of the PPAR-y linking subcutaneous fat deposition and
insulin sensitivity is considered, underscored by the effects
of thiazolidinediones (exogenous PPAR-y agonists) and
PPAR-y congenital deficiency. Next, human conditions that
reveal an association between the ability to store fat in the
subcutaneous adipose tissue and insulin sensitivity are de-
scribed, including congenital lipodystrophy (absence of sub-
cutaneous adipose tissue associates with insulin resistance)
and Prader Willi syndrome (abundance of subcutaneous adi-
pose tissue in absence of insulin resistance). Finally, the rela-
tionship between obesity and insulin resistance is analyzed in
other congenital diseases, including Alstrom syndrome,
Bardet Biedl syndrome (BBS), and mutations in the genes
that encode leptin, leptin receptor, melanocortin-4 receptor
(MC4R), and pro-opiomelanocortin (POMC).

2. VISCERAL FAT ASSOCIATES WITH INSULIN
RESISTANCE AND CONSEQUENTLY PREDICTS
TYPE 2 DIABETES AND CARDIOVASCULAR DIS-
EASE WHILE THE ABILITY TO STORE SUBCUTA-
NEOUS FAT REFLECTS INSULIN SENSITIVITY

It has been long known that general adiposity is not an
optimal predictor for metabolic or cardiovascular complica-
tions of obesity. In 1956, Dr. Vague described two types of
obesity based on the location of fat accumulation in the
body. Abdominal obesity (reflecting excess visceral adipose
tissue) was associated with T2D and premature atherosclero-
sis. In contrast, fat accumulation in the subcutaneous adipose
tissue led to disorders proportional to the amount of fat, such
as respiratory disease, orthopedic and locomotion difficul-
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= Defective adipocyte differentiation

* Impaired lipid droplet formation

= Deficient triglyceride synthesis

* Exhaustion of the individual capability

to store subcutaneous fat

Insulin
resistance

Fig. (2). Ectopic fat (including visceral fat and hepatic steatosis) is accumulated when subcutaneous fat accretion is impaired. Ectopic fat
reflects insulin resistance. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

ties, and psychological and social burdens, but this form of
obesity did not predispose to T2D or atherosclerotic CVD
[45]. Multiple subsequent studies in humans have robustly
confirmed this notion.

2.1. Excess Visceral Fat Reflects Insulin Resistance

As mentioned, individuals with limited ability to expand
their subcutaneous fat in response to positive energy balance
develop insulin resistance and visceral fat accretion follow-
ing overfeeding (Fig. 2). Cross-sectional and prospective
trials establish that excess visceral fat (as opposed to subcu-
taneous fat) reflects insulin resistance and therefore precedes
T2D and CVD in a variety of population groups, including
non-obese subjects, obese patients, the elderly, patients with
diabetes, and the general population. Initial investigations
used waist circumference and waist-to-hip ratio to estimate
visceral fat while subsequent studies evaluated body fat by
ultrasonography, computed tomography (CT), magnetic res-
onance imaging (MRI), dual energy X-ray absorptiometry
(DEXA), or bioimpedance. Cross-sectional studies uniform-
ly reveal that visceral fat is independently and strongly asso-
ciated with prevalent insulin resistance and components of
the metabolic syndrome (the clinical expression of insulin
resistance), in a variety of population groups, even in the
absence of general adiposity and regardless of the way of
assessment, either abdominal obesity [3, 46-49] or other pro-
cedures to evaluate body fat distribution [2, 41, 50-61]. Lon-
gitudinal studies establish that visceral fat at baseline pre-
dicts clinical consequences of insulin resistance at follow-up,
such as T2D, CVD, and kidney disease. Prospective trials
reveal that visceral fat precedes T2D, irrespective of the way
of body fat assessment, either elevated waist-to-hip ratio [30-
33] or visceral fat quantification [4, 26-29]. Subjects with
increased visceral fat at baseline experience a higher risk of

68

incident T2D at follow-up, regardless of BMI. In addition to
T2D, prospective trial show that visceral fat predicts other
clinical consequences of insulin resistance, such as CVD
[30-33] and kidney disease [34]. A meta-analysis that in-
cluded 40 observational studies confirmed that visceral fat
mass is associated with insulin resistance, as measured by
the homeostasis model assessment-insulin resistance
(HOMA-IR) index [62].

In patients with T2D, similarly to other population
groups, visceral fat is associated independently with insulin
resistance or its clinical consequences (such as CVD includ-
ing peripheral vascular disease and coronary artery disease),
regardless of general obesity [63, 64].

In subjects with and without T2D, there is a strong corre-
lation between visceral adipose tissue and liver fat content
[56, 65]. Like visceral obesity, fatty liver (hepatic steatosis
or non-alcoholic fatty liver disease) is associated with preva-
lent insulin resistance in both lean and obese subjects with
[56, 65-67] and without [61, 68, 69] T2D. Furthermore, pro-
spective studies reveal that hepatic steatosis at baseline in-
creases the risk of incident T2D at follow-up. In a systematic
review and meta-analysis that included a pooled population
of 117,020 patients from 20 prospective studies with a medi-
an follow-up period of 5 years, hepatic steatosis (diagnosed
by ultrasonography) was associated with an increased risk of
incident T2D [70]. As a manifestation of insulin resistance,
hepatic steatosis is associated with CVD [71, 72].

When the capacity of subcutaneous adipose tissue to
store excess energy has been exhausted, fat accumulation
may occur not only in the liver but also in other organs such
as the heart, the skeletal muscle, and the pancreas. Like vis-
ceral fat and hepatic steatosis, excess pancreatic fat reflects
the presence of insulin resistance. Pancreatic fat content cor-
relates with visceral adipose tissue, liver fat accumulation,
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HOMA-IR index, metabolic syndrome and bigger waist cir-
cumference [73-76]. Similarly to other population groups,
pancreatic fat content is independently associated with insu-
lin resistance (evaluated by the HOMA-IR index calculated
with a formula using plasma level of C peptide) among pa-
tients with T2D [74]. In addition, pancreatic fat accumula-
tion has been negatively associated with insulin secretion
(assessed via oral glucose tolerance test-based measures or
HOMA-B index) in subjects with impaired glucose tolerance
or impaired fasting glycemia 73 and in male patients with
T2D [74]. However, the association between pancreatic fat
content and insulin secretion by B cells has not been identi-
fied in other investigations [75, 76]. In the skeletal muscle,
intermuscular accumulation of fat may occur due to the ina-
bility of subcutaneous adipose tissue to store surplus triglyc-
erides. Like visceral fat, this ectopic fat infiltration of the
skeletal muscle (myosteatosis) reflects insulin resistance and
consequently predicts the development of incident T2D in
longitudinal studies [77]. However, myocytes contain tri-
glycerides within intracellular lipid droplets to be used as a
source of energy during exercise. Trained athletes show re-
markable insulin sensitivity, but they have an elevated in-
tramyocellular lipid pool as an adaptive response to training
[78]. In the abdominal subcutaneous adipose tissue, the fas-
cia superficialis separates two fat layers, deep and superfi-
cial. Cross-sectional studies have suggested that the amount
of deep subcutaneous fat (unlike superficial) may correlate
with fasting insulin level [79]. and insulin-stimulated glucose
utilization, measured by euglycemic clamp [80]. Truncal fat
is a correlate for visceral adiposity. Consequently, subjects
with increased truncal fat experience a higher risk of meta-
bolic syndrome [80, 81] and insulin resistance [82-84]. com-
pared to individuals with normal truncal fat. As aging is as-
sociated with insulin resistance, a greater amount of truncal
fat is observed at older ages in all ethnicities [85]. Sex dif-
ferences have been identified in fat distribution, but they
disappear after menopause. Before menopause, women typi-
cally show greater subcutaneous adipose tissue (peripheral
fat) whereas men tend to accumulate abdominal (central)
adipose tissue and visceral fat. For all ethnicities (Caucasian,
African-American, Hispanic-American and Asian), men tend
to exhibit more truncal fat than women [85]. Visceral fat area
correlates with components of the metabolic syndrome inde-
pendently of the menopause status, suggesting that the effect
of menopause on the association between visceral fat and
metabolic syndrome is not substantial [86].

2.2. Association between Subcutaneous Adipose Tissue
and Insulin Sensitivity

As mentioned, the ability to store subcutaneous fat relates
to insulin sensitivity. Cross-sectional, prospective, interven-
tional, and genetic investigations find a positive association
between subcutaneous adipose tissue mass and insulin sensi-
tivity [1-4]. In a cross-sectional study that enrolled over-
weight or obese adults, the amount of subcutaneous adipose
tissue, quantified by CT, was positively correlated with the
degree of insulin sensitivity (evaluated by a modified insulin
suppression test), despite similar BMI values [2]. In a pro-
spective trial that followed South African women with nor-
mal glucose tolerance for 13 years, baseline subcutaneous fat
mass, assessed by DEXA, was associated with reduced inci-
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dence of T2D or impaired glucose tolerance at follow-up,
suggesting that subjects able to store more fat in the subcuta-
neous adipose tissue experience enhanced insulin sensitivity
[4]. In patients treated with thiazolidinediones, the increase
in subcutaneous fat [1] or the reduction in the ectopic lipid
content in the skeletal muscle [11-14]. correlates with the
improvement of insulin sensitivity elicited by these drugs.
Accumulation of subcutaneous fat (as opposed to visceral
fat) predicts the efficacy of troglitazone therapy in T2D pa-
tients, such that those with a greater increase of subcutane-
ous adipose tissue show better glycemic control than patients
with lesser accumulation, suggesting that restoring the ability
to store fat in the subcutaneous adipose tissue improves insu-
lin resistance [1]. Further, large case-control studies reveal
that genetic predisposition to insulin resistance is associated
with lower amounts of subcutaneous adipose tissue. In a
population-based investigation that included 188,577 partici-
pants in several trials (Fenland study, EPIC-Norfolk, EPIC-
InterAct, UK Biobank, and the United Kingdom Household
Longitudinal Study), genome-wide association analyses
identified 53 loci associated with clinical features of insulin
resistance. such as hyperinsulinemia, hypertriglyceridemia,
and reduced HDL-c. Among 45,836 cases and 230,358 con-
trols, the genetic predisposition to insulin resistance based on
these 53 loci was associated not only with a higher risk of
T2D and coronary heart disease (as expected) but also with
lower subcutaneous adipose tissue mass. Furthermore,
DEXA measures of body fat in 12,848 individuals showed
that subjects with the highest genetic predisposition to insu-
lin resistance had an average of 712 grams less leg fat mass
(and higher risk of T2D) compared to individuals with the
lowest genetic predisposition to insulin resistance [3].

3. HUMAN PEROXISOME PROLIFERATOR-
ACTIVATED RECEPTOR-I' ACTIVITY CONNECTS
THE ABILITY TO STORE SUBCUTANEOUS FAT
WITH INSULIN SENSITIVITY

Human PPAR-y plays an important role in connecting
subcutaneous fat deposition and insulin sensitivity by pro-
moting adipocyte differentiation. Activation of PPAR-y fa-
cilitates triglyceride deposition at a subcutaneous location
and thus enhances insulin sensitivity and reduces visceral fat.
The human PPARG gene codes two isoforms of PPAR-y
(PPAR-y1 and PPAR-y2) by differential promoter usage and
alternate splicing. Human PPAR-y is a transcription factor
that modulates the transcription of target genes upon activa-
tion by a ligand. Endogenous ligands for PPAR-y include 15-
deoxy-06-(12,14)-prostaglandin J2 while thiazolidinediones
(such as troglitazone, rosiglitazone, and pioglitazone) are
exogenous ligands. Upon ligand binding, PPAR-y attaches to
retinoid X receptors to create a heterodimer. In turn, the het-
erodimer PPAR-y/retinoid X receptor binds to specific DNA
sequences called PPAR-y response elements in specific tar-
get genes to modulate gene transcription [87-92]. Human
PPARG has a ubiquitous expression. PPARGI is the pre-
dominant isoform while PPARG?2 has a minor representation
in human tissues. PPARG1 mRNA has been identified in
human adipose tissue, large intestine (colon), small intestine,
kidney, liver, heart, lung, endocrine pancreatic cells (o, p and
d islet cells), ovary, and placenta. Adipose tissue and large
intestine have the highest levels while PPARG mRNA is
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barely detectable in skeletal muscle. In contrast with the
ubiquitous expression of PPARGI1, human PPARG2 mRNA
is only present in human adipose tissue. Even at that loca-
tion, human PPARG2 mRNA is less abundant than PPARGI1
in both visceral and subcutaneous adipose tissue [87-90, 92-
95].

Mesenchymal stem cells

Fig. (3). Adipocyte differentiation. (A higher resolution / colour
version of this figure is available in the electronic copy of the arti-
cle).

As mentioned, human PPAR-y promotes adipocyte dif-
ferentiation and consequently fat deposition in the subcuta-
neous adipose tissue. Human adipogenesis involves the
commitment of mesenchymal precursors cells towards an
adipose cell lineage (Fig. 3). Then, mesenchymal stem cells
undergo differentiation into preadipocytes which in turn dif-
ferentiate into mature adipocytes. Both 15-deoxy-5-(12,14)-
prostaglandin J2 and thiazolidinediones enhance the differ-
entiation of human preadipocytes isolated from subcutaneous
depots, indicating the role of PPAR-y favoring adipogenesis
in the subcutaneous adipose tissue. In contrast, human pread-
ipocytes from omental sites are refractory to the effect of
thiazolidinediones [91].

Clinical studies reveal an association between defective
subcutaneous adipogenesis and insulin resistance, suggesting
that impaired adipocyte differentiation may contribute to the
cause of insulin resistance. In patients with insulin re-
sistance, subcutaneous adipose cells show an attenuated ex-
pression of genes involved in adipocyte differentiation (such
as PPARG) [36, 96]. In addition, pioglitazone increases
markers of adipocyte differentiation in subcutaneous adipose
cells (such as adiponectin) and improves insulin sensitivity
(assessed by hyperinsulinemic euglycemic clamp) [37].

The role of PPAR-y coupling subcutaneous adipocyte
differentiation with insulin sensitivity is highlighted by the
clinical consequences that follow PPAR-y congenital defi-
ciency and by the effects of PPAR-y agonists such as thiazol-
idinediones. Patients with congenital PPAR-y deficiency
manifest paucity of adipose tissue coupled with insulin re-
sistance while thiazolidinediones promote subcutaneous fat
accretion, enhance insulin sensitivity, and reduce visceral fat,
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as these drugs replicate the effects of PPAR-y activation.
Furthermore, the ability of PPAR-y to enhance insulin sensi-
tivity is underlined by the effect of interferons, which are
components of the innate immune system that induce insulin
resistance in response to infections. Interferons reduce the
expression of the PPARG gene and suppress PPAR-y activi-
ty, thus contributing to promoting insulin resistance during
infections and other conditions associated with interferon
upregulation, such as systemic lupus erythematosus.

3.1. Human Peroxisome Proliferator-activated Receptor-
v Genetic Variation

Heterozygous loss of function mutations in the PPARG
gene causes PPARG-linked familial partial lipodystrophy
(FPL) [5-10], whereas biallelic mutations in the PPARG
gene have been reported to cause congenital generalized lip-
odystrophy (CGL) [97]. In addition to the absence of adipose
tissue of variable extent, early presentation of profound insu-
lin resistance and its clinical consequences (T2D, essential
hypertension, hypertriglyceridemia, reduced HDL-c, poly-
cystic ovary syndrome, and acanthosis nigricans) is typical.
Relapsing pancreatitis associated with severe hypertriglycer-
idemia has been noticed [98-100]. Metreleptin, a synthetic
analogue of human leptin, has been useful in patients with
PPARG-linked FPL [100].

In addition to mutations in the PPARG gene, genetic var-
iants in the PPARG gene in the general population may
modulate the degree of insulin resistance (and therefore the
predisposition to T2D) depending on their effect on PPAR-y
activity. Activating variants facilitate subcutaneous fat depo-
sition and enhance insulin sensitivity while loss of function
(inactivating) variants hinder subcutaneous fat accumulation,
intensify insulin resistance and elevate the risk for T2D and
visceral fat depots [101, 102].

3.2. Effects of Thiazolidinediones

Thiazolidinediones increase body weight but improve body
fat distribution, as they promote subcutaneous fat deposition
while reducing visceral fat. By increasing the capacity to store
fat in the subcutaneous adipose tissue, thiazolidinediones en-
hance insulin sensitivity in subjects with and without T2D.

3.2.1. Thiazolidinediones Increase Subcutaneous Adipose
Tissue and Reduce Visceral Fat

In patients with T2D, troglitazone [1, 11, 103-108]. and
pioglitazone [13, 14, 109-114]. increase body weight and
BMI but promote subcutaneous fat accumulation while re-
ducing visceral fat depots, compared to placebo, diet, and
other anti-diabetic medications. Accordingly, the increase in
body weight in patients treated with thiazolidinediones is not
accompanied by an increase in waist circumference. Like-
wise, these drugs improve body fat distribution (increasing
subcutaneous fat while reducing visceral fat) in subjects
without diabetes [12, 113, 115, 116].

3.2.2. Thiazolidinediones Improve Insulin Sensitivity and
its Clinical Manifestations in Subjects with and Without
Diabetes

Despite weight gain, troglitazone enhances insulin sensi-
tivity in non-diabetic subjects [117]. and T2D patients. Addi-
tionally, troglitazone reduces fasting glucagonemia and glu-
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cagon response to a meal tolerance test, compared to base-
line values [11, 104, 107, 108, 118-120]. Both in T2D and
non-diabetic subjects, troglitazone improves the clinical ex-
pression of insulin resistance, such that reduces triglyceride
level [104, 107, 120] improves hepatic steatosis, [107] re-
duces skeletal muscle fat, [11] and decreases blood pressure
[105, 115, 117]. Comparable effects are achieved by
pioglitazone. In patients with and without T2D, pioglitazone
improves insulin resistance [12, 14, 37, 109-111], decreases
ectopic intramyocellular lipid content [12-14], reduces liver
fat content [13, 110], diminishes serum triglyceride level and
increases HDL-c [111, 112, 114].

3.3. Interferons Suppress PPAR-y Expression and Induce
Insulin Resistance

In addition to the genetic variations in the PPARG gene
and the effects of PPAR-y agonists, the crucial role of human
PPAR-y promoting insulin sensitivity is highlighted by the
effect of interferon diminishing PPAR-y expression.

Insulin resistance is a universal metabolic response to
microbial invasion required to ensure energy availability to
the activated immune system. Among other cytokines re-
leased in response to pathogens, interferons consistently in-
duce insulin resistance in addition to their antimicrobial and
antiproliferative effects [121, 122]. An increased expression
of interferon-stimulated genes (interferon signature) is pre-
sent in patients with infections and other conditions associat-
ed with insulin resistance compared to subjects with normal
insulin sensitivity [123], Serum levels of both interferon and
interferon correlates (neopterin and interferon-y-inducible
protein-10) are associated with insulin resistance. In addi-
tion, circulating levels of interferon-y-inducible protein-10
are independently associated with the amount of visceral
adipose tissue (but not that of subcutaneous fat), irrespective
of BMI [124]. Furthermore, an increased level of type I in-
terferon in visceral adipose tissue is positively associated
with insulin resistance (evaluated by HOMA-IR) [123]. Ac-
cordingly, the abundance of immune cells producing inter-
feron (such as macrophages) and interferon-y transcript lev-
els are higher in visceral fat compared to subcutaneous adi-
pose tissue in obese subjects [125]. Additionally, recombi-
nant type I interferon (interferon-a) induces a macrophage
phenotype shift to enhance interferon production in the vis-
ceral adipose tissue of healthy subjects [123].

Human studies show that interferon diminishes the ex-
pression of PPAR-y in adipocytes, suggesting that interferon
may thus enable a reduction in the ability of subcutaneous
adipocytes to store energy and subsequent insulin resistance
[126, 127]. In adipose tissue obtained from obese subjects,
interferon-y reduces the expression of the PPARG gene
[126]. In vitro studies using human adipocytes show that
interferon-y reduces PPAR-y expression, suppresses pre-
adipocyte differentiation into mature adipocytes, and reduces
lipid droplet number and triglyceride content in mature adi-
pocytes, compared to control cell lines [127]. Consistently,
interferon-y released by omental adipose tissue reduces the
number of lipid droplets when incorporated into cultured
human adipocytes. In an investigation that recruited obese
patients with insulin resistance, omental fat was obtained and
the explanted adipose tissue was cultured in the presence of

¢160823219824

Current Diabetes Reviews, 2024, Vol. 20, No. 5

macrophages and T cells. Human omental fat exposed to
these immune stimuli releases interferon-y that can be re-
trieved from the medium. When added to cultured human
adipocytes, interferon-y thus obtained decreases intracellular
lipid droplet count and inhibits insulin action in the adipo-
cytes [128].

In addition to its effect of decreasing PPAR-y expression,
human interferon markedly increases the expression of a
lipid droplet protein, apolipoprotein L1 (APOL1) [129-134].

Human APOL1 is a component of the innate immune
system that cooperate in the defense against microbial inva-
sion and may mediate some effects of interferon. In addition
to wild-type (normal) APOLI1, two genetic variants of the
protein have evolved in African American subjects that im-
prove the protection against some infections (mainly human
Trypanosomiasis), but also increase the risk for acute cellu-
lar rejection in kidney transplant recipients and contribute to
cause some native kidney and vascular diseases [135, 136].
Disorders associated with APOL1 risk variants are usually
triggered by excess interferon secretion. The intracellular
location of APOLI1 variants differs. While normal APOL1 is
a component of the lipid droplet and contributes to lipid
droplet formation, APOLI1 risk variants are located in the
endoplasmic reticulum and their absence from the lipid drop-
let prevents the formation of these intracellular organelles,
suggesting that APOL1 risk variants promote insulin re-
sistance [137, 138]. Excess interferon secretion upregulates
the expression of APOL1, magnifies the defective formation
of lipid droplets associated with the carriage of APOLI risk
variants, intensifies insulin resistance, and eventually trig-
gers the appearance of the clinical phenotype associated with
APOLI risk variants. Clinical investigations confirm that
carriers of APOL1 risk variants experience more clinical
manifestations of insulin resistance compared to non-carriers
[139-145]. Components of the metabolic syndrome, such as
essential hypertension and obesity, develop more frequently
in subjects harboring APOL1 risk variants compared to bear-
ers of the wild type, suggesting that carriers of high-risk
APOLI1 genotype experience more severe insulin resistance
than non-carriers [139, 140]. Kidney manifestations of insu-
lin resistance (albuminuria, chronic kidney disease, and
faster progression to end-stage kidney disease) are also more
frequently encountered in subjects harboring APOL1 risk
variants [141-145]. Likewise, histopathological manifesta-
tions of insulin resistance in the kidney such as increased
glomerular size, focal segmental glomerulosclerosis, and
arterionephrosclerosis are typically associated with APOLI
risk variants compared to wild type [146-148].

4. PRADER WILLI SYNDROME REPRESENTS A
FORM OF SUBCUTANEOUS OBESITY UNLINKED
TO INSULIN RESISTANCE

Prader-Willi syndrome (PWS) is a congenital disorder
usually due to a deletion on the paternally derived chromo-
some 15q11-q13 region or to maternal uniparental disomy of
the same region (15q11-q13). The defective protein or pro-
teins that cause the clinical phenotype are unknown. During
infancy, patients with PWS manifest hypotonia, poor feed-
ing, failure to thrive, and underweight. Afterwards, they de-
velop irrepressible hunger, lack of satiety, and hyperphagia
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resulting in childhood obesity that persists into adulthood. In
addition, growth hormone deficiency, short stature, hy-
pogonadism, mental retardation, learning difficulties, and
behavioral disturbances may develop. Clinical features of
PWS have been attributed to hypothalamic dysfunction that
can lead to growth hormone deficiency and overpowering
appetite with subsequent hyperphagia [23, 149-153].

Obesity has been reported in 98% of PWS patients, but
body composition differs in PWS patients compared to obese
individuals with common multifactorial obesity or to normal
weight subjects. In PWS patients, the percentage of lean
mass (skeletal muscle) is lower compared to lean subjects
and even more so compared to obese counterparts, as indi-
viduals with common obesity usually show increased lean
mass compared to normal-weight subjects. Therefore, an
abnormally high proportion of the body composition in PWS
patients consists of adipose tissue at the expense of lean
body mass and these patients show increased body fat com-
pared to control subjects. Further, they experience a predom-
inant accumulation of fat in the subcutaneous adipose tissue
and reduced visceral fat, suggesting enhanced insulin sensi-
tivity [24, 53, 149, 151-157]. Patients with longstanding iso-
lated growth hormone deficiency manifest an abnormal body
composition similar to that present in PWS patients (reduced
lean mass and increased fat mass), suggesting that growth
hormone deficiency contributes to the cause of this peculiar
body composition. Accordingly, growth hormone therapy
improves the abnormal pattern of body composition in both
children and adult patients with PWS (increases skeletal
muscle mass while reducing subcutaneous fat) with no ad-
verse effects on glucose metabolism [158, 159]. Body com-
position in patients with PWS is already abnormal in infan-
cy, before the development of childhood obesity. Infants
with PWS are underweight and exhibit reduced arm circum-
ference. Despite that, they show elevated triceps and sub-
scapular skinfold thickness relative to BMI, suggesting rela-
tively increased body fat in spite of being underweight. Ac-
cordingly, infants with PWS demonstrate increased percent
body fat and decreased fat-free mass, assessed by DEXA and
deuterium dilution technique, when compared to normal in-
fants [149, 150].

Patients with PWS are severely obese but do not usually
manifest insulin resistance. On the contrary, the pattern of fat
distribution in PWS patients (fat accretion in the subcutane-
ous adipose tissue and reduced visceral fat) suggests en-
hanced insulin sensitivity, as mentioned. Furthermore, the
rate of metabolic syndrome components and HOMA-IR val-
ues are consistently lower in both children and adults with
PWS in comparison with matched controls [25, 153, 160-
162]. Enhanced insulin sensitivity in PWS patients is con-
firmed by higher values of quantitative insulin sensitivity
check index in PWS patients compared to obese controls
with multifactorial obesity [23-25]. Moreover, plasma tri-
glyceride and HDL-c levels are normal in PWS children,
unlike obese controls [53, 160]. In addition, the prevalence
of T2D is comparable in PWS patients and subjects from the
general population, despite severe obesity in patients with
PWS, although reported prevalence figures vary. In the gen-
eral population, the prevalence of T2D is 13.0% of adults
aged > 18 years whereas in PWS patients the prevalence of
T2D is 13.5%-13.7% in the larger studies, despite the pres-
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ence of severe obesity [163, 164]. Enhanced insulin sensi-
tivity in PWS patients does not fully protect them from de-
veloping diabetes due to a defect in insulin secretion. Case
control studies consistently show that insulin levels (fasting
and post-glucose load in oral glucose, mixed meal, and in-
travenous glucose stimulation) are lower in children and
adult patients with PWS compared to matched control sub-
jects. Deficient insulin secretion in PWS patients has been
attributed to growth hormone deficiency of hypothalamic
origin [23-25, 53, 153, 160, 162, 165, 166]. Like PWS pa-
tients, subjects with untreated long-standing isolated growth
hormone deficiency manifest reduced insulin secretion and
similar rate of diabetes compared to control subjects, sug-
gesting that lifetime isolated growth hormone deficiency
neither protect from the development of diabetes nor induce
it [167, 168]. Consistently with the absence of insulin re-
sistance despite severe obesity, atherosclerotic CVDs are not
the primary causes of death in patients with PWS. The risk
for all-cause mortality is higher in PWS patients versus the
general population, with the median age at death being
30 years. Respiratory diseases are the predominant cause of
death accounting for more than 50% of the deaths in children
and adults with PWS. Mortality risk from respiratory failure
has remained unchanged from years 2000 to 2015 in PWS
patients. Cardiovascular deaths affected 14.4% individuals
and included pulmonary embolism, cardiac tamponade, heart
failure, and viral myocarditis while atherosclerotic CVD was
not a predominant cause of death in patients with PWS [169-
171].

5. CONGENITAL LIPODYSTROPHY: A SHORTAGE
OF ADIPOSE TISSUE ASSOCIATED WITH INSULIN
RESISTANCE AND ITS CLINICAL EXPRESSION

Lipodystrophies are a variety of congenital or acquired
disorders characterized by partial or virtually complete loss
of adipose tissue. A reduction in the amount of subcutaneous
adipose tissue restricts fat accumulation at this location lead-
ing to insulin resistance and subsequent outcomes of insulin
resistance such as T2D, essential hypertension, left ventricu-
lar hypertrophy, vascular disease, kidney disease (glomerular
hyperfiltration and albuminuria), hypertriglyceridemia, re-
duced HDL-c, hyperuricemia, sarcopenia, lipolysis, hyperin-
sulinemia, polycystic ovary syndrome, acanthosis nigricans,
and non-subcutaneous fat deposition including visceral fat
and liver fat (hepatic steatosis) (Fig. 4). Patients with gener-
alized lipodystrophy show a widespread and uniform lack of
adipose tissue and very low levels of circulating leptin (due
to the systemic absence of adipose tissue). Patients with par-
tial lipodystrophy exhibit reduced total body fat with a defi-
cit of adipose tissue in some regions and preservation in oth-
ers. Among them, plasma leptin is usually low but variable,
depending on the total amount of adipose tissue. Recombi-
nant methionyl human leptin (metreleptin) is a synthetic ana-
log of human leptin that can be used to treat lipodystrophy.
In patients with lipodystrophy and leptin deficiency, leptin
replacement reduces hunger and enhances insulin sensitivity.
Consequently, leptin therapy reduces serum triglyceride lev-
els, lowers HOMA-IR, improves glycemic control in patients
with lipodystrophy and T2D, diminishes hepatic steatosis,
reduces glomerular hyperfiltration and proteinuria, lowers
blood pressure and attenuates left ventricular hypertrophy
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(due to insulin resistance-associated arterial stiffness). Leptin
replacement is beneficial in patients with congenital general-
ized lipodystrophy while patients with partial lipodystrophy
may show poor response to metreleptin, particularly when
plasma leptin levels are not low [22, 172-179].

Thiazolidinediones Interferons

L PPAR-y .J

'

Adipocyte differentiation

'

Increased subcutaneous
adipose tissue

\ }

Enhanced insulin
sensitivity

| v

Reduction of visceral Enlargement of
fat visceral fat

Lipodystrophies

Insulin resistance

Fig. (4). Summary of the relationship between the amount of subcu-
taneous adipose tissue and insulin resistance in patients with lipo-
dystrophy syndromes or receiving exogenous peroxisome prolifera-
tor-activated receptor-y (PPAR-vy) agonists (thiazolidinediones). (A
higher resolution / colour version of this figure is available in the
electronic copy of the article).

5.1. Congenital Generalized Lipodystrophy

Congenital generalized lipodystrophies are inherited dis-
orders characterized by the virtual absence of adipose tissue
noticeable early in life, either from birth, infancy, or child-
hood. Patients endure insatiable appetite and subsequent
overfeeding. In addition, they experience profound and
premature insulin resistance and its clinical manifestations,
such as T2D and hypertriglyceridemia that may lead to re-
current pancreatitis episodes. Other clinical features include
accelerated growth, acromegaloid appearance with hands,
feet, mandible, and genital enlargement, and advanced bone
age during early childhood. Accordingly, with the lack of
adipose tissue, serum leptin concentration is very low [18-
20]. Life expectancy is shortened in patients with CGL, the
predominant causes of death being infections (35%) and liv-
er disease (35%) in a retrospective study that included 20
patients. Other causes of death included kidney failure,
CVD, and acute pancreatitis. Three patients had pulmonary
fibrosis [180]. Insulin resistance, assessed by glucose toler-
ance tests and euglycemic hyperinsulinemic clamps, is a
universal finding in patients with CGL and the premature
appearance of T2D is very common among these patients
[15-22]. Plasma glucagon shows an exaggerated response to
L-arginine [15]. Mutations in a number of genes including
AGPAT2, BSCL2, CAV1, and CAVINI cause CGL. In addi-
tion to the core characteristics of virtual lack of adipose tis-
sue, severe insulin resistance and hypoleptinemia, patients
with CGL manifest specific clinical features depending on
the mutated gene causing the disease (Table 1).
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5.1.1. Acylglycerol-3-phosphate O-acyltransferase-2
(AGPAT2)-linked Congenital Generalized Lipodystrophy

In 1999, the first locus for CGL was mapped to human
chromosome 9q34 and mutations in the AGPAT2 gene (lo-
cated at 9q34.3) were identified as the cause of the disorder
in 2002. This gene encodes 1-acylglycerol-3-phosphate O-
acyltransferase-2, the enzyme that catalyzes the formation of
phosphatidic acid, thus contributing to triacylglycerol syn-
thesis [18, 20]. Clinical features of severe insulin resistance
such as left ventricular hypertrophy, CVD (coronary artery
disease) and kidney disease may occur early in life [181].

5.1.2. Seipin-linked Congenital Generalized Lipodystrophy

Mutations in the BSCL2 gene cause seipin-linked CGL
(Berardinelli-Seip congenital lipodystrophy). This gene en-
codes seipin, a protein involved in the formation of lipid
droplets and adipocyte differentiation. Nineteen Patients
with seipin mutations usually show more severe clinical dis-
ease than patients with AGPAT2 mutations do. The lack of
adipose tissue is more pronounced and they have a loss of
mechanical fat pads (such as palms and soles), unlike pa-
tients with AGPAT2 mutations [181-183]. In addition, pa-
tients with BSCL2 mutations have a higher prevalence of
mild mental retardation and cardiomyopathy compared with
AGPAT2-linked CGL [183]. Lytic lesions in long bones can
be observed in both forms of CGL [183, 184].

5.1.3. Caveolin-1 (CAV1)-linked Congenital Generalized
Lipodystrophy

Biallelic mutations in the CAVI gene cause CGL. This
gene encodes caveolin-1, a component of caveolae (plasma
membrane inlets) and lipid droplets [185]. Phenotypic pecu-
liarities among patients with CAV1-linked FPL include pul-
monary hypertension [186], achalasia, [187], retinitis pig-
mentosa, congenital cataracts, and neurological manifesta-
tions such as nystagmus, anomalous gait, and reduced
strength [188]. In patients with homozygous CAVI muta-
tions, MRI confirms near total absence of both subcutaneous
and visceral adipose tissue [185].

5.1.4. Caveolae-associated Protein-1 (CAVINI)-linked
Congenital Generalized Lipodystrophy

Mutations in the CAVINI (caveolae-associated protein-1)
gene, also named PTRF (polymerase I and transcript release
factor), cause CGL. CAVINTI is a caveolar protein implicated
in stabilizing caveolins to form caveolae [189]. In addition to
generalized lipodystrophy, patients with CAVINI mutations
experience myopathy that may affect the heart muscle, skeletal
muscle, and smooth muscle. They manifest muscle weakness
and percussion-induced muscle contraction that produces
muscle rippling. Smooth muscle hypertrophy in the gastroin-
testinal tract leading to impaired motility, dysphagia, ileus,
and congenital pyloric stenosis has been observed. Hyper-
trophic cardiomyopathy, long QT and cardiac arrhythmias that
may result in early sudden death have been reported. Other
clinical features include atlanto-axial instability, impaired
bone formation with osteopenia and osteoporosis, recurrent
duodenal perforations, and increased susceptibility to infec-
tions. Serum creatine kinase levels are usually elevated [189-
192]. Autopsy studies show a marked loss of subcutaneous
and omental fat with fatty infiltration of the liver [193].
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Table 1. Types of congenital generalized lipodystrophy (CGL).
Type/ Fn:st Descrip- | Gene/ Chr(?mosome Protein Protein Function Differential Phenotype
tion Location
AGPAT2-CGL 1-acylglycerol-3- Triacylglycerol biosyn- Milder disease compared to seipin-CGL
(CGL1) AGPAT2/9q34.3 phosphate- Thesi o )
esis
Agarwal et al. 2002 acyltransferase-2 Bone lytic lesions (also reported in CGL2)
More serious disease than CGL1
Younger patients
More severe lack of fat that includes
Seipin-CGL (CGL2) Seipin (adipocyte differ- Adipocyte differentia- “mechanical” pads
BSCL2/11ql3 . tion / Lipid droplets .
Magré et al. 2001 entiation factor) R Early diabetes
generation

Lower leptin levels
Mental retardation

Hypertrophic cardiomyopathy

CAVI-CGL (CGL3)
Kim et al. 2008

CAV1/7q31.1

Caveolin-1 (CAV1)

Component of caveolae
and lipid droplet

Pulmonary hypertension
Achalasia

Retinitis pigmentosa

CAVINI-CGL
(CGL4)

PTRF or CAVINI /
17q21.2

Polymerase I and tran-
script release factor
(PTRF), also named
caveolae-associated

Caveolae component
involved in caveolae
formation

Muscular dystrophy
Skeletal muscle weakness
Percussion-induced skeletal muscle rippling
Elevated serum creatine kinase

Long QT, cardiac arrhythmias, and sudden
death

Hayashi et al. 2009
protein-1 (CAVINI)

Atlanto-axial instability
Smooth muscle hypertrophy
Hypertrophic cardiomyopathy

Increased susceptibility to bacterial infections

FOS-CGL

c-FOS / 14q24.3
Knebel et al. 2013

c-FOS

Transcription factor Growth retardation

involved in adipocyte ) . )
Death at 8 years due to varicella infection

(PPAR-y)

differentiation
PPARG-CGL PerO)‘(isome proliferator Adipocyte differentia- Insulin resistance
PPARG activated receptor-y . . .
Dyment et al. 2014 tion Kidney failure

5.1.5. Other Genes that may cause Congenital Generalized
Lipodystrophy

As mentioned, biallelic mutations in the PPARG gene
(that codes PPAR-y) have been reported to cause CGL [97].
Mutations in the C-FOS gene have been associated with
CGL and insulin resistance. The C-FOS gene encodes a tran-
scription factor involved in cell proliferation and differentia-
tion associated with the “immediate early response” after
extracellular stimuli that participates in adipose tissue differ-
entiation [194].

5.2. Familial Partial Lipodystrophy

Familial partial lipodystrophies are inherited conditions
characterized by reduced total body fat with an anomalous
distribution (lack of adipose tissue in some regions and
preservation in other places). Patients with FPL typically
experience insulin resistance and its clinical consequences.
Mutations in a variety of genes may cause FPL. Depending
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on the mutated gene, patients with FPL show phenotypic
peculiarities in addition to reduction of total body fat, ab-
normal allocation of adipose tissue, and insulin resistance
[195] (Table 2).

5.2.1. PPARG-linked Familial Partial Lipodystrophy

As mentioned, heterozygous mutations in the PPARG
gene (that encodes PPAR-y) cause FPL 5 while biallelic mu-
tations cause CGL [97].

5.2.2. Mutations in Genes that Code the Insulin Receptor
or Components of the Insulin Signaling Pathway cause
Familial Partial Lipodystrophy

5.2.2.1. Mutations in the Insulin Receptor Gene

Biallelic (homozygous or compound heterozygous) muta-
tions in the insulin receptor gene (/NSR) cause Donohue
syndrome or Rabson-Mendenhall syndrome while heterozy-
gous mutations cause type A insulin resistance. The shortage
of insulin receptors in the three diseases prevents insulin
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Table 2. Types of familial partial lipodystrophy (FPL).
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References Type of FPL Protein

Protein function Differential phenotype

Donohue syndrome
Rabson-Mendenhall

Kadowaki ef al. 1990
syndrome Type A

Insulin receptor

insulin resistance

Defective insulin actions

Early onset diabetes with fasting hypoglyce-

) mia and postprandial hyperglycemia
Insulin receptor ) o
Resistance to ketoacidosis

Normal serum triglyceride level and normal
liver fat

Speckman et al. 2000
Cao 2000

LMNA-linked FPL Lamin A/C

Component of the Muscular dystrophy, cardiac manifestations,

nuclear lamina kidney failure, and other features

Zinc metallo-proteinase
STE24

(ZMPSTE24)

ZMPSTE24-linked

Agarwal ef al. 2003
FPL

Mandibuloacral dysplasia: Clavicular and
Cleavage of prelamin A mandibular hypoplasia, short stature, and

other manifestations

Barroso et al. 1999 | PPARG-linked FLp | T croxisome proliferator-

activated receptor-y

Subcutaneous adipose Early presentation of insulin resistance clini-

tissue adipogenesis cal features and lipodystrophy

Epstein et al. 1966 WRN-linked FPL Werner protein

. Werner syndrome: short stature, dermopathy,
Maintenance of genome . .. .
tabilit predisposition to non-carcinomatous tumors,
stabili ..
4 and other clinical features

Shastry et al. 2010 POLDI-linked FPL DNA polymerase-31

Maintenance of genome . . . .
e . Mandibular hypoplasia, sensorineural hearing
stability / Prelamin A

loss, and other features

2010

processing
Bloom D. 1954 BILM-linked FPL BLM hehcas.e (RecQ DNA Mamtenance-z ‘of genome | Bloom s-y‘ndrome: Growth deficiency, predis-
helicase) stability position to cancer, and other features
1-Ni tal. defined lipodystrophy and Marf: -
Graul-Neumann et a FBNI-linked FPL Asprosin Increase of appetite Undefined lipodystrophy and Marfan syn

drome features

from exerting its actions creating a situation comparable to
insulin deficiency (although an adaptive elevation in serum
insulin levels takes place). In addition, these disorders are
typically associated with a lack of adipose tissue of variable
degree (partial lipodystrophy), suggesting that insulin signal-
ing contributes to subcutaneous adipogenesis [196-199].
Similar to children with type 1 diabetes [200, 201], patients
with mutations in the insulin receptor gene usually show
normal liver fat and normal serum triglyceride and HDL-c
levels [197-199]. Donohue syndrome (leprechaunism) and
Rabson-Mendenhall syndrome have similar clinical charac-
teristics but patients with Donohue syndrome endure a more
severe phenotype with a high mortality rate before 2 years of
age, the main cause of death being infections [197, 202-205].
As mentioned, insulin activity is very deficient in patients
with these disorders and they consequently develop early-
onset diabetes typically characterized by fasting hypoglyce-
mia, postprandial hyperglycemia and resistance to ketoaci-
dosis [197, 202-207]. Serum glucagon level is undetectable
throughout mixed meal tests [205]. In addition, patients with
Donohue syndrome and Rabson-Mendenhall syndrome
demonstrate reduced subcutaneous adipose tissue and low
skeletal muscle mass [202, 204, 205, 207, 208]. They typi-
cally suffer from intrauterine and postnatal growth retarda-
tion, reduced growth hormone and low weight at birth that
remains usually low later in life [197, 202, 203, 205, 206].
Patients with Donohue syndrome may show gingival hyper-
trophy, kidney hypertrophy, hepatomegaly, enlarged geni-

tals, hands and feet. Severe hypertrophic cardiomyopathy
has been frequently reported among these patients [202, 205,
206, 208] (Table 3).

Heterozygous mutations in the insulin receptor gene
cause type A insulin resistance. The clinical phenotype is
similar to that of biallelic mutations in /NSR, but milder.
Patients with type A insulin resistance manifest deficient
insulin action and loss of subcutaneous adipose tissue. Most
of them show low or normal weight and BMI [197, 199, 203,
209, 210]. Fat distribution examined by DEXA, abdominal
CT, and MRI shows partial loss of subcutaneous fat in the
abdomen, reduction of visceral fat, and absence of hepatic
steatosis [199].

5.2.2.2. Mutations in Genes that Code Components of the
Insulin Signaling Pathway

Like carriers of mutations in the insulin receptor gene,
patients with mutations in PIK3RI! and AKT2 genes (that
code components of the insulin signaling pathway) usually
display a variable degree of lipodystrophy.

Phosphatidylinositol-3 kinase (PI3K) is a heterodimeric
component of the insulin signaling cascade that possesses a
110-kDa catalytic subunit and an 85-kDa regulatory subunit
or regulatory subunit-1 (PIK3R1). The PIK3R! gene codes
the p85a regulatory subunit of PI3K [211]. In 2013, hetero-
zygous mutations in the PIK3R1 gene were identified as the
cause of SHORT syndrome, which is clinically characterized
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Table 3. Body fat distribution and insulin resistance in some human diseases and thiazolidinedione therapy.
Global Amount of . . . .
- A . Subcutaneous Fat Visceral Fat Insulin Resistance Main Therapy
Adipose Tissue
. e Enhanced insulin
Thiazolidinedione therapy Increased Increased Decreased . -
sensitivity
Lifestyle and nutritional
Prader Willi syndrome Increased Increased Normal No interventions Growth
hormone
. Usuall Severe insulin .
Lipodystrophy Reduced Reduced . Y . Metreleptin
increased resistance
L . Limited s . .
Mutations in the leptin gene Increased Increased . . Limited information Metreleptin
information
L . . Bariatric surgery
Mutations in the leptin receptor Limited N . .
Increased Increased . ) Limited information Setmelanotide
gene information .
Methylphenidate
Mutations in the melanocortin- Limited infor- s . Bariatric surge
Increased Increased . Limited information g Y
4 receptor gene mation Setmelanotide
Mutations in the pro- Limited N . Setmelanotide
. . P Increased Increased . ) Limited information
opiomelanocortin gene information Hydrocortisone

by intrauterine and postnatal growth retardation, low birth
weight, short stature, inguinal hernia, hyperextensibility of
joints, Rieger anomaly (anterior-chamber eye anomalies),
delayed dentition, triangular face, small chin with a dimple,
ocular depression (deep-set eyes), hearing loss, and delayed
speech. Patients with SHORT syndrome typically manifest
defective insulin action and loss of adipose tissue (lipo-
dystrophy) [212-216].

Heterozygous mutations in the AK72 gene that encodes
the kinase AKT2 (protein kinase B-B) have been reported to
cause partial lipodystrophy, severe insulin resistance, and
diabetes in only one pedigree [217]. Large case-control stud-
ies in British and Chinese population groups show that single
nucleotide polymorphisms in the AK72 locus are not associ-
ated with T2D risk [218, 219].

5.2.3. Familial Partial Lipodystrophy Associated with Lam-
in A/C Deficiency (Mutations in the Genes LMNA and
ZMPSTE24)

Lamins are intermediate filaments that participate in the
structure of the nuclear lamina, a network located at the inner
aspect of the nuclear membrane. The LMNA gene encodes
(by alternative splicing) two major lamin isoforms, A and C,
that differ in their C-terminal domain. Mature lamin A is
derived from a precursor protein, prelamin A, through sever-
al post-translational modifications, including cleavage by the
enzyme zinc metallopeptidase STE24 (ZMPSTE24). The
enzyme DNA polymerase-61 (POLD1) has been also impli-
cated in prelamin A processing and mutations in the gene
that codes this enzyme also cause FPL [220]. Mutations in
the LMNA gene cause a variety of diseases collectively
named laminopathies that may affect skeletal muscle, cardiac
muscle, heart conduction system, adipose tissue, and periph-
eral nerves and usually show overlapping clinical expression
[221].
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5.2.3.1. LMNA-linked Familial Partial Lipodystrophy

Patients with LMNA-linked FPL usually show normal fat
distribution at birth and during childhood. After puberty,
they experience loss of subcutaneous adipose tissue from the
extremities and trunk while fat accumulates in the face and
neck. They endure profound insulin resistance and therefore
they may manifest complications of this metabolic alteration,
including early cardiovascular events [221-223]. DEXA and
MRI examinations reveal markedly diminished subcutaneous
fat in the extremities with substantial fat deposition in other
regions (neck and perinephric, retroperitoneal and intermus-
cular areas) compared to control subjects. MRI shows hepat-
ic steatosis [224, 225]. Patients with LMNA-linked FPL have
lower plasma levels of leptin compared with controls [226].
Post-mortem findings confirm an anomalous fat distribution
with a paucity of subcutaneous fat in the extremities, accu-
mulation of fat in the face and neck, excess visceral fat depo-
sition, and extensive hepatic steatosis [227, 228].

Additionally, to partial lipodystrophy and insulin re-
sistance, patients with LMNA mutations may show an array
of skeletal muscle, nerve, and heart clinical manifestations,
such as progressive muscular dystrophy with muscle weak-
ness and myalgias, nerve entrapment syndromes, congestive
heart failure, atrial fibrillation, dilated cardiomyopathy and
conduction system disturbances such as atrioventricular
block, arrhythmias, and sudden cardiac death. They may
require defibrillator implantation or cardiac transplantation
before 30 years of age [223, 229]. Kidney disease has been
reported in patients with LMNA-linked FPL [230-233].

Both monoallelic and biallelic mutations in the LMNA
gene may cause FPL. Biallelic mutations tend to cause more
severe phenotypes than monoallelic (heterozygous) molecu-
lar changes. Homozygous patients exhibit more pronounced
fat loss, more severe insulin resistance, earlier onset of insu-



Body Fat Distribution Contributes to Defining the Relationship

lin resistance complications, and lower leptin level, com-
pared to heterozygous patients [195, 234].

5.2.3.2. ZMPSTE24-linked Familiar Partial Lipodystrophy
(Mandibuloacral Dysplasia)

Biallelic (compound heterozygous or homozygous) muta-
tions in the ZMPSTE24 (zinc metalloproteinase STE24) gene
cause mandibuloacral dysplasia. As mentioned, this enzyme
is involved in the post-translational cleavage of prelamin A
to generate mature lamin A. Mutations in ZMPSTE24 may
impair prelamin A processing and reduce the formation of
lamin A. Patients with mandibuloacral dysplasia may exhibit
a broad spectrum of clinical manifestations including lipo-
dystrophy. In a review of the patients reported until 2019,
clinical features present in 85-100% of subjects were: short
stature, delayed closure of cranial sutures, high palate, cla-
vicular hypoplasia, mandibular hypoplasia, dental crowding,
acro-osteolysis of the distal phalanges, hypoplastic nails,
brittle and/or sparse hair, mottled pigmentation, atrophic skin
similar to scleroderma, and calcified skin nodules. Clinical
manifestations present in 70-84% of patients were lipo-
dystrophy, shortened phalanges, and joint stiffness and con-
tractures. Other phenotypic manifestations that have been
reported include myopathy, arterial hypertension, heart fail-
ure, postnatal growth retardation, feeding difficulty, delayed
dentition, teeth abnormalities, micrognathia, glomerular kid-
ney disease (collapsing glomerulopathy and non-specified
focal segmental glomerulosclerosis), end-stage kidney dis-
ease, enlarged fontanelles, recurrent bone fractures, underde-
veloped occipital bone (ossification defect of the occipital
bone), short phalanges of the hands, and premature birth.
Lipodystrophy associated with mandibuloacral dysplasia is
usually partial and shows a variable distribution that may
affect the face, neck, trunk, or extremities. Loss of subcuta-
neous fat from palms and soles is a frequent finding. A slight
increase of fat in the neck may occur [235, 236]. Oral glu-
cose tolerance tests and insulin-stimulated glucose disposal
procedures in patients with mandibuloacral dysplasia indi-
cate that insulin resistance is usually present [237].

5.2.4. Familial Partial Lipodystrophy Caused by Mutations
in Genes Involved in Genome Stability (Werner Syndrome,
DNA Polymerase-61 Deficiency, and Bloom Syndrome)

5.2.4.1. WRN-linked Familial Partial Lipodystrophy (Wer-
ner Syndrome)

Biallelic mutations in the WRN gene cause Werner syn-
drome. The Werner protein operates both as a helicase (an
enzyme that unwinds and separates double-stranded DNA)
and an exonuclease (an enzyme that removes damaged
DNA) and contributes to maintaining DNA structure and
integrity by repairing damaged DNA, particularly at the ends
of chromosomes (telomeres).

Werner syndrome is clinically characterized by partial
lipodystrophy, severe insulin resistance (and its clinical man-
ifestations), and a variety of other features that may include
cataracts, short stature, scleroderma-like dermopathy with
dermal fibrosis, atrophy of the skin and chronic ulcerations,
premature loss and graying of the hair, and susceptibility to
neoplasms (mainly non-carcinomatous). The life expectancy
of patients with Werner disease is shortened, the two princi-
pal causes of death being malignancies and CVD [238, 239].
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A systematic review that analyzed the risk and spectrum of
neoplasia in 189 patients with Werner syndrome concluded
that the disease is associated with an elevated risk of several
specific types of neoplasia compared to the general popula-
tion. The most frequent tumors (66.6%) in the Werner pa-
tients were thyroid neoplasms, malignant melanoma, menin-
gioma, soft tissue sarcomas, leukemia and pre-leukemic
conditions of the bone marrow, and primary bone neoplasms
[240].

In patients with Werner syndrome, total body fat is di-
minished and there is an abnormal distribution of adipose
tissue. Reduction of subcutaneous adipose tissue affects pre-
dominantly the limbs. Abdominal CT reveals increased vis-
ceral fat (intra-abdominal adipose tissue). Similar to other
population groups, visceral fat deposition is strongly associ-
ated with insulin resistance in Werner syndrome patients
[241-244].

Profound insulin resistance is a universal finding in pa-
tients with Werner disease, having been documented by
euglycemic clamps, oral and intravenous glucose tolerance
tests, intravenous glucagon administration, insulin sensitivity
indexes, hyperinsulinemia and hypertriglyceridemia [243-
251]. Elevated plasma glucagon levels and intensified gluca-
gon response to a test meal have been observed in patients
with Werner syndrome [241, 252]. Accordingly, body com-
position analyses by DEXA, CT, or bioelectrical impedance
show reduced skeletal muscle mass consistent with the diag-
nosis of sarcopenia in patients with Werner syndrome. Sar-
copenia is present even in younger patients aged < 40 years
[253, 254].

Consistently with the presence of pronounced insulin re-
sistance, the prevalence of abnormal glucose tolerance or
T2D (62.2%) and CVD (24.3%) is high in patients with
Werner syndrome. Like in other population groups, insulin
resistance is closely related to vascular disease among Wer-
ner patients. Early-onset diabetes (in youth or early adult-
hood) is a common presentation of Werner syndrome and
may appear before other features of the disease [243-251]. In
patients with Werner syndrome and diabetes, pioglitazone
enhances insulin sensitivity (assessed by the insulin sensi-
tivity index) and elicits a striking improvement in metabolic
control, with a reduction of fasting and post-prandial plasma
glucose, serum insulin, and serum triglyceride level [243,
244]. Furthermore, pioglitazone improves body fat distribu-
tion among Werner patients, as they gain weight but the vis-
ceral fat area decreases while the subcutaneous fat mass in-
creases [243].

5.2.4.2. POLDI1-linked Familial Partial Lipodystrophy

The POLDI gene encodes DNA polymerase-61, the
125kDa catalytic subunit of the DNA polymerase & com-
plex. This enzymatic complex is involved in DNA replica-
tion and DNA damage repair and contributes to maintaining
genome stability. POLD1 contains an exonuclease domain
and a polymerase domain and shows both exonuclease
(3" —5') and polymerase activities. Heterozygous mutations
in the POLDI gene may cause either predisposition to neo-
plasms (colorectal adenomatous polyps, colon cancer, endo-
metrial cancer, breast cancer, and brain tumors) or a syn-
drome characterized by mandibular hypoplasia, sensorineu-
ral hearing loss, partial lipodystrophy, and insulin resistance.
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It has been proposed that heterozygous mutations within the
exonuclease domain of the POLDI gene cause a tumor-
prone condition whereas heterozygous mutations within the
polymerase domain cause POLDI-linked partial lipodystro-
phy associated with insulin resistance and other phenotypic
manifestations [255-257].

The DNA polymerase 6 complex and the Werner protein
assembles into a multiprotein structure and cooperate to
maintain genomic stability. The Werner protein stimulates
the activity of the DNA polymerase 6 complex, facilitating
DNA synthesis and/or DNA repair [258, 259]. In addition,
fibroblasts from patients with POLD1 mutations exhibit an
accumulation of prelamin A, suggesting that POLD1 may be
involved in prelamin A processing. This notion is supported
by overlapping clinical manifestations of POLD1 deficiency
and lamin A deficiency [220].

Heterozygous mutations in the POLD1 gene (polymerase
domain) cause a syndrome with a broad spectrum of pheno-
typic manifestations that includes partial lipodystrophy and
insulin resistance. Patients with POLDI mutations typically
exhibit mandibular hypoplasia and bilateral sensorineural
hearing impairment occurring during the first or second dec-
ade of life. In addition, patients with this disorder may show
a wide spectrum of clinical features, including growth retar-
dation, short stature, hypogonadism, prominent eyes and
nose, dental crowding, scleroderma-like atrophic skin, telan-
giectasias, skin pigmentation, stiff joints, ligament contrac-
tures, hypogonadism, cryptorchidism, testicular atrophy,
muscle cramps, hirsutism, osteopenia, thoracic kyphosis and
scoliosis. Some patients have recurring respiratory infections
that may become life-threatening [260, 261].

Regarding partial lipodystrophy and insulin resistance,
patients with POLDI mutations usually have normal weight
at birth but abnormal distribution of adipose tissue gradually
takes place in childhood with loss of adipose tissue in face
and limbs and visceral fat accumulation. DEXA scans, ab-
dominal ultrasound, CT, MRI, and bioimpedance show a
reduction of total fat mass, reduced subcutaneous adipose
tissue in the face and limbs, reduced skeletal muscle mass, a
marked increase in visceral fat, and hepatic steatosis. Liver
biopsy may confirm non-alcoholic fatty liver disease. Serum
leptin levels are usually low. In patients with POLDI muta-
tions insulin resistance occurs despite low BMI values, hav-
ing been evaluated by hyperinsulinemia, HOMA-IR values,
oral glucose tolerance tests, and glucose clamps. Clinical
expression of insulin resistance may include diabetes, essen-
tial hypertension, subclinical vascular disease, hypertriglyc-
eridemia, reduced HDL-c, polycystic ovary syndrome, and
acanthosis nigricans [220, 255, 256, 260, 262, 263]. Pioglita-
zone has improved insulin resistance and plasma hypolepti-
nemia in patients with POLDI mutations [263].

5.2.4.3. BLM-linked Familial Partial Lipodystrophy

Biallelic (homozygous or compound heterozygous) muta-
tions in the BLM gene cause Bloom syndrome. The BLM
gene encodes a RecQ DNA helicase. The absence of a func-
tional BLM protein causes chromosome instability and an
elevated rate of sister chromatid exchanges which is used as
a marker of the syndrome by cytogenetic analysis [264, 265].
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The typical phenotype of Bloom syndrome includes par-
tial lipodystrophy, insulin resistance, microcephaly, prenatal
and postnatal growth deficiency, short stature, feeding diffi-
culties in infancy, sun-sensitive skin lesions (predominantly
telangiectatic erythema), a variety of ocular manifestations
(early onset of retinal drusen, conjunctival telangiectasia,
optic nerve hypoplasia, and retinoblastoma), chronic lung
disease, hypothyroidism, immunodeficiency, recurrent infec-
tions (usually respiratory or gastrointestinal), cancer predis-
position and increased risk for the development of multiple
cancers at a young age. The distribution of cancers is similar
to the general population, but they occur at younger ages.
Leukemia, lymphoma, and digestive tract cancers (particu-
larly adenocarcinoma) occur commonly in patients with
Bloom syndrome and earlier than the same tumors in persons
from the general population [264-266].

Concerning lipodystrophy and insulin resistance, patients
with Bloom syndrome show a paucity of adipose tissue and
therefore low BMI [265]. Insulin resistance (and its clinical
manifestations such as T2D and hypertriglyceridemia) is
very frequent among these patients, being present from
childhood [267].

5.2.5. Familial Partial Lipodystrophy Associated with Mu-
tations in Other Genes

Mutations in several other genes, including CAV1, LIPE,
ADRA2A, CIDEC, PLINI, and FBNI, have been reported to
cause FPL very rarely.

As mentioned, biallelic mutations in the CAVI gene (that
codes caveloin-1) cause CGL. Heterozygous CAVI muta-
tions have been reported to cause FPL and insulin resistance
with hypertriglyceridemia and relapsing pancreatitis. In addi-
tion, congenital cataracts, retinitis pigmentosa, and neurolog-
ical findings (nystagmus, anomalous gait, reduced power)
may occur [188].

The genes LIPE [268]. and ADRA2A4 [269].encode hor-
mone-sensitive lipase E and adrenoceptor a 2A, respectively.
Both proteins have been implicated in lipolysis from adipo-
cytes and mutations in these genes have been reported to
cause FPL and insulin resistance.

The genes CIDEC and PLINI code cell death-inducing
DNA fragmentation factor-a-like effector C (CIDEC) and
perilipin-1, respectively. CIDEC has been involved in lipid
droplet formation [270-272] while perilipin-1 is a component
of the lipid droplet envelope required for triglyceride incor-
poration and release from the droplet. Lipid droplets are cy-
toplasmic organelles that store triglycerides, being present
predominantly in adipocytes [273, 274]. Mutations in CI-
DEC [270-272] and PLINI [273, 274] genes have been re-
ported to cause FPL and insulin resistance. However, the
causal relationship between reported PLINI gene mutations
and FPL is unclear, as heterozygous mutations in PLINI
predicted to result in haploinsufficiency do not cause FPL.
On the contrary, PLINI haploinsufficiency may protect
against cardiovascular disease by improving clinical features
of insulin resistance. Subjects with PLINI haploinsufficiency
show reduced triglycerides, increased HDL-c, lower blood
pressure, and reduced waist-to-hip ratio [275, 276].
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Mutations in the FBNI gene may cause FPL. The product
of the FBNI gene is profibrillin, a protein that undergoes
post-translational processing to generate two different poly-
peptides, fibrillin-1 and asprosin, the latter being the result of
the C-terminal cleavage of profibrillin. Asprosin is coded by
exons located at the 3' end of the FBN! gene. This protein is
released during fasting and promotes hunger and hepatic
glucose production. Depending on the location of the molec-
ular change, mutations in the FBNI gene may cause either
typical Marfan syndrome (when the mutation affects fi-
brillin-1) or a variant of Marfan syndrome that includes con-
genital lipodystrophy, when the mutation induces dysfunc-
tion of asprosin. The total amount of body fat (determined by
DEXA) is reduced in patients with mutations in the FBNI
gene and Marfan variant, but other characteristics of the lip-
odystrophy have not been defined. Information on insulin
sensitivity among these patients is limited, but plasma
asprosin levels are correlated with insulin resistance and
metabolic syndrome. Other phenotypic manifestations in-
clude severe myopia, bilateral lens subluxations, cranio-
synostosis, hydrocephaly and large head circumference, in-
trauterine growth retardation, premature birth, accelerated
growth in height disproportionate to the scarce weight gain,
tall stature, arachnodactyly, hyperextensible joints, aortic
root dilatation, mitral valve prolapse, lumbosacral dural ecta-
sia, pectus excavatum, and scoliosis [277-282].

6. INSULIN RESISTANCE IN SOME CONDITIONS
ASSOCIATED WITH MONOGENIC OBESITY

Mutations in the leptin gene, the leptin receptor gene, the
MC4R gene, and the POMC gene lead to early-onset uncon-
trollable hunger, overfeeding and severe obesity. The degree
of insulin sensitivity in affected patients with these mutations
is insufficiently known.

6.1 Mutations in the Genes that Code Leptin and the
Leptin Receptor

In humans, serum leptin levels are variable among indi-
viduals and correlate with the total amount of body fat, such
that circulating leptin is higher in obese subjects compared to
non-obese individuals. In obese subjects, serum leptin level
declines after weight loss [283-286]. In response to fasting,
normal humans experience an acute and pronounced fall in
serum leptin, regardless of the presence of obesity, that may
serve to stir hunger sensation and compel the search for ex-
ogenous energy. Restoration of food intake is associated
with a return to baseline leptin values. Leptin response to
fasting is similar in lean and obese humans, as both of them
experience a profound and comparable drop in serum leptin
level after fasting. Serum leptin level decreases markedly
following fasting compared to values prior to the fast in
normal volunteers (lean, overweight, or obese). The striking
decline in serum leptin does not correlate with the minuscule
reduction in fat mass due to acute fasting, suggesting that
acute leptin decline following fasting is independent of the
amount of body adipose tissue [283, 287, 288]. Accordingly,
serum leptin concentration tended to decrease in patients that
received hypocaloric parenteral nutrition compared to total
parenteral nutrition after surgical procedures [289]. Similar-
ly, circulating leptin decreases during periods of negative
energy balance in normal subjects. Long-term (7 days) ener-
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gy restriction in normal-weight humans reduces circulating
leptin [290]. Conversely, chronic overfeeding causes a rise in
serum leptin that parallels the increase in the percentage of
body fat in normal humans. There is a direct linear relation-
ship between the magnitude of the leptin response and the
percent gain of body fat [291].

6.1.1. Mutations in the Leptin Gene (Congenital Leptin
deficiency)

Biallelic mutations in the gene encoding leptin (LEP)
cause congenital leptin deficiency.

Patients affected with this condition show normal birth
weight followed by rapid weight gain in the first few months
of life due to constant hunger, impaired satiety and hyper-
phagia that lead to early-onset severe obesity. In addition,
congenital leptin deficiency may be associated with impaired
immune function (and increased susceptibility to infections),
hypogonadotropic hypogonadism and hypothalamic hypo-
thyroidism. Children with congenital leptin deficiency do not
usually manifest growth retardation [292-298]. Plasma leptin
level is usually very low (despite the markedly elevated fat
mass), but some mutations in the leptin gene (c.298G—T;
p-D100Y) may generate an inactive protein that circulates in
plasma (resulting in high leptin levels) being biologically
inoperative [299]. Body composition evaluation shows that
congenital leptin deficiency is characterized by preferential
deposition of fat mass [300, 301]. Information on the degree
of insulin sensitivity in patients with mutations in the leptin
gene is limited. Indirect indications of insulin resistance are
commonly reported, including hyperinsulinemia, hypertri-
glyceridemia, reduced HDL-c, and non-alcoholic hepatic
steatosis. Impaired glucose tolerance on oral glucose toler-
ance tests, high HOMA-IR values, and T2D have been doc-
umented in patients with congenital leptin deficiency, but the
precise rate and magnitude of insulin resistance remain to be
fully elucidated [292-294, 296-298, 301-308]. The admin-
istration of recombinant human leptin corrects the phenotyp-
ic anomalies associated with congenital leptin deficiency
both in children and adults. The beneficial effects of leptin
replacement include reduction of hunger, normalization of
eating behavior, reduction in food intake, weight loss, fat
mass reduction, amelioration of hypogonadism, hypothyroid-
ism, and immune function, and improvement of insulin sen-
sitivity and its clinical expression. Patients with T2D usually
achieve glycemic control without additional therapy [294,
300, 302-304, 306, 307, 309]. Body composition evaluated
by DEXA shows that body weight loss after leptin replace-
ment is predominantly due to loss of fat, although a small
decrease in fat-free body mass may occur that is substantial-
ly smaller than the loss of fat [294, 300, 303].

6.1.2. Mutations in the Leptin Receptor Gene

Biallelic mutations in the human leptin receptor gene
(LEPR) cause deficiency of the leptin receptor and subse-
quent inability of leptin to exert its actions. In highly select-
ed population groups of subjects with severe early-onset
obesity, the prevalence of biallelic LEPR mutations ranges
from 2.24% to 3% [310, 311]. The clinical phenotype of this
condition is similar to that of mutations in the leptin gene.
Affected patients manifest normal birth weight but they
quickly gain weight in the first months of life due to constant
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hunger, lack of satiety, and excessive eating that results in
severe obesity. Patients with mutations in LEPR may also
present hypogonadotropic hypogonadism, hypothalamic hy-
pothyroidism (reduced secretion of thyrotropin), and altera-
tions in the immune function that may lead to frequent child-
hood infections (predominantly recurrent respiratory infec-
tions). Clinical manifestations of insulin resistance have been
documented, including hyperinsulinemia, HOMA-IR eleva-
tion, and T2D, but their frequency remains undefined. In
subjects with LEPR mutations, serum leptin level is usually
elevated, but it may be comparable to that observed in BMI-
matched subjects [310-321]. Unlike patients with mutations
in the leptin gene, leptin replacement is not beneficial in pa-
tients with mutations in the LEPR gene. Bariatric surgery
procedures such as vertical ring gastroplasty [315, 319]. and
drugs such as methylphenidate and setmelanotide (an agonist
of the MC4R) have been used in patients with LEPR muta-
tions with partial efficacy [322, 323].

6.2 .Mutations in the Melanocortin-4 receptor Gene
(Melanocortin-4 Receptor Deficiency)

Pro-opiomelanocortin is a precursor protein that upon
cleavage generates several melanocortin peptides, including
adrenocorticotropic hormone (ACTH) and o -melanocyte-
stimulating hormone (a-MSH), that mediate their physiolog-
ical effects through specific G protein coupled receptors
(melanocortin receptors) via activation of adenylyl cyclase
and cyclic AMP signaling. ACTH stimulates melanocortin-2
receptors in the adrenal gland whereas a-MSH acts via the
melanocortin-1 receptor in the skin and the MC4R in the
hypothalamus. MC4R activation by a.-MSH induces satiety
and suppresses hunger [324] (Fig. 5).

o-melanocyte-
stimulating hormone
(a-MSH)

Melanocortin-4
receptor
(hypothalamus)

Melanocortin-1
receptor
(skin and hair)

Hunger suppression
and satiety

Skin and hair
Skin and hair
pigmentation

Fig. (5). Summary of human pro-opiomelanocortin derivatives and
their effects. (A higher resolution / colour version of this figure is
available in the electronic copy of the article).

Loss of function mutations in the human MC4R gene
causes monogenic obesity due to irrepressible hunger and
subsequent hyperphagia [325-328]. Most patients with con-
genital MC4R deficiency harbor heterozygous MC4R muta-
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tions, but probands with homozygous MC4R changes have
been identified and they usually show more severe clinical
phenotype compared to heterozygotes [327-331].

Patients with inactivating mutations in the MC4R gene
manifest normal weight at birth but they develop persistent
hunger and subsequent hyperphagia during the first months
of life that leads to progressive weight gain and early-onset
obesity. Obese patients with MC4R mutations tend to have
tall stature. In a case control study that enrolled 153 hetero-
zygous patients with MC4R deficiency and 1,392 matched
controls, both heights during childhood and final adult height
were higher in MC4R-deficient patients compared with con-
trols. Common multifactorial childhood obesity is usually
associated with increased linear growth, but a disproportion-
ately accelerated linear growth is observed in patients with
MCA4R deficiency compared to obese controls [332, 333].

Patients with MC4R deficiency demonstrate obesity and
elevated stature without other clinical peculiarities. Obesity
is usually severe and develops early in life. Plasma leptin
levels are high, as they reflect fat mass, but there is no dif-
ference between plasma leptin concentration in patients with
MCA4R deficiency and obese control subjects [334, 335].

The clinical phenotype of MC4R deficiency is more pro-
nounced during childhood. In a longitudinal population-
based study that evaluated 4,537 individuals, the slope of
BMI increase was greater in individuals carrying an MC4R
mutation compared with noncarriers during childhood but
not during adulthood. Body mass accumulation was greatest
during childhood but became similar to the rest of the popu-
lation group after puberty [333]. The intense hunger sensa-
tion during childhood becomes less pronounced later in life
and consequently, hyperphagia tends to be less prominent
with progression into adulthood, suggesting that the effects
of the MC4R mutations are more apparent during childhood
[329, 333]. In patients with MC4R deficiency, DEXA stud-
ies show that both body fat mass and lean mass are in-
creased, similar to subjects with common multifactorial obe-
sity. Patients with MC4R deficiency are typically severely
obese and tall, with increased fat-free mass as well as fat
mass [329].

Information on the degree of insulin sensitivity is limited
in patients with MC4R deficiency. Acanthosis nigricans has
been reported in some patients with MC4R mutation. Fasting
plasma insulin level has been found more elevated or similar
to matched obese controls [328, 329, 334-336]. In prepuber-
tal children with MC4R deficiency, plasma insulin concen-
tration is greater compared with obese controls. However,
the plasma insulin level is comparable to obese controls in
adults with MC4R mutations [332]. Plasma triglyceride lev-
els and HOMA-IR values are usually elevated in adult pa-
tients with MC4R deficits compared to non-obese control
subjects. However, they are comparable to obese controls
[334, 335].

Unlike adults, children with MC4R mutations experience
a higher risk of developing T2D, independent of BMI and
other covariates. Before the age of 20 years, a greater pro-
portion of patients with MC4R deficiency developed T2D
compared with control subjects (10.1% versus 2.6%), sup-
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Table 4. Clinical commonalities and differences between Alstrom syndrome and Bardet Biedl syndrome.
Alstrém Syndrome Bardet Biedl Syndrome
Retinal dystrophy and severe visual impairment
Sensorineural hearing loss
Intellectual disability
Kidney disease
Kidney and urinary tract structural anomalies
Hypogonadism
Fingers or toes defects (syndactyly, brachydactyly or polydactyly)
Hepatic fibrosis
Higher circulating leptin levels compared to BMI-matched control subjects
Dilated cardiomyopathy Cardiac malformations
Hypothyroidism Anosmia
Normal height in children but short stature in adults Short stature in children but normal height in adults
Childhood obesity that tends to normalize later in life Frequent obesity
Severe early-onset insulin resistance and pronounced multiorgan fibrotic Variable presence of mild insulin resistance
infiltration

porting the notion that the effects of MC4R mutations are
more conspicuous during childhood [333].

Patients with MC4R deficiency have been treated with
bariatric surgery and setmelanotide (a MC4R agonist) [337-
339].

In addition to inactivating mutations, variation in the
MC4R gene may involve activating (gain of function) mo-
lecular changes that result in stimulation of the receptor with
subsequent satiety and protection from obesity [334, 340,
341].

6.3. Pro-opiomelanocortin Mutations (POMC Deficiency)

In 1998, biallelic mutations in the POMC gene were re-
ported to cause a distinct set of clinical findings that consist-
ed of adrenal insufficiency, red hair, and early-onset obesity.
POMC deficiency leads to impaired formation of both
ACTH and a-MSH. ACTH deficit causes reduced cortisol
synthesis while deficit of a-MSH causes obesity (due to di-
minished action of a-MSH on MC4R in the hypothalamus)
and reduced skin and hair pigmentation (due to reduced ac-
tivity of a-MSH activity on melanocytes) [324]. Subsequent
reports confirmed the presence of this clinical picture. In
patients with POMC mutations, ACTH deficiency and defec-
tive cortisol secretion are universally present and usually
start during the neonatal period with hypoglycemic episodes,
jaundice, and / or hypothermia. The birth weight is usually
normal, but persistent hunger, reduced satiety and overfeed-
ing lead to progressive obesity that begins to develop during
infancy. Skin hypopigmentation and red hair may occur, but
patients with congenital POMC deficiency may show normal
hair and skin pigmentation, indicating that mutations in the
POMC gene should be considered in subjects with isolated
ACTH deficiency and hypocortisolism, particularly associat-
ed with early onset obesity. In addition, patients with POMC
deficiency may manifest hypogonadotropic hypogonadism,
hypothyroidism, and type 1 diabetes (14%), widening the
initial clinical phenotype of the disorder [330, 342-354].

Information on the degree of insulin sensitivity in pa-
tients with POMC deficiency is very limited. Acanthosis
nigricans has been diagnosed in some patients. Hepatic stea-
tosis and hyperinsulinemia have been reported. In patients
with type 1 diabetes and POMC mutations, insulin require-
ments have been noticed either similar or higher to type 1
diabetes patients without POMC mutations [349-351, 354].

Patients with POMC mutations should receive replace-
ment therapy with hydrocortisone to correct adrenal insuffi-
ciency and thyroid hormone when hypothyroidism is present.
In addition, some patients have been treated with metformin
[351, 354] or setmelanotide [323].

Subjects with heterozygous mutations in the POMC gene
(from kindreds of probands with biallelic POMC mutations
and subsequent POMC deficiency) are usually overweight or
obese compared to wild-type relatives [342, 355].

7. ALSTROM SYNDROME AND BARDET-BIEDL
SYNDROME

The clinical phenotype of Alstrom syndrome and BBS
share some commonalities, but it is different regarding insu-
lin resistance and obesity. Alstrom syndrome is associated
with early-onset severe insulin resistance and short stature in
adulthood while patients with BBS are predominantly obese,
with normal adult height and mild insulin resistance (Table 4).

7.1. Alstrom Syndrome

Alstrdom syndrome is an autosomal recessive disorder
caused by mutations in the ALMS! gene. The ALMSI1 pro-
tein is ubiquitously expressed in human tissues, having been
detected in all tissues surveyed, including adipose tissue.
Alternative splicing produces several isoforms of the protein
[356]. In cultured human cell lines, ALMSI localizes to the
centrioles and the basal bodies (centriole-derived structures
that participate in the formation of the cilium). ALMSI is
closely associated with y-tubulin, a component of the peri-
centriolar material [356, 357]. In addition, human ALMSI1
has been identified in the cytosol, outside the centrosome
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[358]. The precise function of ALMSI1 is unknown. It has
been proposed that this protein may be implicated in the
formation and maintenance of primary cilia, intracellular
trafficking, microtubule and actin organization, cell adhe-
sion, and extracellular matrix production [356]. In vitro stud-
ies using cultured human cell lines show that ALMS1 and
some BBS proteins contribute to regulating Notch signaling
by mediating the trafficking of this receptor toward the
plasma membrane. In human embryonic kidney-293 cell
lines, depletion of ALMS1, BBS1, BBS3, or BBS4 results in
overactivation of Notch signaling, attributed to defective
degradation of the Notch receptor [359].

Clinical manifestations of Alstrom syndrome appear dur-
ing infancy and include retinal degeneration, severe visual
impairment, sensorineural hearing loss, dilated cardiomyopa-
thy, growth hormone deficiency, adulthood short stature,
obesity, hypothyroidism, kidney disease, and hypergonado-
tropic hypogonadism in males. Severe early-onset insulin
resistance is a hallmark of Alstrom syndrome. Similar to
T2D, patients with Alstrdom syndrome show profound multi-
organ fibrotic infiltration [360-362].

Adult patients with Alstrom syndrome manifest uniform-
ly short stature compared to control subjects [44, 360, 362-
366]. Among 182 patients with this disorder, most children
had rapid linear growth and obtained height above the 50™
percentile before puberty. However, a progressive decelera-
tion in linear growth is documented after puberty and the
final adult height is below the Sth percentile [360]. Similar
findings are obtained in a longitudinal investigation that fol-
lowed 23 patients with Alstrom syndrome (age 1-52 years)
for 10 years [366]. Growth hormone deficiency has been
detected among adult patients with Alstrom syndrome [366].

Birth weight is within the normal range, but weight gain
above normal is commonly observed during infancy and
childhood in patients with Alstrom syndrome. After puberty,
weight is comparable to controls and BMI tends to normalize
in older individuals, suggesting that childhood obesity im-
proves with age in patients with Alstrém syndrome [358,
360, 364-366]. In patients with this disorder, uncontrollable
appetite and severe hyperphagia are not typically present,
such that very high energy intake is not a definite determi-
nant to obesity. Caregiver-reported hyperphagia and food
intake records to evaluate overfeeding have yielded incon-
clusive results [358, 360, 362]. In patients with Alstrom syn-
drome, the total percentage of body fat (measured by DEXA)
is similar to control subjects and the percent of body fat de-
creases with age. DEXA scans, abdominal CT, and MRI
show that the distribution of adipose tissue is widespread
both in subcutaneous and visceral locations [358, 362, 364,
367]. The level of serum leptin is higher in Alstrdom syn-
drome patients compared to obese controls [44].

Patients with Alstrdom syndrome show severe insulin re-
sistance (assessed by HOMA-IR, quantitative insulin sensi-
tivity check index, and hyperinsulinemic euglycemic
clamps) that develops during early childhood. Therefore, the
prevalence of T2D is strikingly high among these patients
and the disease appears commonly during childhood or ado-
lescence. Other clinical manifestations of insulin resistance
are also typically present, including hyperinsulinemia, hepat-
ic steatosis, vascular disease, essential hypertension, insulin

82

160823219824

Adeva-Andany et al.

resistance-related dyslipidemia (higher triglycerides and
lower HDL-c). Elevated serum triglyceride level may precip-
itate pancreatitis [44, 358, 360, 362, 363, 365, 368]. Gluca-
gon level after a mixed meal is higher compared to matched
control subjects [362]. In contrast to obesity and body fat
(that decrease with age), insulin resistance continues to
worsen into adulthood in patients with Alstrém syndrome
[358, 364]. Consistently with the presence of insulin re-
sistance, Alstrom syndrome patients exhibit increased subcu-
taneous adipocyte size compared to obese controls. In a case-
control study that enrolled 12 Alstrom patients and 11 obese
control subjects with common polygenic obesity, subcutane-
ous adipocyte size was 6,033 + 875 pm” in Alstrém partici-
pants versus 4,346 + 880 um? in obese control subjects [44].

7.2. Bardet-Biedl Syndrome

Bardet-Biedl syndrome is an autosomal recessive genet-
ically heterogeneous disorder. Mutations in more than 20
genes have been reported to cause BBS up to now. BBSI0
and BBSI are the most frequently mutated genes followed by
BBS2 while mutations in the BBS4 and BBSY genes are less
frequent [369, 370]. Some (eight so far) BBS proteins as-
semble into a multiprotein complex. Other BBS proteins are
thought to be chaperonin-like, as they display sequence ho-
mology with the CCT (chaperonin-containing tailless com-
plex polypeptide 1). The function of human BBS proteins
remains to be fully elucidated. They have been implicated in
the trafficking of proteins including receptors (such as insu-
lin receptor and leptin receptor) toward the plasma mem-
brane and the cilium [369]. Some human BBS proteins may
be involved in the formation of a primary cilium that appears
transitorily in preadipocytes during human adipocyte differ-
entiation. While mature adipocytes are non-ciliated cells, a
primary cilium is transiently observed in differentiating
preadipocytes. Upregulation of BBS6, BBS10, and BBS12
proteins (located to the basal body) is detected in ciliated
preadipocytes [371]. In addition, the knockdown of any of
these BBS proteins results in a decreased number of ciliated
cells compared to control cultures, suggesting that they may
be involved in the formation of the primary cilium during
adipogenic differentiation of human mesenchymal stem cells
[372]. Further, the inactivation of BBSI10 or BBS12 genes in
differentiating preadipocytes upregulates adipogenic genes
such as PPARG and induces nuclear accumulation of PPAR-
v compared to control cells, suggesting adipogenesis activa-
tion in the BBS-depleted preadipocytes [371]. Accordingly,
cultured adipocytes developed from BBS patients with muta-
tions in the BBSI10 or BBS12 genes exhibiting higher fat ac-
cumulation compared to control adipocytes with wild-type
proteins. The leptin level secreted in the culture medium is
higher in the BBS mutated cells compared to the control
cells, consistently with the high circulating leptin in patients
with BBS [371, 372]. Similarly, gene-expression analysis of
adipose tissue from patients with BBS demonstrated in-
creased expression of genes involved in adipogenesis, such
as PPARG, compared to controls [372].

The phenotypic expression of mutations in the BBS genes
includes retinal dystrophy that usually leads to blindness, finger
anomalies (syndactyly, brachydactyly or polydactyly), obesity,
intellectual disability (cognitive impairment, learning difficul-
ties or mental retardation), hearing loss, cardiac malformations,
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urogenital tract and kidney structural defects, kidney failure,
hypogonadism, reproductive abnormalities or infertility, child-
hood onset asthma, and hepatic fibrosis [369, 373-381].

Unlike patients with Alstrom syndrome, children with
BBS are shorter than control subjects while adults with BBS
show similar stature compared to control individuals [370,
382]. Obesity is a common finding in patients with BBS.
Birth weight is usually within the normal range, but most
patients with BBS develop overweight or obesity during
childhood which is sustained through adulthood [370, 373,
375, 383]. The total percent of body fat assessed by DEXA
is similar in patients with BBS and BMI-matched controls
[370, 384]. The cause of obesity in patients with BBS is un-
clear. Constant hunger and severe overfeeding do not typi-
cally occur in patients with BBS. Small case-control studies
show inconclusive results regarding hyperphagia and energy
intake [382, 384]. Like Alstrom syndrome, BBS patients
have higher circulating leptin than expected for their degree
of adiposity, as serum leptin levels are higher in patients
with BBS compared to BMI-matched controls [370].

Unlike patients with Alstrom syndrome, severe insulin
resistance is uncommon in patients with BBS. The degree of
insulin sensitivity is variable and insulin resistance, when
present, is mild [369, 370, 373, 376, 377, 381, 383]. The rate
of clinical manifestations of insulin resistance, such as in-
creased visceral fat [370, 373, 375]. and metabolic syndrome
components (hyperinsulinemia, hypertriglyceridemia, and
essential hypertension) [370, 383] has been reported higher
in BBS patients compared to controls. HOMA-IR values are
slightly higher in patients with BBS compared to controls
but they show extensive overlap between the two groups
[370, 383] and the prevalence of impaired glucose tolerance
is similar for subjects with BBS and BMI-matched controls
[370, 372] The rate of T2D among BBS patients varies
markedly between studies, from 2% in younger patients
(mean age 15 years) [370] to 48% in BBS patients from New-
foundland (median age 44 years) [385]. In Newfoundland, the
high diabetes rate is comparable among subjects with (48%)
and without (45%) mutations in the BBS genes [386]. Other
T2D prevalence estimates that have been reported in patients
with BBS include 15.8% (mean age 33.2 years) [383]. and 6%
(mean age 26.3 years) [387]. In a study that enrolled 16 obese
patients with BBS, histological examination of subcutaneous
adipose tissue demonstrated similar adipocyte cell size (mean
diameter of 100 pm) compared to control subjects with similar
BMI, suggesting the absence of severe insulin resistance
[372]. A correlation between BBS genotype and the degree of
insulin resistance has been documented. BBS patients with
mutations in the BBSI0 370 or BBS9 381 genes show more
severe insulin resistance than carriers of BBSI mutations.

Among individuals without BBS, genetic variation in
BBS genes may be associated with obesity, metabolic syn-
drome traits, and T2D [378, 388, 389]. Case control studies
find an association between single nucleotide polymor-
phisms in BBS2, BBS4, and BBS6 genes and hypertriglycer-
idemia, hypertension, impaired glucose tolerance, and T2D
[378, 388]. Genetic variants in BBSI! and BBS9 have been
associated with obesity [389]. The homozygous carriage of a
variant in the BBSI0 gene (c.1189A>G [p.lle397Val],;
rs202042386) confers increased risk for T2D [380].
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CONCLUSION

In humans, unused energy is normally stored in the sub-
cutaneous adipose tissue as fat. The ability to accumulate
triglycerides at that location is variable among individuals,
being partly genetically determined. Defective adipocyte
differentiation, impaired lipid droplet formation, or deficient
synthesis of triglycerides compromise the ability of subcuta-
neous adipose tissue to store fat. A restricted capacity to
store fat in the subcutaneous adipose tissue elicits insulin
resistance. Both lean and obese humans develop insulin re-
sistance when the capacity to store fat in the subcutaneous
adipose tissue has been exhausted. Subcutaneous adipocytes
appear enlarged when their maximal capacity to store fat has
been reached and no further triglycerides can be deposited.
These large subcutaneous adipocytes reflect the presence of
insulin resistance and consequently predict type 2 diabetes
and cardiovascular disease. Surplus energy due to overfeed-
ing is then deposited in places outside the subcutaneous adi-
pose tissue, such as the abdominal cavity (visceral fat), the
liver, the skeletal muscle, and the heart, as triglycerides can-
not be accumulated as subcutaneous fat. Therefore, like large
adipocytes, excess visceral fat reflects insulin resistance and
predicts type 2 diabetes and cardiovascular diseases. In con-
trast, unrestricted capacity to store fat in the subcutaneous
adipose tissue reflects enhanced insulin sensitivity. The con-
nection between subcutaneous fat accretion and insulin sen-
sitivity is underscored by the effects of human PPAR-y, a
transcription factor that promotes subcutaneous adipocyte
differentiation, subcutaneous fat deposition, insulin sensitivi-
ty and reduction of visceral fat. Consistently, congenital
PPAR-y deficiency due to loss of function mutations in the
PPARG gene leads to the absence of subcutaneous adipose
tissue and insulin resistance while PPAR-y agonists like thi-
azolidinediones increase subcutaneous adipose tissue, en-
hance insulin sensitivity and reduce visceral fat. These drugs
increase body weight but improve body fat distribution by
promoting subcutaneous fat accretion, thus improving insu-
lin resistance. The link between the capacity to store fat in
the subcutaneous adipose tissue and insulin sensitivity is
further highlighted by case-control studies that show an as-
sociation between genetic predisposition to insulin resistance
and lower subcutaneous fat mass and by prospective studies
that reveal a relationship between larger amounts of subcuta-
neous adipose tissue at baseline and reduced incidence of
impaired glucose tolerance at follow-up. Additionally, nu-
merous clinical studies establish an association between ex-
cess visceral fat or hepatic steatosis and insulin resistance.
Furthermore, patients with a congenital lack of subcutaneous
adipose tissue (congenital lipodystrophies) manifest insulin
resistance whereas, on the opposite end of the clinical spec-
trum, patients with Prader-Willi syndrome experience severe
subcutaneous obesity in the absence of insulin resistance.

LIST OF ABBREVIATIONS

ACTH = Adrenocorticotropic Hormone
a-MSH = a-melanocyte-stimulating Hormone
APOL1 = Apolipoprotein L1
BBS = Bardet Biedl Syndrome
BMI = Body Mass Index
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CT = Computed Tomography

CGL = Congenital Generalized Lipodystrophy

DEXA = Dual Energy X-ray Absorptiometry

FPL = Familial Partial Lipodystrophy

HOMA-IR = Homeostasis Model Assessment-insulin
Resistance

MCR4 = Melanocortin-4 Receptor

MRI = Magnetic Resonance Imaging

PI3K = Phosphatidylinositol-3 Kinase

POLDI1 = DNA Polymerase-d1

pPOMC = Pro-opiomelanocortin

PPAR-y = Peroxisome Proliferator-activated Re-
ceptor-gamma

PWS = Prader Willi Syndrome

T2D = Type 2 Diabetes
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