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 Abstract: The risk for metabolic and cardiovascular complications of obesity is defined by body 
fat distribution rather than global adiposity. Unlike subcutaneous fat, visceral fat (including hepatic 
steatosis) reflects insulin resistance and predicts type 2 diabetes and cardiovascular disease. In hu-
mans, available evidence indicates that the ability to store triglycerides in the subcutaneous adipose 
tissue reflects enhanced insulin sensitivity. Prospective studies document an association between 
larger subcutaneous fat mass at baseline and reduced incidence of impaired glucose tolerance. 
Case-control studies reveal an association between genetic predisposition to insulin resistance and 
a lower amount of subcutaneous adipose tissue. Human peroxisome proliferator-activated receptor-
gamma (PPAR-γ) promotes subcutaneous adipocyte differentiation and subcutaneous fat deposi-
tion, improving insulin resistance and reducing visceral fat. Thiazolidinediones reproduce the ef-
fects of PPAR-γ activation and therefore increase the amount of subcutaneous fat while enhancing 
insulin sensitivity and reducing visceral fat. Partial or virtually complete lack of adipose tissue 
(lipodystrophy) is associated with insulin resistance and its clinical manifestations, including es-
sential hypertension, hypertriglyceridemia, reduced HDL-c, type 2 diabetes, cardiovascular dis-
ease, and kidney disease. Patients with Prader Willi syndrome manifest severe subcutaneous obesi-
ty without insulin resistance. The impaired ability to accumulate fat in the subcutaneous adipose 
tissue may be due to deficient triglyceride synthesis, inadequate formation of lipid droplets, or de-
fective adipocyte differentiation. Lean and obese humans develop insulin resistance when the ca-
pacity to store fat in the subcutaneous adipose tissue is exhausted and deposition of triglycerides is 
no longer attainable at that location. Existing adipocytes become large and reflect the presence of 
insulin resistance.  
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1. INTRODUCTION 

In humans, surplus energy is normally deposited as tri-
glycerides in the subcutaneous adipose tissue to be used 
when exogenous food is in short supply. The capacity of 
subcutaneous adipose cells to store fat in response to excess 
energy is variable among individuals and reflects the degree 
of insulin sensitivity. Humans with a greater capacity to store 
triglycerides in the subcutaneous adipose tissue in response 
to caloric overload exhibit enhanced insulin sensitivity. Sev-
eral lines of evidence support that notion and establish a 
connection between the ability to store fat in the subcutane-
ous adipose tissue and enhanced insulin sensitivity. First, a 
number of investigations document a positive association 
between greater subcutaneous adipose tissue mass and 
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insulin sensitivity [1-4]. Second, human peroxisome prolif-
erator-activated receptor-γ (PPAR-γ) is a transcription factor 
that promotes subcutaneous adipocyte differentiation and 
enhances insulin sensitivity, linking the ability to store fat in 
the subcutaneous adipose tissue with insulin sensitivity (Fig. 
1). The effects of PPAR-γ are highlighted by the clinical 
consequences of its congenital deficiency and by the effects 
of its exogenous agonists, the thiazolidinediones. PPAR-γ 
deficiency due to inactivating mutations in the PPARG gene 
cause loss of subcutaneous adipose tissue and insulin re-
sistance [5-10], whereas thiazolidinediones replicate the ef-
fects of PPAR-γ and therefore facilitate subcutaneous fat 
deposition, improve insulin sensitivity, and decrease non-
subcutaneous fat. Furthermore, the increase in subcutaneous 
fat 1 or the decrease in non-subcutaneous fat [11-14]. corre-
late with the improvement of insulin sensitivity elicited by 
thiazolidinediones, suggesting that the restoration of the ca-
pacity to store fat in the subcutaneous adipose tissue im-
proves insulin resistance. Third, the clinical picture of human 
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disorders such as lipodystrophy and Prader-Willi syndrome 
further highlights the connection between subcutaneous fat 
mass and insulin sensitivity. The lack of subcutaneous adi-
pose tissue in patients with congenital lipodystrophy is asso-
ciated with insulin resistance [15-22] while patients with 
Prader-Willi syndrome typically manifest pronounced subcu-
taneous obesity in the absence of insulin resistance, suggest-
ing that the ability to store triglycerides in the subcutaneous 
adipose tissue associates with insulin sensitivity [23-25]. 
Fourth, multiple cross-sectional and prospective studies 
demonstrate an independent association between visceral fat 
and insulin resistance and establish that visceral fat precedes 
complications of insulin resistance, such as type 2 diabetes 
(T2D), [4, 26-29]. cardiovascular disease (CVD), [30-33] 
and kidney disease [34].  

 
Fig. (1). Excess energy is normally stored in the subcutaneous adi-
pose tissue as triglycerides. Peroxisome proliferator-activated re-
ceptor-gamma (PPAR-γ) facilitates this process. Thiazolidinediones 
are exogenous agonists of PPAR-γ. (A higher resolution / colour 
version of this figure is available in the electronic copy of the arti-
cle). 

A restricted ability to store triglycerides in the subcuta-
neous adipose tissue is associated with insulin resistance and 
fat deposition in other locations following overfeeding, such 
as the intra-abdominal cavity (visceral fat), liver, skeletal 
muscle, or heart. Lean or obese humans develop insulin re-
sistance (and visceral fat accumulation) whenever fat deposi-
tion in the subcutaneous adipose tissue is impaired [3, 35-
39]. Causes that restrain fat accretion in the subcutaneous 
adipose tissue include deficient triglyceride synthesis, anom-
alous lipid droplet formation, and defective adipocyte differ-
entiation. A limited capacity to store fat in the subcutaneous 
adipose tissue compromises the ability of this tissue to re-
spond to surplus energy demand. Existing adipocytes enlarge 
to accommodate maximal lipid deposition and therefore 
large adipocytes become visible in the subcutaneous adipose 
tissue when no further triglyceride deposition is achievable. 
Subcutaneous adipocyte enlargement signals the presence of 
insulin resistance due to the exhausted capacity to store tri-
glycerides. While adipocyte hypertrophy is observed in pa-
tients with insulin resistance, smaller subcutaneous adipo-
cytes are identified in subjects with enhanced insulin sensi-
tivity and unrestricted capacity to store subcutaneous fat. 
Cross-sectional studies indicate that large adipocytes are 
associated with insulin resistance [35, 37, 38, 40, 41], while 
prospective investigations establish that subcutaneous adipo-
cyte hypertrophy precedes T2D in different population 
groups, regardless of body mass index (BMI) [35, 42]. Fur-
thermore, larger subcutaneous adipocytes are present in 
young South Asians (mean age 27 years) compared to 

matched Caucasians, suggesting that South Asians have a 
lower capacity to store subcutaneous fat than Caucasians 
with similar age and BMI. In addition, adipocyte size corre-
lated with insulin resistance (evaluated by hyperinsulinemic-
euglycemic clamps), such that South Asian subjects demon-
strated more pronounced insulin resistance than their Cauca-
sian counterparts [43]. Likewise, the size of subcutaneous 
adipocytes is increased in patients with Alström syndrome 
compared to matched controls, confirming a status of more 
severe insulin resistance among Alström patients compared 
to controls [44]. 

In this review, we examined information available on the 
relationship between insulin resistance and obesity in human 
diseases highlighting the connection between the ability to 
store fat in the subcutaneous adipose tissue and insulin sensi-
tivity. A comprehensive literature search was conducted on 
the PubMed database from its inception up to February 2023 
that included articles containing the terms obesity, insulin 
resistance, diabetes, subcutaneous adipose tissue, visceral 
adipose tissue, fatty liver, hepatic steatosis, lipodystrophy, 
thiazolidinediones, PPAR-gamma, Prader-Willi syndrome, 
leptin, leptin receptor, pro-opiomelanocortin, melanocortin-4 
receptor, insulin receptor, Bardet-Biedl syndrome, Alström 
syndrome, and other pertinent terms related with the rela-
tionship between insulin resistance and obesity in humans. 
Articles written in English concerning human subjects were 
included. Further relevant articles were identified by search-
ing reference lists of the papers retrieved. Articles resulting 
from these searches were reviewed. At first, investigations 
on the association between visceral fat (as opposed to subcu-
taneous fat) and insulin resistance are reported. Then, the 
role of the PPAR-γ linking subcutaneous fat deposition and 
insulin sensitivity is considered, underscored by the effects 
of thiazolidinediones (exogenous PPAR-γ agonists) and 
PPAR-γ congenital deficiency. Next, human conditions that 
reveal an association between the ability to store fat in the 
subcutaneous adipose tissue and insulin sensitivity are de-
scribed, including congenital lipodystrophy (absence of sub-
cutaneous adipose tissue associates with insulin resistance) 
and Prader Willi syndrome (abundance of subcutaneous adi-
pose tissue in absence of insulin resistance). Finally, the rela-
tionship between obesity and insulin resistance is analyzed in 
other congenital diseases, including Alström syndrome, 
Bardet Biedl syndrome (BBS), and mutations in the genes 
that encode leptin, leptin receptor, melanocortin-4 receptor 
(MC4R), and pro-opiomelanocortin (POMC).  

2. VISCERAL FAT ASSOCIATES WITH INSULIN 
RESISTANCE AND CONSEQUENTLY PREDICTS 
TYPE 2 DIABETES AND CARDIOVASCULAR DIS-
EASE WHILE THE ABILITY TO STORE SUBCUTA-
NEOUS FAT REFLECTS INSULIN SENSITIVITY 

It has been long known that general adiposity is not an 
optimal predictor for metabolic or cardiovascular complica-
tions of obesity. In 1956, Dr. Vague described two types of 
obesity based on the location of fat accumulation in the 
body. Abdominal obesity (reflecting excess visceral adipose 
tissue) was associated with T2D and premature atherosclero-
sis. In contrast, fat accumulation in the subcutaneous adipose 
tissue led to disorders proportional to the amount of fat, such 
as respiratory disease, orthopedic and locomotion difficul-
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ties, and psychological and social burdens, but this form of 
obesity did not predispose to T2D or atherosclerotic CVD 
[45]. Multiple subsequent studies in humans have robustly 
confirmed this notion. 

2.1. Excess Visceral Fat Reflects Insulin Resistance  

As mentioned, individuals with limited ability to expand 
their subcutaneous fat in response to positive energy balance 
develop insulin resistance and visceral fat accretion follow-
ing overfeeding (Fig. 2). Cross-sectional and prospective 
trials establish that excess visceral fat (as opposed to subcu-
taneous fat) reflects insulin resistance and therefore precedes 
T2D and CVD in a variety of population groups, including 
non-obese subjects, obese patients, the elderly, patients with 
diabetes, and the general population. Initial investigations 
used waist circumference and waist-to-hip ratio to estimate 
visceral fat while subsequent studies evaluated body fat by 
ultrasonography, computed tomography (CT), magnetic res-
onance imaging (MRI), dual energy X-ray absorptiometry 
(DEXA), or bioimpedance. Cross-sectional studies uniform-
ly reveal that visceral fat is independently and strongly asso-
ciated with prevalent insulin resistance and components of 
the metabolic syndrome (the clinical expression of insulin 
resistance), in a variety of population groups, even in the 
absence of general adiposity and regardless of the way of 
assessment, either abdominal obesity [3, 46-49] or other pro-
cedures to evaluate body fat distribution [2, 41, 50-61]. Lon-
gitudinal studies establish that visceral fat at baseline pre-
dicts clinical consequences of insulin resistance at follow-up, 
such as T2D, CVD, and kidney disease. Prospective trials 
reveal that visceral fat precedes T2D, irrespective of the way 
of body fat assessment, either elevated waist-to-hip ratio [30-
33] or visceral fat quantification [4, 26-29]. Subjects with 
increased visceral fat at baseline experience a higher risk of 

incident T2D at follow-up, regardless of BMI. In addition to 
T2D, prospective trial show that visceral fat predicts other 
clinical consequences of insulin resistance, such as CVD 
[30-33] and kidney disease [34]. A meta-analysis that in-
cluded 40 observational studies confirmed that visceral fat 
mass is associated with insulin resistance, as measured by 
the homeostasis model assessment-insulin resistance 
(HOMA-IR) index [62].  

In patients with T2D, similarly to other population 
groups, visceral fat is associated independently with insulin 
resistance or its clinical consequences (such as CVD includ-
ing peripheral vascular disease and coronary artery disease), 
regardless of general obesity [63, 64]. 

In subjects with and without T2D, there is a strong corre-
lation between visceral adipose tissue and liver fat content 
[56, 65]. Like visceral obesity, fatty liver (hepatic steatosis 
or non-alcoholic fatty liver disease) is associated with preva-
lent insulin resistance in both lean and obese subjects with 
[56, 65-67] and without [61, 68, 69] T2D. Furthermore, pro-
spective studies reveal that hepatic steatosis at baseline in-
creases the risk of incident T2D at follow-up. In a systematic 
review and meta-analysis that included a pooled population 
of 117,020 patients from 20 prospective studies with a medi-
an follow-up period of 5 years, hepatic steatosis (diagnosed 
by ultrasonography) was associated with an increased risk of 
incident T2D [70]. As a manifestation of insulin resistance, 
hepatic steatosis is associated with CVD [71, 72]. 

When the capacity of subcutaneous adipose tissue to 
store excess energy has been exhausted, fat accumulation 
may occur not only in the liver but also in other organs such 
as the heart, the skeletal muscle, and the pancreas. Like vis-
ceral fat and hepatic steatosis, excess pancreatic fat reflects 
the presence of insulin resistance. Pancreatic fat content cor-
relates with visceral adipose tissue, liver fat accumulation, 

 
Fig. (2). Ectopic fat (including visceral fat and hepatic steatosis) is accumulated when subcutaneous fat accretion is impaired. Ectopic fat 
reflects insulin resistance. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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HOMA-IR index, metabolic syndrome and bigger waist cir-
cumference [73-76]. Similarly to other population groups, 
pancreatic fat content is independently associated with insu-
lin resistance (evaluated by the HOMA-IR index calculated 
with a formula using plasma level of C peptide) among pa-
tients with T2D [74]. In addition, pancreatic fat accumula-
tion has been negatively associated with insulin secretion 
(assessed via oral glucose tolerance test-based measures or 
HOMA-β index) in subjects with impaired glucose tolerance 
or impaired fasting glycemia 73 and in male patients with 
T2D [74]. However, the association between pancreatic fat 
content and insulin secretion by β cells has not been identi-
fied in other investigations [75, 76]. In the skeletal muscle, 
intermuscular accumulation of fat may occur due to the ina-
bility of subcutaneous adipose tissue to store surplus triglyc-
erides. Like visceral fat, this ectopic fat infiltration of the 
skeletal muscle (myosteatosis) reflects insulin resistance and 
consequently predicts the development of incident T2D in 
longitudinal studies [77]. However, myocytes contain tri-
glycerides within intracellular lipid droplets to be used as a 
source of energy during exercise. Trained athletes show re-
markable insulin sensitivity, but they have an elevated in-
tramyocellular lipid pool as an adaptive response to training 
[78]. In the abdominal subcutaneous adipose tissue, the fas-
cia superficialis separates two fat layers, deep and superfi-
cial. Cross-sectional studies have suggested that the amount 
of deep subcutaneous fat (unlike superficial) may correlate 
with fasting insulin level [79]. and insulin-stimulated glucose 
utilization, measured by euglycemic clamp [80]. Truncal fat 
is a correlate for visceral adiposity. Consequently, subjects 
with increased truncal fat experience a higher risk of meta-
bolic syndrome [80, 81] and insulin resistance [82-84]. com-
pared to individuals with normal truncal fat. As aging is as-
sociated with insulin resistance, a greater amount of truncal 
fat is observed at older ages in all ethnicities [85]. Sex dif-
ferences have been identified in fat distribution, but they 
disappear after menopause. Before menopause, women typi-
cally show greater subcutaneous adipose tissue (peripheral 
fat) whereas men tend to accumulate abdominal (central) 
adipose tissue and visceral fat. For all ethnicities (Caucasian, 
African-American, Hispanic-American and Asian), men tend 
to exhibit more truncal fat than women [85]. Visceral fat area 
correlates with components of the metabolic syndrome inde-
pendently of the menopause status, suggesting that the effect 
of menopause on the association between visceral fat and 
metabolic syndrome is not substantial [86]. 

2.2. Association between Subcutaneous Adipose Tissue 
and Insulin Sensitivity 

As mentioned, the ability to store subcutaneous fat relates 
to insulin sensitivity. Cross-sectional, prospective, interven-
tional, and genetic investigations find a positive association 
between subcutaneous adipose tissue mass and insulin sensi-
tivity [1-4]. In a cross-sectional study that enrolled over-
weight or obese adults, the amount of subcutaneous adipose 
tissue, quantified by CT, was positively correlated with the 
degree of insulin sensitivity (evaluated by a modified insulin 
suppression test), despite similar BMI values [2]. In a pro-
spective trial that followed South African women with nor-
mal glucose tolerance for 13 years, baseline subcutaneous fat 
mass, assessed by DEXA, was associated with reduced inci-

dence of T2D or impaired glucose tolerance at follow-up, 
suggesting that subjects able to store more fat in the subcuta-
neous adipose tissue experience enhanced insulin sensitivity 
[4]. In patients treated with thiazolidinediones, the increase 
in subcutaneous fat [1] or the reduction in the ectopic lipid 
content in the skeletal muscle [11-14]. correlates with the 
improvement of insulin sensitivity elicited by these drugs. 
Accumulation of subcutaneous fat (as opposed to visceral 
fat) predicts the efficacy of troglitazone therapy in T2D pa-
tients, such that those with a greater increase of subcutane-
ous adipose tissue show better glycemic control than patients 
with lesser accumulation, suggesting that restoring the ability 
to store fat in the subcutaneous adipose tissue improves insu-
lin resistance [1]. Further, large case-control studies reveal 
that genetic predisposition to insulin resistance is associated 
with lower amounts of subcutaneous adipose tissue. In a 
population-based investigation that included 188,577 partici-
pants in several trials (Fenland study, EPIC-Norfolk, EPIC-
InterAct, UK Biobank, and the United Kingdom Household 
Longitudinal Study), genome-wide association analyses 
identified 53 loci associated with clinical features of insulin 
resistance. such as hyperinsulinemia, hypertriglyceridemia, 
and reduced HDL-c. Among 45,836 cases and 230,358 con-
trols, the genetic predisposition to insulin resistance based on 
these 53 loci was associated not only with a higher risk of 
T2D and coronary heart disease (as expected) but also with 
lower subcutaneous adipose tissue mass. Furthermore, 
DEXA measures of body fat in 12,848 individuals showed 
that subjects with the highest genetic predisposition to insu-
lin resistance had an average of 712 grams less leg fat mass 
(and higher risk of T2D) compared to individuals with the 
lowest genetic predisposition to insulin resistance [3]. 

3. HUMAN PEROXISOME PROLIFERATOR-
ACTIVATED RECEPTOR-Γ ACTIVITY CONNECTS 
THE ABILITY TO STORE SUBCUTANEOUS FAT 
WITH INSULIN SENSITIVITY 

Human PPAR-γ plays an important role in connecting 
subcutaneous fat deposition and insulin sensitivity by pro-
moting adipocyte differentiation. Activation of PPAR-γ fa-
cilitates triglyceride deposition at a subcutaneous location 
and thus enhances insulin sensitivity and reduces visceral fat. 
The human PPARG gene codes two isoforms of PPAR-γ 
(PPAR-γ1 and PPAR-γ2) by differential promoter usage and 
alternate splicing. Human PPAR-γ is a transcription factor 
that modulates the transcription of target genes upon activa-
tion by a ligand. Endogenous ligands for PPAR-γ include 15-
deoxy-δ-(12,14)-prostaglandin J2 while thiazolidinediones 
(such as troglitazone, rosiglitazone, and pioglitazone) are 
exogenous ligands. Upon ligand binding, PPAR-γ attaches to 
retinoid X receptors to create a heterodimer. In turn, the het-
erodimer PPAR-γ/retinoid X receptor binds to specific DNA 
sequences called PPAR-γ response elements in specific tar-
get genes to modulate gene transcription [87-92]. Human 
PPARG has a ubiquitous expression. PPARG1 is the pre-
dominant isoform while PPARG2 has a minor representation 
in human tissues. PPARG1 mRNA has been identified in 
human adipose tissue, large intestine (colon), small intestine, 
kidney, liver, heart, lung, endocrine pancreatic cells (α, β and 
δ islet cells), ovary, and placenta. Adipose tissue and large 
intestine have the highest levels while PPARG mRNA is 
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barely detectable in skeletal muscle. In contrast with the 
ubiquitous expression of PPARG1, human PPARG2 mRNA 
is only present in human adipose tissue. Even at that loca-
tion, human PPARG2 mRNA is less abundant than PPARG1 
in both visceral and subcutaneous adipose tissue [87-90, 92-
95]. 

 
Fig. (3). Adipocyte differentiation. (A higher resolution / colour 
version of this figure is available in the electronic copy of the arti-
cle). 

As mentioned, human PPAR-γ promotes adipocyte dif-
ferentiation and consequently fat deposition in the subcuta-
neous adipose tissue. Human adipogenesis involves the 
commitment of mesenchymal precursors cells towards an 
adipose cell lineage (Fig. 3). Then, mesenchymal stem cells 
undergo differentiation into preadipocytes which in turn dif-
ferentiate into mature adipocytes. Both 15-deoxy-δ-(12,14)-
prostaglandin J2 and thiazolidinediones enhance the differ-
entiation of human preadipocytes isolated from subcutaneous 
depots, indicating the role of PPAR-γ favoring adipogenesis 
in the subcutaneous adipose tissue. In contrast, human pread-
ipocytes from omental sites are refractory to the effect of 
thiazolidinediones [91].  

Clinical studies reveal an association between defective 
subcutaneous adipogenesis and insulin resistance, suggesting 
that impaired adipocyte differentiation may contribute to the 
cause of insulin resistance. In patients with insulin re-
sistance, subcutaneous adipose cells show an attenuated ex-
pression of genes involved in adipocyte differentiation (such 
as PPARG) [36, 96]. In addition, pioglitazone increases 
markers of adipocyte differentiation in subcutaneous adipose 
cells (such as adiponectin) and improves insulin sensitivity 
(assessed by hyperinsulinemic euglycemic clamp) [37]. 

The role of PPAR-γ coupling subcutaneous adipocyte 
differentiation with insulin sensitivity is highlighted by the 
clinical consequences that follow PPAR-γ congenital defi-
ciency and by the effects of PPAR-γ agonists such as thiazol-
idinediones. Patients with congenital PPAR-γ deficiency 
manifest paucity of adipose tissue coupled with insulin re-
sistance while thiazolidinediones promote subcutaneous fat 
accretion, enhance insulin sensitivity, and reduce visceral fat, 

as these drugs replicate the effects of PPAR-γ activation. 
Furthermore, the ability of PPAR-γ to enhance insulin sensi-
tivity is underlined by the effect of interferons, which are 
components of the innate immune system that induce insulin 
resistance in response to infections. Interferons reduce the 
expression of the PPARG gene and suppress PPAR-γ activi-
ty, thus contributing to promoting insulin resistance during 
infections and other conditions associated with interferon 
upregulation, such as systemic lupus erythematosus.  

3.1. Human Peroxisome Proliferator-activated Receptor-
γ Genetic Variation 

Heterozygous loss of function mutations in the PPARG 
gene causes PPARG-linked familial partial lipodystrophy 
(FPL) [5-10], whereas biallelic mutations in the PPARG 
gene have been reported to cause congenital generalized lip-
odystrophy (CGL) [97]. In addition to the absence of adipose 
tissue of variable extent, early presentation of profound insu-
lin resistance and its clinical consequences (T2D, essential 
hypertension, hypertriglyceridemia, reduced HDL-c, poly-
cystic ovary syndrome, and acanthosis nigricans) is typical. 
Relapsing pancreatitis associated with severe hypertriglycer-
idemia has been noticed [98-100]. Metreleptin, a synthetic 
analogue of human leptin, has been useful in patients with 
PPARG-linked FPL [100]. 

In addition to mutations in the PPARG gene, genetic var-
iants in the PPARG gene in the general population may 
modulate the degree of insulin resistance (and therefore the 
predisposition to T2D) depending on their effect on PPAR-γ 
activity. Activating variants facilitate subcutaneous fat depo-
sition and enhance insulin sensitivity while loss of function 
(inactivating) variants hinder subcutaneous fat accumulation, 
intensify insulin resistance and elevate the risk for T2D and 
visceral fat depots [101, 102]. 

3.2. Effects of Thiazolidinediones 

Thiazolidinediones increase body weight but improve body 
fat distribution, as they promote subcutaneous fat deposition 
while reducing visceral fat. By increasing the capacity to store 
fat in the subcutaneous adipose tissue, thiazolidinediones en-
hance insulin sensitivity in subjects with and without T2D.  
3.2.1. Thiazolidinediones Increase Subcutaneous Adipose 
Tissue and Reduce Visceral Fat 

In patients with T2D, troglitazone [1, 11, 103-108]. and 
pioglitazone [13, 14, 109-114]. increase body weight and 
BMI but promote subcutaneous fat accumulation while re-
ducing visceral fat depots, compared to placebo, diet, and 
other anti-diabetic medications. Accordingly, the increase in 
body weight in patients treated with thiazolidinediones is not 
accompanied by an increase in waist circumference. Like-
wise, these drugs improve body fat distribution (increasing 
subcutaneous fat while reducing visceral fat) in subjects 
without diabetes [12, 113, 115, 116]. 
3.2.2. Thiazolidinediones Improve Insulin Sensitivity and 
its Clinical Manifestations in Subjects with and Without 
Diabetes 

Despite weight gain, troglitazone enhances insulin sensi-
tivity in non-diabetic subjects [117]. and T2D patients. Addi-
tionally, troglitazone reduces fasting glucagonemia and glu-
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cagon response to a meal tolerance test, compared to base-
line values [11, 104, 107, 108, 118-120]. Both in T2D and 
non-diabetic subjects, troglitazone improves the clinical ex-
pression of insulin resistance, such that reduces triglyceride 
level [104, 107, 120] improves hepatic steatosis, [107] re-
duces skeletal muscle fat, [11] and decreases blood pressure 
[105, 115, 117]. Comparable effects are achieved by 
pioglitazone. In patients with and without T2D, pioglitazone 
improves insulin resistance [12, 14, 37, 109-111], decreases 
ectopic intramyocellular lipid content [12-14], reduces liver 
fat content [13, 110], diminishes serum triglyceride level and 
increases HDL-c [111, 112, 114]. 

3.3. Interferons Suppress PPAR-γ Expression and Induce 
Insulin Resistance 

In addition to the genetic variations in the PPARG gene 
and the effects of PPAR-γ agonists, the crucial role of human 
PPAR-γ promoting insulin sensitivity is highlighted by the 
effect of interferon diminishing PPAR-γ expression.  

Insulin resistance is a universal metabolic response to 
microbial invasion required to ensure energy availability to 
the activated immune system. Among other cytokines re-
leased in response to pathogens, interferons consistently in-
duce insulin resistance in addition to their antimicrobial and 
antiproliferative effects [121, 122]. An increased expression 
of interferon-stimulated genes (interferon signature) is pre-
sent in patients with infections and other conditions associat-
ed with insulin resistance compared to subjects with normal 
insulin sensitivity [123], Serum levels of both interferon and 
interferon correlates (neopterin and interferon-γ-inducible 
protein-10) are associated with insulin resistance. In addi-
tion, circulating levels of interferon-γ-inducible protein-10 
are independently associated with the amount of visceral 
adipose tissue (but not that of subcutaneous fat), irrespective 
of BMI [124]. Furthermore, an increased level of type I in-
terferon in visceral adipose tissue is positively associated 
with insulin resistance (evaluated by HOMA-IR) [123]. Ac-
cordingly, the abundance of immune cells producing inter-
feron (such as macrophages) and interferon-γ transcript lev-
els are higher in visceral fat compared to subcutaneous adi-
pose tissue in obese subjects [125]. Additionally, recombi-
nant type I interferon (interferon-α) induces a macrophage 
phenotype shift to enhance interferon production in the vis-
ceral adipose tissue of healthy subjects [123]. 

Human studies show that interferon diminishes the ex-
pression of PPAR-γ in adipocytes, suggesting that interferon 
may thus enable a reduction in the ability of subcutaneous 
adipocytes to store energy and subsequent insulin resistance 
[126, 127]. In adipose tissue obtained from obese subjects, 
interferon-γ reduces the expression of the PPARG gene 
[126]. In vitro studies using human adipocytes show that 
interferon-γ reduces PPAR-γ expression, suppresses pre-
adipocyte differentiation into mature adipocytes, and reduces 
lipid droplet number and triglyceride content in mature adi-
pocytes, compared to control cell lines [127]. Consistently, 
interferon-γ released by omental adipose tissue reduces the 
number of lipid droplets when incorporated into cultured 
human adipocytes. In an investigation that recruited obese 
patients with insulin resistance, omental fat was obtained and 
the explanted adipose tissue was cultured in the presence of 

macrophages and T cells. Human omental fat exposed to 
these immune stimuli releases interferon-γ that can be re-
trieved from the medium. When added to cultured human 
adipocytes, interferon-γ thus obtained decreases intracellular 
lipid droplet count and inhibits insulin action in the adipo-
cytes [128]. 

In addition to its effect of decreasing PPAR-γ expression, 
human interferon markedly increases the expression of a 
lipid droplet protein, apolipoprotein L1 (APOL1) [129-134]. 

Human APOL1 is a component of the innate immune 
system that cooperate in the defense against microbial inva-
sion and may mediate some effects of interferon. In addition 
to wild-type (normal) APOL1, two genetic variants of the 
protein have evolved in African American subjects that im-
prove the protection against some infections (mainly human 
Trypanosomiasis), but also increase the risk for acute cellu-
lar rejection in kidney transplant recipients and contribute to 
cause some native kidney and vascular diseases [135, 136]. 
Disorders associated with APOL1 risk variants are usually 
triggered by excess interferon secretion. The intracellular 
location of APOL1 variants differs. While normal APOL1 is 
a component of the lipid droplet and contributes to lipid 
droplet formation, APOL1 risk variants are located in the 
endoplasmic reticulum and their absence from the lipid drop-
let prevents the formation of these intracellular organelles, 
suggesting that APOL1 risk variants promote insulin re-
sistance [137, 138]. Excess interferon secretion upregulates 
the expression of APOL1, magnifies the defective formation 
of lipid droplets associated with the carriage of APOL1 risk 
variants, intensifies insulin resistance, and eventually trig-
gers the appearance of the clinical phenotype associated with 
APOL1 risk variants. Clinical investigations confirm that 
carriers of APOL1 risk variants experience more clinical 
manifestations of insulin resistance compared to non-carriers 
[139-145]. Components of the metabolic syndrome, such as 
essential hypertension and obesity, develop more frequently 
in subjects harboring APOL1 risk variants compared to bear-
ers of the wild type, suggesting that carriers of high-risk 
APOL1 genotype experience more severe insulin resistance 
than non-carriers [139, 140]. Kidney manifestations of insu-
lin resistance  (albuminuria, chronic kidney disease, and 
faster progression to end-stage kidney disease) are also more 
frequently encountered in subjects harboring APOL1 risk 
variants [141-145]. Likewise, histopathological manifesta-
tions of insulin resistance in the kidney such as increased 
glomerular size, focal segmental glomerulosclerosis, and 
arterionephrosclerosis are typically associated with APOL1 
risk variants compared to wild type [146-148]. 

4. PRADER WILLI SYNDROME REPRESENTS A 
FORM OF SUBCUTANEOUS OBESITY UNLINKED 
TO INSULIN RESISTANCE  

Prader-Willi syndrome (PWS) is a congenital disorder 
usually due to a deletion on the paternally derived chromo-
some 15q11-q13 region or to maternal uniparental disomy of 
the same region (15q11-q13). The defective protein or pro-
teins that cause the clinical phenotype are unknown. During 
infancy, patients with PWS manifest hypotonia, poor feed-
ing, failure to thrive, and underweight. Afterwards, they de-
velop irrepressible hunger, lack of satiety, and hyperphagia 
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resulting in childhood obesity that persists into adulthood. In 
addition, growth hormone deficiency, short stature, hy-
pogonadism, mental retardation, learning difficulties, and 
behavioral disturbances may develop. Clinical features of 
PWS have been attributed to hypothalamic dysfunction that 
can lead to growth hormone deficiency and overpowering 
appetite with subsequent hyperphagia [23, 149-153]. 

Obesity has been reported in 98% of PWS patients, but 
body composition differs in PWS patients compared to obese 
individuals with common multifactorial obesity or to normal 
weight subjects. In PWS patients, the percentage of lean 
mass (skeletal muscle) is lower compared to lean subjects 
and even more so compared to obese counterparts, as indi-
viduals with common obesity usually show increased lean 
mass compared to normal-weight subjects. Therefore, an 
abnormally high proportion of the body composition in PWS 
patients consists of adipose tissue at the expense of lean 
body mass and these patients show increased body fat com-
pared to control subjects. Further, they experience a predom-
inant accumulation of fat in the subcutaneous adipose tissue 
and reduced visceral fat, suggesting enhanced insulin sensi-
tivity [24, 53, 149, 151-157]. Patients with longstanding iso-
lated growth hormone deficiency manifest an abnormal body 
composition similar to that present in PWS patients (reduced 
lean mass and increased fat mass), suggesting that growth 
hormone deficiency contributes to the cause of this peculiar 
body composition. Accordingly, growth hormone therapy 
improves the abnormal pattern of body composition in both 
children and adult patients with PWS (increases skeletal 
muscle mass while reducing subcutaneous fat) with no ad-
verse effects on glucose metabolism [158, 159]. Body com-
position in patients with PWS is already abnormal in infan-
cy, before the development of childhood obesity. Infants 
with PWS are underweight and exhibit reduced arm circum-
ference. Despite that, they show elevated triceps and sub-
scapular skinfold thickness relative to BMI, suggesting rela-
tively increased body fat in spite of being underweight. Ac-
cordingly, infants with PWS demonstrate increased percent 
body fat and decreased fat-free mass, assessed by DEXA and 
deuterium dilution technique, when compared to normal in-
fants [149, 150]. 

Patients with PWS are severely obese but do not usually 
manifest insulin resistance. On the contrary, the pattern of fat 
distribution in PWS patients (fat accretion in the subcutane-
ous adipose tissue and reduced visceral fat) suggests en-
hanced insulin sensitivity, as mentioned. Furthermore, the 
rate of metabolic syndrome components and HOMA-IR val-
ues are consistently lower in both children and adults with 
PWS in comparison with matched controls [25, 153, 160-
162]. Enhanced insulin sensitivity in PWS patients is con-
firmed by higher values of quantitative insulin sensitivity 
check index in PWS patients compared to obese controls 
with multifactorial obesity [23-25]. Moreover, plasma tri-
glyceride and HDL-c levels are normal in PWS children, 
unlike obese controls [53, 160]. In addition, the prevalence 
of T2D is comparable in PWS patients and subjects from the 
general population, despite severe obesity in patients with 
PWS, although reported prevalence figures vary. In the gen-
eral population, the prevalence of T2D is 13.0% of adults 
aged ≥ 18 years whereas in PWS patients the prevalence of 
T2D is 13.5%-13.7% in the larger studies, despite the pres-

ence of severe obesity [163, 164]. Enhanced insulin sensi-
tivity in PWS patients does not fully protect them from de-
veloping diabetes due to a defect in insulin secretion. Case 
control studies consistently show that insulin levels (fasting 
and post-glucose load in oral glucose, mixed meal, and in-
travenous glucose stimulation) are lower in children and 
adult patients with PWS compared to matched control sub-
jects. Deficient insulin secretion in PWS patients has been 
attributed to growth hormone deficiency of hypothalamic 
origin [23-25, 53, 153, 160, 162, 165, 166]. Like PWS pa-
tients, subjects with untreated long-standing isolated growth 
hormone deficiency manifest reduced insulin secretion and 
similar rate of diabetes compared to control subjects, sug-
gesting that lifetime isolated growth hormone deficiency 
neither protect from the development of diabetes nor induce 
it [167, 168]. Consistently with the absence of insulin re-
sistance despite severe obesity, atherosclerotic CVDs are not 
the primary causes of death in patients with PWS. The risk 
for all-cause mortality is higher in PWS patients versus the 
general population, with the median age at death being 
30 years. Respiratory diseases are the predominant cause of 
death accounting for more than 50% of the deaths in children 
and adults with PWS. Mortality risk from respiratory failure 
has remained unchanged from years 2000 to 2015 in PWS 
patients. Cardiovascular deaths affected 14.4% individuals 
and included pulmonary embolism, cardiac tamponade, heart 
failure, and viral myocarditis while atherosclerotic CVD was 
not a predominant cause of death in patients with PWS [169-
171]. 

5. CONGENITAL LIPODYSTROPHY: A SHORTAGE 
OF ADIPOSE TISSUE ASSOCIATED WITH INSULIN 
RESISTANCE AND ITS CLINICAL EXPRESSION 

Lipodystrophies are a variety of congenital or acquired 
disorders characterized by partial or virtually complete loss 
of adipose tissue. A reduction in the amount of subcutaneous 
adipose tissue restricts fat accumulation at this location lead-
ing to insulin resistance and subsequent outcomes of insulin 
resistance such as T2D, essential hypertension, left ventricu-
lar hypertrophy, vascular disease, kidney disease (glomerular 
hyperfiltration and albuminuria), hypertriglyceridemia, re-
duced HDL-c, hyperuricemia, sarcopenia, lipolysis, hyperin-
sulinemia, polycystic ovary syndrome, acanthosis nigricans, 
and non-subcutaneous fat deposition including visceral fat 
and liver fat (hepatic steatosis) (Fig. 4). Patients with gener-
alized lipodystrophy show a widespread and uniform lack of 
adipose tissue and very low levels of circulating leptin (due 
to the systemic absence of adipose tissue). Patients with par-
tial lipodystrophy exhibit reduced total body fat with a defi-
cit of adipose tissue in some regions and preservation in oth-
ers. Among them, plasma leptin is usually low but variable, 
depending on the total amount of adipose tissue. Recombi-
nant methionyl human leptin (metreleptin) is a synthetic ana-
log of human leptin that can be used to treat lipodystrophy. 
In patients with lipodystrophy and leptin deficiency, leptin 
replacement reduces hunger and enhances insulin sensitivity. 
Consequently, leptin therapy reduces serum triglyceride lev-
els, lowers HOMA-IR, improves glycemic control in patients 
with lipodystrophy and T2D, diminishes hepatic steatosis, 
reduces glomerular hyperfiltration and proteinuria, lowers 
blood pressure and attenuates left ventricular hypertrophy 
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(due to insulin resistance-associated arterial stiffness). Leptin 
replacement is beneficial in patients with congenital general-
ized lipodystrophy while patients with partial lipodystrophy 
may show poor response to metreleptin, particularly when 
plasma leptin levels are not low [22, 172-179]. 

 

Fig. (4). Summary of the relationship between the amount of subcu-
taneous adipose tissue and insulin resistance in patients with lipo-
dystrophy syndromes or receiving exogenous peroxisome prolifera-
tor-activated receptor-γ (PPAR-γ) agonists (thiazolidinediones). (A 
higher resolution / colour version of this figure is available in the 
electronic copy of the article). 

5.1. Congenital Generalized Lipodystrophy  

Congenital generalized lipodystrophies are inherited dis-
orders characterized by the virtual absence of adipose tissue 
noticeable early in life, either from birth, infancy, or child-
hood. Patients endure insatiable appetite and subsequent 
overfeeding. In addition, they experience profound and 
premature insulin resistance and its clinical manifestations, 
such as T2D and hypertriglyceridemia that may lead to re-
current pancreatitis episodes. Other clinical features include 
accelerated growth, acromegaloid appearance with hands, 
feet, mandible, and genital enlargement, and advanced bone 
age during early childhood. Accordingly, with the lack of 
adipose tissue, serum leptin concentration is very low [18-
20]. Life expectancy is shortened in patients with CGL, the 
predominant causes of death being infections (35%) and liv-
er disease (35%) in a retrospective study that included 20 
patients. Other causes of death included kidney failure, 
CVD, and acute pancreatitis. Three patients had pulmonary 
fibrosis [180]. Insulin resistance, assessed by glucose toler-
ance tests and euglycemic hyperinsulinemic clamps, is a 
universal finding in patients with CGL and the premature 
appearance of T2D is very common among these patients 
[15-22]. Plasma glucagon shows an exaggerated response to 
L-arginine [15]. Mutations in a number of genes including 
AGPAT2, BSCL2, CAV1, and CAVIN1 cause CGL. In addi-
tion to the core characteristics of virtual lack of adipose tis-
sue, severe insulin resistance and hypoleptinemia, patients 
with CGL manifest specific clinical features depending on 
the mutated gene causing the disease (Table 1). 

5.1.1. Acylglycerol-3-phosphate O-acyltransferase-2 
(AGPAT2)-linked Congenital Generalized Lipodystrophy 

In 1999, the first locus for CGL was mapped to human 
chromosome 9q34 and mutations in the AGPAT2 gene (lo-
cated at 9q34.3) were identified as the cause of the disorder 
in 2002. This gene encodes 1-acylglycerol-3-phosphate O-
acyltransferase-2, the enzyme that catalyzes the formation of 
phosphatidic acid, thus contributing to triacylglycerol syn-
thesis [18, 20]. Clinical features of severe insulin resistance 
such as left ventricular hypertrophy, CVD (coronary artery 
disease) and kidney disease may occur early in life [181]. 
5.1.2. Seipin-linked Congenital Generalized Lipodystrophy 

Mutations in the BSCL2 gene cause seipin-linked CGL 
(Berardinelli-Seip congenital lipodystrophy). This gene en-
codes seipin, a protein involved in the formation of lipid 
droplets and adipocyte differentiation. Nineteen Patients 
with seipin mutations usually show more severe clinical dis-
ease than patients with AGPAT2 mutations do. The lack of 
adipose tissue is more pronounced and they have a loss of 
mechanical fat pads (such as palms and soles), unlike pa-
tients with AGPAT2 mutations [181-183]. In addition, pa-
tients with BSCL2 mutations have a higher prevalence of 
mild mental retardation and cardiomyopathy compared with 
AGPAT2-linked CGL [183]. Lytic lesions in long bones can 
be observed in both forms of CGL [183, 184]. 
5.1.3. Caveolin-1 (CAV1)-linked Congenital Generalized 
Lipodystrophy 

Biallelic mutations in the CAV1 gene cause CGL. This 
gene encodes caveolin-1, a component of caveolae (plasma 
membrane inlets) and lipid droplets [185]. Phenotypic pecu-
liarities among patients with CAV1-linked FPL include pul-
monary hypertension [186], achalasia, [187], retinitis pig-
mentosa, congenital cataracts, and neurological manifesta-
tions such as nystagmus, anomalous gait, and reduced 
strength [188]. In patients with homozygous CAV1 muta-
tions, MRI confirms near total absence of both subcutaneous 
and visceral adipose tissue [185]. 
5.1.4. Caveolae-associated Protein-1 (CAVIN1)-linked 
Congenital Generalized Lipodystrophy 

Mutations in the CAVIN1 (caveolae-associated protein-1) 
gene, also named PTRF (polymerase I and transcript release 
factor), cause CGL. CAVIN1 is a caveolar protein implicated 
in stabilizing caveolins to form caveolae [189]. In addition to 
generalized lipodystrophy, patients with CAVIN1 mutations 
experience myopathy that may affect the heart muscle, skeletal 
muscle, and smooth muscle. They manifest muscle weakness 
and percussion-induced muscle contraction that produces 
muscle rippling. Smooth muscle hypertrophy in the gastroin-
testinal tract leading to impaired motility, dysphagia, ileus, 
and congenital pyloric stenosis has been observed. Hyper-
trophic cardiomyopathy, long QT and cardiac arrhythmias that 
may result in early sudden death have been reported. Other 
clinical features include atlanto-axial instability, impaired 
bone formation with osteopenia and osteoporosis, recurrent 
duodenal perforations, and increased susceptibility to infec-
tions. Serum creatine kinase levels are usually elevated [189-
192]. Autopsy studies show a marked loss of subcutaneous 
and omental fat with fatty infiltration of the liver [193]. 
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PPAR-γ Lipodystrophies  

Increased subcutaneous 
adipose tissue 

Enhanced insulin  
sensitivity 

Reduction of visceral 
fat 

Reduced subcutaneous 
adipose tissue 

Insulin resistance 

Enlargement of  
visceral fat 

Adipocyte differentiation 

Thiazolidinediones Interferons 
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Table 1. Types of congenital generalized lipodystrophy (CGL). 

Type / First Descrip-
tion 

Gene / Chromosome 
Location 

Protein Protein Function Differential Phenotype 

AGPAT2-CGL 
(CGL1) 

Agarwal et al. 2002 
AGPAT2 / 9q34.3 

1-acylglycerol-3-
phosphate-

acyltransferase-2 

Triacylglycerol biosyn-
thesis 

Milder disease compared to seipin-CGL 

Bone lytic lesions (also reported in CGL2) 

Seipin-CGL (CGL2) 

Magré et al. 2001 
BSCL2 / 11q13 

Seipin (adipocyte differ-
entiation factor) 

Adipocyte differentia-
tion / Lipid droplets 

generation 

More serious disease than CGL1 

Younger patients 

More severe lack of fat that includes  
“mechanical” pads 

Early diabetes 

Lower leptin levels 

Mental retardation 

Hypertrophic cardiomyopathy 

CAV1-CGL (CGL3) 

Kim et al. 2008 
CAV1 / 7q31.1 Caveolin-1 (CAV1) 

Component of caveolae 
and lipid droplet 

Pulmonary hypertension 

Achalasia 

Retinitis pigmentosa 

CAVIN1-CGL 
(CGL4) 

Hayashi et al. 2009 

PTRF or CAVIN1 / 
17q21.2 

Polymerase I and tran-
script release factor 
(PTRF), also named 
caveolae-associated 
protein-1 (CAVIN1) 

Caveolae component 
involved in caveolae 

formation 

Muscular dystrophy 

Skeletal muscle weakness 

Percussion-induced skeletal muscle rippling 

Elevated serum creatine kinase 

Long QT, cardiac arrhythmias, and sudden 
death 

Atlanto-axial instability 

Smooth muscle hypertrophy 

Hypertrophic cardiomyopathy 

Increased susceptibility to bacterial infections 

FOS-CGL 

Knebel et al. 2013 
c-FOS / 14q24.3 c-FOS 

Transcription factor 
involved in adipocyte 

differentiation 

Growth retardation 

Death at 8 years due to varicella infection 

PPARG-CGL 

Dyment et al. 2014 
PPARG 

Peroxisome proliferator 
activated receptor-γ 

(PPAR-γ) 

Adipocyte differentia-
tion 

Insulin resistance 

Kidney failure 

 
5.1.5. Other Genes that may cause Congenital Generalized 
Lipodystrophy 

As mentioned, biallelic mutations in the PPARG gene 
(that codes PPAR-γ) have been reported to cause CGL [97]. 
Mutations in the C-FOS gene have been associated with 
CGL and insulin resistance. The C-FOS gene encodes a tran-
scription factor involved in cell proliferation and differentia-
tion associated with the “immediate early response” after 
extracellular stimuli that participates in adipose tissue differ-
entiation [194]. 

5.2. Familial Partial Lipodystrophy   

Familial partial lipodystrophies are inherited conditions 
characterized by reduced total body fat with an anomalous 
distribution (lack of adipose tissue in some regions and 
preservation in other places). Patients with FPL typically 
experience insulin resistance and its clinical consequences. 
Mutations in a variety of genes may cause FPL. Depending 

on the mutated gene, patients with FPL show phenotypic 
peculiarities in addition to reduction of total body fat, ab-
normal allocation of adipose tissue, and insulin resistance 
[195] (Table 2). 
5.2.1. PPARG-linked Familial Partial Lipodystrophy 

As mentioned, heterozygous mutations in the PPARG 
gene (that encodes PPAR-γ) cause FPL 5 while biallelic mu-
tations cause CGL [97]. 
5.2.2. Mutations in Genes that Code the Insulin Receptor 
or Components of the Insulin Signaling Pathway cause 
Familial Partial Lipodystrophy 
5.2.2.1. Mutations in the Insulin Receptor Gene 

Biallelic (homozygous or compound heterozygous) muta-
tions in the insulin receptor gene (INSR) cause Donohue 
syndrome or Rabson-Mendenhall syndrome while heterozy-
gous mutations cause type A insulin resistance. The shortage 
of insulin receptors in the three diseases prevents insulin 
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from exerting its actions creating a situation comparable to 
insulin deficiency (although an adaptive elevation in serum 
insulin levels takes place). In addition, these disorders are 
typically associated with a lack of adipose tissue of variable 
degree (partial lipodystrophy), suggesting that insulin signal-
ing contributes to subcutaneous adipogenesis [196-199]. 
Similar to children with type 1 diabetes [200, 201], patients 
with mutations in the insulin receptor gene usually show 
normal liver fat and normal serum triglyceride and HDL-c 
levels [197-199]. Donohue syndrome (leprechaunism) and 
Rabson-Mendenhall syndrome have similar clinical charac-
teristics but patients with Donohue syndrome endure a more 
severe phenotype with a high mortality rate before 2 years of 
age, the main cause of death being infections [197, 202-205]. 
As mentioned, insulin activity is very deficient in patients 
with these disorders and they consequently develop early-
onset diabetes typically characterized by fasting hypoglyce-
mia, postprandial hyperglycemia and resistance to ketoaci-
dosis [197, 202-207]. Serum glucagon level is undetectable 
throughout mixed meal tests [205]. In addition, patients with 
Donohue syndrome and Rabson-Mendenhall syndrome 
demonstrate reduced subcutaneous adipose tissue and low 
skeletal muscle mass [202, 204, 205, 207, 208]. They typi-
cally suffer from intrauterine and postnatal growth retarda-
tion, reduced growth hormone and low weight at birth that 
remains usually low later in life [197, 202, 203, 205, 206]. 
Patients with Donohue syndrome may show gingival hyper-
trophy, kidney hypertrophy, hepatomegaly, enlarged geni-

tals, hands and feet. Severe hypertrophic cardiomyopathy 
has been frequently reported among these patients [202, 205, 
206, 208] (Table 3). 

Heterozygous mutations in the insulin receptor gene 
cause type A insulin resistance. The clinical phenotype is 
similar to that of biallelic mutations in INSR, but milder. 
Patients with type A insulin resistance manifest deficient 
insulin action and loss of subcutaneous adipose tissue. Most 
of them show low or normal weight and BMI [197, 199, 203, 
209, 210]. Fat distribution examined by DEXA, abdominal 
CT, and MRI shows partial loss of subcutaneous fat in the 
abdomen, reduction of visceral fat, and absence of hepatic 
steatosis [199]. 
5.2.2.2. Mutations in Genes that Code Components of the 
Insulin Signaling Pathway 

Like carriers of mutations in the insulin receptor gene, 
patients with mutations in PIK3R1 and AKT2 genes (that 
code components of the insulin signaling pathway) usually 
display a variable degree of lipodystrophy.  

Phosphatidylinositol-3 kinase (PI3K) is a heterodimeric 
component of the insulin signaling cascade that possesses a 
110-kDa catalytic subunit and an 85-kDa regulatory subunit 
or regulatory subunit-1 (PIK3R1). The PIK3R1 gene codes 
the p85α regulatory subunit of PI3K [211]. In 2013, hetero-
zygous mutations in the PIK3R1 gene were identified as the 
cause of SHORT syndrome, which is clinically characterized 

Table 2. Types of familial partial lipodystrophy (FPL). 

References Type of FPL Protein Protein function Differential phenotype 

Kadowaki et al. 1990 

Donohue syndrome 
Rabson-Mendenhall 
syndrome Type A 
insulin resistance 

Insulin receptor Insulin receptor 

Defective insulin actions 

Early onset diabetes with fasting hypoglyce-
mia and postprandial hyperglycemia 

Resistance to ketoacidosis 

Normal serum triglyceride level and normal 
liver fat 

Speckman et al. 2000 

Cao 2000 
LMNA-linked FPL Lamin A/C Component of the  

nuclear lamina 
Muscular dystrophy, cardiac manifestations, 

kidney failure, and other features 

Agarwal et al. 2003 
ZMPSTE24-linked 

FPL 

Zinc metallo-proteinase 
STE24 

(ZMPSTE24) 
Cleavage of prelamin A 

Mandibuloacral dysplasia:  Clavicular and 
mandibular hypoplasia, short stature, and 

other manifestations 

Barroso et al. 1999 PPARG-linked FLP Peroxisome proliferator-
activated receptor-γ 

Subcutaneous adipose 
tissue adipogenesis 

Early presentation of insulin resistance clini-
cal features and lipodystrophy 

Epstein et al. 1966 WRN-linked FPL Werner protein 
Maintenance of genome 

stability 

Werner syndrome: short stature, dermopathy, 
predisposition to non-carcinomatous tumors, 

and other clinical features 

Shastry et al. 2010 POLD1-linked FPL DNA polymerase-δ1 
Maintenance of genome 

stability / Prelamin A 
processing 

Mandibular hypoplasia, sensorineural hearing 
loss, and other features 

Bloom D. 1954 BLM-linked FPL 
BLM helicase (RecQ DNA 

helicase) 
Maintenance of genome 

stability 
Bloom syndrome: Growth deficiency, predis-

position to cancer, and other features 

Graul-Neumann et al. 
2010 

FBN1-linked FPL Asprosin Increase of appetite 
Undefined lipodystrophy and Marfan syn-

drome features 
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by intrauterine and postnatal growth retardation, low birth 
weight, short stature, inguinal hernia, hyperextensibility of 
joints, Rieger anomaly (anterior-chamber eye anomalies), 
delayed dentition, triangular face, small chin with a dimple, 
ocular depression (deep-set eyes), hearing loss, and delayed 
speech. Patients with SHORT syndrome typically manifest 
defective insulin action and loss of adipose tissue (lipo-
dystrophy) [212-216]. 

Heterozygous mutations in the AKT2 gene that encodes 
the kinase AKT2 (protein kinase B-β) have been reported to 
cause partial lipodystrophy, severe insulin resistance, and 
diabetes in only one pedigree [217]. Large case-control stud-
ies in British and Chinese population groups show that single 
nucleotide polymorphisms in the AKT2 locus are not associ-
ated with T2D risk [218, 219]. 
5.2.3. Familial Partial Lipodystrophy Associated with Lam-
in A/C Deficiency (Mutations in the Genes LMNA and 
ZMPSTE24) 

Lamins are intermediate filaments that participate in the 
structure of the nuclear lamina, a network located at the inner 
aspect of the nuclear membrane. The LMNA gene encodes 
(by alternative splicing) two major lamin isoforms, A and C, 
that differ in their C-terminal domain. Mature lamin A is 
derived from a precursor protein, prelamin A, through sever-
al post-translational modifications, including cleavage by the 
enzyme zinc metallopeptidase STE24 (ZMPSTE24). The 
enzyme DNA polymerase-δ1 (POLD1) has been also impli-
cated in prelamin A processing and mutations in the gene 
that codes this enzyme also cause FPL [220]. Mutations in 
the LMNA gene cause a variety of diseases collectively 
named laminopathies that may affect skeletal muscle, cardiac 
muscle, heart conduction system, adipose tissue, and periph-
eral nerves and usually show overlapping clinical expression 
[221]. 

5.2.3.1. LMNA-linked Familial Partial Lipodystrophy 

Patients with LMNA-linked FPL usually show normal fat 
distribution at birth and during childhood. After puberty, 
they experience loss of subcutaneous adipose tissue from the 
extremities and trunk while fat accumulates in the face and 
neck. They endure profound insulin resistance and therefore 
they may manifest complications of this metabolic alteration, 
including early cardiovascular events [221-223]. DEXA and 
MRI examinations reveal markedly diminished subcutaneous 
fat in the extremities with substantial fat deposition in other 
regions (neck and perinephric, retroperitoneal and intermus-
cular areas) compared to control subjects. MRI shows hepat-
ic steatosis [224, 225]. Patients with LMNA-linked FPL have 
lower plasma levels of leptin compared with controls [226]. 
Post-mortem findings confirm an anomalous fat distribution 
with a paucity of subcutaneous fat in the extremities, accu-
mulation of fat in the face and neck, excess visceral fat depo-
sition, and extensive hepatic steatosis [227, 228]. 

Additionally, to partial lipodystrophy and insulin re-
sistance, patients with LMNA mutations may show an array 
of skeletal muscle, nerve, and heart clinical manifestations, 
such as progressive muscular dystrophy with muscle weak-
ness and myalgias, nerve entrapment syndromes, congestive 
heart failure, atrial fibrillation, dilated cardiomyopathy and 
conduction system disturbances such as atrioventricular 
block, arrhythmias, and sudden cardiac death. They may 
require defibrillator implantation or cardiac transplantation 
before 30 years of age [223, 229]. Kidney disease has been 
reported in patients with LMNA-linked FPL [230-233]. 

Both monoallelic and biallelic mutations in the LMNA 
gene may cause FPL. Biallelic mutations tend to cause more 
severe phenotypes than monoallelic (heterozygous) molecu-
lar changes. Homozygous patients exhibit more pronounced 
fat loss, more severe insulin resistance, earlier onset of insu-

Table 3. Body fat distribution and insulin resistance in some human diseases and thiazolidinedione therapy. 

- Global Amount of 
Adipose Tissue 

Subcutaneous Fat Visceral Fat Insulin Resistance Main Therapy 

Thiazolidinedione therapy Increased Increased Decreased Enhanced insulin 
sensitivity 

- 

Prader Willi syndrome Increased Increased Normal No 
Lifestyle and nutritional 

interventions Growth 
hormone 

Lipodystrophy Reduced Reduced 
Usually  

increased 
Severe insulin  

resistance 
Metreleptin 

Mutations in the leptin gene Increased Increased Limited  
information 

Limited information Metreleptin 

Mutations in the leptin receptor 
gene 

Increased Increased 
Limited  

information 
Limited information 

Bariatric surgery 
Setmelanotide 
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lin resistance complications, and lower leptin level, com-
pared to heterozygous patients [195, 234]. 
5.2.3.2. ZMPSTE24-linked Familiar Partial Lipodystrophy 
(Mandibuloacral Dysplasia)  

Biallelic (compound heterozygous or homozygous) muta-
tions in the ZMPSTE24 (zinc metalloproteinase STE24) gene 
cause mandibuloacral dysplasia. As mentioned, this enzyme 
is involved in the post-translational cleavage of prelamin A 
to generate mature lamin A. Mutations in ZMPSTE24 may 
impair prelamin A processing and reduce the formation of 
lamin A. Patients with mandibuloacral dysplasia may exhibit 
a broad spectrum of clinical manifestations including lipo-
dystrophy. In a review of the patients reported until 2019, 
clinical features present in 85-100% of subjects were: short 
stature, delayed closure of cranial sutures, high palate, cla-
vicular hypoplasia, mandibular hypoplasia, dental crowding, 
acro-osteolysis of the distal phalanges, hypoplastic nails, 
brittle and/or sparse hair, mottled pigmentation, atrophic skin 
similar to scleroderma, and calcified skin nodules. Clinical 
manifestations present in 70-84% of patients were lipo-
dystrophy, shortened phalanges, and joint stiffness and con-
tractures. Other phenotypic manifestations that have been 
reported include myopathy, arterial hypertension, heart fail-
ure, postnatal growth retardation, feeding difficulty, delayed 
dentition, teeth abnormalities, micrognathia, glomerular kid-
ney disease (collapsing glomerulopathy and non-specified 
focal segmental glomerulosclerosis), end-stage kidney dis-
ease, enlarged fontanelles, recurrent bone fractures, underde-
veloped occipital bone (ossification defect of the occipital 
bone), short phalanges of the hands, and premature birth. 
Lipodystrophy associated with mandibuloacral dysplasia is 
usually partial and shows a variable distribution that may 
affect the face, neck, trunk, or extremities. Loss of subcuta-
neous fat from palms and soles is a frequent finding. A slight 
increase of fat in the neck may occur [235, 236]. Oral glu-
cose tolerance tests and insulin-stimulated glucose disposal 
procedures in patients with mandibuloacral dysplasia indi-
cate that insulin resistance is usually present [237]. 
5.2.4. Familial Partial Lipodystrophy Caused by Mutations 
in Genes Involved in Genome Stability (Werner Syndrome, 
DNA Polymerase-δ1 Deficiency, and Bloom Syndrome) 

5.2.4.1. WRN-linked Familial Partial Lipodystrophy (Wer-
ner Syndrome) 

Biallelic mutations in the WRN gene cause Werner syn-
drome. The Werner protein operates both as a helicase (an 
enzyme that unwinds and separates double-stranded DNA) 
and an exonuclease (an enzyme that removes damaged 
DNA) and contributes to maintaining DNA structure and 
integrity by repairing damaged DNA, particularly at the ends 
of chromosomes (telomeres).  

Werner syndrome is clinically characterized by partial 
lipodystrophy, severe insulin resistance (and its clinical man-
ifestations), and a variety of other features that may include 
cataracts, short stature, scleroderma-like dermopathy with 
dermal fibrosis, atrophy of the skin and chronic ulcerations, 
premature loss and graying of the hair, and susceptibility to 
neoplasms (mainly non-carcinomatous). The life expectancy 
of patients with Werner disease is shortened, the two princi-
pal causes of death being malignancies and CVD [238, 239]. 

A systematic review that analyzed the risk and spectrum of 
neoplasia in 189 patients with Werner syndrome concluded 
that the disease is associated with an elevated risk of several 
specific types of neoplasia compared to the general popula-
tion. The most frequent tumors (66.6%) in the Werner pa-
tients were thyroid neoplasms, malignant melanoma, menin-
gioma, soft tissue sarcomas, leukemia and pre-leukemic 
conditions of the bone marrow, and primary bone neoplasms 
[240]. 

In patients with Werner syndrome, total body fat is di-
minished and there is an abnormal distribution of adipose 
tissue. Reduction of subcutaneous adipose tissue affects pre-
dominantly the limbs. Abdominal CT reveals increased vis-
ceral fat (intra-abdominal adipose tissue). Similar to other 
population groups, visceral fat deposition is strongly associ-
ated with insulin resistance in Werner syndrome patients 
[241-244]. 

Profound insulin resistance is a universal finding in pa-
tients with Werner disease, having been documented by 
euglycemic clamps, oral and intravenous glucose tolerance 
tests, intravenous glucagon administration, insulin sensitivity 
indexes, hyperinsulinemia and hypertriglyceridemia [243-
251]. Elevated plasma glucagon levels and intensified gluca-
gon response to a test meal have been observed in patients 
with Werner syndrome [241, 252]. Accordingly, body com-
position analyses by DEXA, CT, or bioelectrical impedance 
show reduced skeletal muscle mass consistent with the diag-
nosis of sarcopenia in patients with Werner syndrome. Sar-
copenia is present even in younger patients aged < 40 years 
[253, 254]. 

Consistently with the presence of pronounced insulin re-
sistance, the prevalence of abnormal glucose tolerance or 
T2D (62.2%) and CVD (24.3%) is high in patients with 
Werner syndrome. Like in other population groups, insulin 
resistance is closely related to vascular disease among Wer-
ner patients. Early-onset diabetes (in youth or early adult-
hood) is a common presentation of Werner syndrome and 
may appear before other features of the disease [243-251]. In 
patients with Werner syndrome and diabetes, pioglitazone 
enhances insulin sensitivity (assessed by the insulin sensi-
tivity index) and elicits a striking improvement in metabolic 
control, with a reduction of fasting and post-prandial plasma 
glucose, serum insulin, and serum triglyceride level [243, 
244]. Furthermore, pioglitazone improves body fat distribu-
tion among Werner patients, as they gain weight but the vis-
ceral fat area decreases while the subcutaneous fat mass in-
creases [243]. 
5.2.4.2. POLD1-linked Familial Partial Lipodystrophy 

The POLD1 gene encodes DNA polymerase-δ1, the 
125 kDa catalytic subunit of the DNA polymerase δ com-
plex. This enzymatic complex is involved in DNA replica-
tion and DNA damage repair and contributes to maintaining 
genome stability. POLD1 contains an exonuclease domain 
and a polymerase domain and shows both exonuclease 
(3′ ⟶ 5′) and polymerase activities. Heterozygous mutations 
in the POLD1 gene may cause either predisposition to neo-
plasms (colorectal adenomatous polyps, colon cancer, endo-
metrial cancer, breast cancer, and brain tumors) or a syn-
drome characterized by mandibular hypoplasia, sensorineu-
ral hearing loss, partial lipodystrophy, and insulin resistance. 
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It has been proposed that heterozygous mutations within the 
exonuclease domain of the POLD1 gene cause a tumor-
prone condition whereas heterozygous mutations within the 
polymerase domain cause POLD1-linked partial lipodystro-
phy associated with insulin resistance and other phenotypic 
manifestations [255-257]. 

The DNA polymerase δ complex and the Werner protein 
assembles into a multiprotein structure and cooperate to 
maintain genomic stability. The Werner protein stimulates 
the activity of the DNA polymerase δ complex, facilitating 
DNA synthesis and/or DNA repair [258, 259]. In addition, 
fibroblasts from patients with POLD1 mutations exhibit an 
accumulation of prelamin A, suggesting that POLD1 may be 
involved in prelamin A processing. This notion is supported 
by overlapping clinical manifestations of POLD1 deficiency 
and lamin A deficiency [220]. 

Heterozygous mutations in the POLD1 gene (polymerase 
domain) cause a syndrome with a broad spectrum of pheno-
typic manifestations that includes partial lipodystrophy and 
insulin resistance. Patients with POLD1 mutations typically 
exhibit mandibular hypoplasia and bilateral sensorineural 
hearing impairment occurring during the first or second dec-
ade of life. In addition, patients with this disorder may show 
a wide spectrum of clinical features, including growth retar-
dation, short stature, hypogonadism, prominent eyes and 
nose, dental crowding, scleroderma-like atrophic skin, telan-
giectasias, skin pigmentation, stiff joints, ligament contrac-
tures, hypogonadism, cryptorchidism, testicular atrophy, 
muscle cramps, hirsutism, osteopenia, thoracic kyphosis and 
scoliosis. Some patients have recurring respiratory infections 
that may become life-threatening [260, 261].  

Regarding partial lipodystrophy and insulin resistance, 
patients with POLD1 mutations usually have normal weight 
at birth but abnormal distribution of adipose tissue gradually 
takes place in childhood with loss of adipose tissue in face 
and limbs and visceral fat accumulation. DEXA scans, ab-
dominal ultrasound, CT, MRI, and bioimpedance show a 
reduction of total fat mass, reduced subcutaneous adipose 
tissue in the face and limbs, reduced skeletal muscle mass, a 
marked increase in visceral fat, and hepatic steatosis. Liver 
biopsy may confirm non-alcoholic fatty liver disease. Serum 
leptin levels are usually low. In patients with POLD1 muta-
tions insulin resistance occurs despite low BMI values, hav-
ing been evaluated by hyperinsulinemia, HOMA-IR values, 
oral glucose tolerance tests, and glucose clamps. Clinical 
expression of insulin resistance may include diabetes, essen-
tial hypertension, subclinical vascular disease, hypertriglyc-
eridemia, reduced HDL-c, polycystic ovary syndrome, and 
acanthosis nigricans [220, 255, 256, 260, 262, 263]. Pioglita-
zone has improved insulin resistance and plasma hypolepti-
nemia in patients with POLD1 mutations [263]. 
5.2.4.3. BLM-linked Familial Partial Lipodystrophy 

Biallelic (homozygous or compound heterozygous) muta-
tions in the BLM gene cause Bloom syndrome. The BLM 
gene encodes a RecQ DNA helicase. The absence of a func-
tional BLM protein causes chromosome instability and an 
elevated rate of sister chromatid exchanges which is used as 
a marker of the syndrome by cytogenetic analysis [264, 265]. 

The typical phenotype of Bloom syndrome includes par-
tial lipodystrophy, insulin resistance, microcephaly, prenatal 
and postnatal growth deficiency, short stature, feeding diffi-
culties in infancy, sun-sensitive skin lesions (predominantly 
telangiectatic erythema), a variety of ocular manifestations 
(early onset of retinal drusen, conjunctival telangiectasia, 
optic nerve hypoplasia, and retinoblastoma), chronic lung 
disease, hypothyroidism, immunodeficiency, recurrent infec-
tions (usually respiratory or gastrointestinal), cancer predis-
position and increased risk for the development of multiple 
cancers at a young age. The distribution of cancers is similar 
to the general population, but they occur at younger ages. 
Leukemia, lymphoma, and digestive tract cancers (particu-
larly adenocarcinoma) occur commonly in patients with 
Bloom syndrome and earlier than the same tumors in persons 
from the general population [264-266]. 

Concerning lipodystrophy and insulin resistance, patients 
with Bloom syndrome show a paucity of adipose tissue and 
therefore low BMI [265]. Insulin resistance (and its clinical 
manifestations such as T2D and hypertriglyceridemia) is 
very frequent among these patients, being present from 
childhood [267]. 
5.2.5. Familial Partial Lipodystrophy Associated with Mu-
tations in Other Genes 

Mutations in several other genes, including CAV1, LIPE, 
ADRA2A, CIDEC, PLIN1, and FBN1, have been reported to 
cause FPL very rarely.  

As mentioned, biallelic mutations in the CAV1 gene (that 
codes caveloin-1) cause CGL. Heterozygous CAV1 muta-
tions have been reported to cause FPL and insulin resistance 
with hypertriglyceridemia and relapsing pancreatitis. In addi-
tion, congenital cataracts, retinitis pigmentosa, and neurolog-
ical findings (nystagmus, anomalous gait, reduced power) 
may occur [188]. 

The genes LIPE [268]. and ADRA2A [269].encode hor-
mone-sensitive lipase E and adrenoceptor α 2A, respectively. 
Both proteins have been implicated in lipolysis from adipo-
cytes and mutations in these genes have been reported to 
cause FPL and insulin resistance. 

The genes CIDEC and PLIN1 code cell death-inducing 
DNA fragmentation factor-α-like effector C (CIDEC) and 
perilipin-1, respectively. CIDEC has been involved in lipid 
droplet formation [270-272] while perilipin-1 is a component 
of the lipid droplet envelope required for triglyceride incor-
poration and release from the droplet. Lipid droplets are cy-
toplasmic organelles that store triglycerides, being present 
predominantly in adipocytes [273, 274]. Mutations in CI-
DEC [270-272] and PLIN1 [273, 274] genes have been re-
ported to cause FPL and insulin resistance. However, the 
causal relationship between reported PLIN1 gene mutations 
and FPL is unclear, as heterozygous mutations in PLIN1 
predicted to result in haploinsufficiency do not cause FPL. 
On the contrary, PLIN1 haploinsufficiency may protect 
against cardiovascular disease by improving clinical features 
of insulin resistance. Subjects with PLIN1 haploinsufficiency 
show reduced triglycerides, increased HDL-c, lower blood 
pressure, and reduced waist-to-hip ratio [275, 276]. 
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Mutations in the FBN1 gene may cause FPL. The product 
of the FBN1 gene is profibrillin, a protein that undergoes 
post-translational processing to generate two different poly-
peptides, fibrillin-1 and asprosin, the latter being the result of 
the C-terminal cleavage of profibrillin. Asprosin is coded by 
exons located at the 3' end of the FBN1 gene. This protein is 
released during fasting and promotes hunger and hepatic 
glucose production. Depending on the location of the molec-
ular change, mutations in the FBN1 gene may cause either 
typical Marfan syndrome (when the mutation affects fi-
brillin-1) or a variant of Marfan syndrome that includes con-
genital lipodystrophy, when the mutation induces dysfunc-
tion of asprosin. The total amount of body fat (determined by 
DEXA) is reduced in patients with mutations in the FBN1 
gene and Marfan variant, but other characteristics of the lip-
odystrophy have not been defined. Information on insulin 
sensitivity among these patients is limited, but plasma 
asprosin levels are correlated with insulin resistance and 
metabolic syndrome. Other phenotypic manifestations in-
clude severe myopia, bilateral lens subluxations, cranio-
synostosis, hydrocephaly and large head circumference, in-
trauterine growth retardation, premature birth, accelerated 
growth in height disproportionate to the scarce weight gain, 
tall stature, arachnodactyly, hyperextensible joints, aortic 
root dilatation, mitral valve prolapse, lumbosacral dural ecta-
sia, pectus excavatum, and scoliosis [277-282]. 

6. INSULIN RESISTANCE IN SOME CONDITIONS 
ASSOCIATED WITH MONOGENIC OBESITY 

Mutations in the leptin gene, the leptin receptor gene, the 
MC4R gene, and the POMC gene lead to early-onset uncon-
trollable hunger, overfeeding and severe obesity. The degree 
of insulin sensitivity in affected patients with these mutations 
is insufficiently known.  

6.1 Mutations in the Genes that Code Leptin and the 
Leptin Receptor  

In humans, serum leptin levels are variable among indi-
viduals and correlate with the total amount of body fat, such 
that circulating leptin is higher in obese subjects compared to 
non-obese individuals. In obese subjects, serum leptin level 
declines after weight loss [283-286]. In response to fasting, 
normal humans experience an acute and pronounced fall in 
serum leptin, regardless of the presence of obesity, that may 
serve to stir hunger sensation and compel the search for ex-
ogenous energy. Restoration of food intake is associated 
with a return to baseline leptin values. Leptin response to 
fasting is similar in lean and obese humans, as both of them 
experience a profound and comparable drop in serum leptin 
level after fasting. Serum leptin level decreases markedly 
following fasting compared to values prior to the fast in 
normal volunteers (lean, overweight, or obese). The striking 
decline in serum leptin does not correlate with the minuscule 
reduction in fat mass due to acute fasting, suggesting that 
acute leptin decline following fasting is independent of the 
amount of body adipose tissue [283, 287, 288]. Accordingly, 
serum leptin concentration tended to decrease in patients that 
received hypocaloric parenteral nutrition compared to total 
parenteral nutrition after surgical procedures [289]. Similar-
ly, circulating leptin decreases during periods of negative 
energy balance in normal subjects. Long-term (7 days) ener-

gy restriction in normal-weight humans reduces circulating 
leptin [290]. Conversely, chronic overfeeding causes a rise in 
serum leptin that parallels the increase in the percentage of 
body fat in normal humans. There is a direct linear relation-
ship between the magnitude of the leptin response and the 
percent gain of body fat [291]. 
6.1.1. Mutations in the Leptin Gene (Congenital Leptin 
deficiency) 

Biallelic mutations in the gene encoding leptin (LEP) 
cause congenital leptin deficiency.   

Patients affected with this condition show normal birth 
weight followed by rapid weight gain in the first few months 
of life due to constant hunger, impaired satiety and hyper-
phagia that lead to early-onset severe obesity. In addition, 
congenital leptin deficiency may be associated with impaired 
immune function (and increased susceptibility to infections), 
hypogonadotropic hypogonadism and hypothalamic hypo-
thyroidism. Children with congenital leptin deficiency do not 
usually manifest growth retardation [292-298]. Plasma leptin 
level is usually very low (despite the markedly elevated fat 
mass), but some mutations in the leptin gene (c.298G→T; 
p.D100Y) may generate an inactive protein that circulates in 
plasma (resulting in high leptin levels) being biologically 
inoperative [299]. Body composition evaluation shows that 
congenital leptin deficiency is characterized by preferential 
deposition of fat mass [300, 301]. Information on the degree 
of insulin sensitivity in patients with mutations in the leptin 
gene is limited. Indirect indications of insulin resistance are 
commonly reported, including hyperinsulinemia, hypertri-
glyceridemia, reduced HDL-c, and non-alcoholic hepatic 
steatosis. Impaired glucose tolerance on oral glucose toler-
ance tests, high HOMA-IR values, and T2D have been doc-
umented in patients with congenital leptin deficiency, but the 
precise rate and magnitude of insulin resistance remain to be 
fully elucidated [292-294, 296-298, 301-308]. The admin-
istration of recombinant human leptin corrects the phenotyp-
ic anomalies associated with congenital leptin deficiency 
both in children and adults. The beneficial effects of leptin 
replacement include reduction of hunger, normalization of 
eating behavior, reduction in food intake, weight loss, fat 
mass reduction, amelioration of hypogonadism, hypothyroid-
ism, and immune function, and improvement of insulin sen-
sitivity and its clinical expression. Patients with T2D usually 
achieve glycemic control without additional therapy [294, 
300, 302-304, 306, 307, 309]. Body composition evaluated 
by DEXA shows that body weight loss after leptin replace-
ment is predominantly due to loss of fat, although a small 
decrease in fat-free body mass may occur that is substantial-
ly smaller than the loss of fat [294, 300, 303]. 
6.1.2. Mutations in the Leptin Receptor Gene 

Biallelic mutations in the human leptin receptor gene 
(LEPR) cause deficiency of the leptin receptor and subse-
quent inability of leptin to exert its actions. In highly select-
ed population groups of subjects with severe early-onset 
obesity, the prevalence of biallelic LEPR mutations ranges 
from 2.24% to 3% [310, 311]. The clinical phenotype of this 
condition is similar to that of mutations in the leptin gene. 
Affected patients manifest normal birth weight but they 
quickly gain weight in the first months of life due to constant 
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hunger, lack of satiety, and excessive eating that results in 
severe obesity. Patients with mutations in LEPR may also 
present hypogonadotropic hypogonadism, hypothalamic hy-
pothyroidism (reduced secretion of thyrotropin), and altera-
tions in the immune function that may lead to frequent child-
hood infections (predominantly recurrent respiratory infec-
tions). Clinical manifestations of insulin resistance have been 
documented, including hyperinsulinemia, HOMA-IR eleva-
tion, and T2D, but their frequency remains undefined. In 
subjects with LEPR mutations, serum leptin level is usually 
elevated, but it may be comparable to that observed in BMI-
matched subjects [310-321]. Unlike patients with mutations 
in the leptin gene, leptin replacement is not beneficial in pa-
tients with mutations in the LEPR gene. Bariatric surgery 
procedures such as vertical ring gastroplasty [315, 319]. and 
drugs such as methylphenidate and setmelanotide (an agonist 
of the MC4R) have been used in patients with LEPR muta-
tions with partial efficacy [322, 323].  

6.2 .Mutations in the Melanocortin-4 receptor Gene 
(Melanocortin-4 Receptor Deficiency)  

Pro-opiomelanocortin is a precursor protein that upon 
cleavage generates several melanocortin peptides, including 
adrenocorticotropic hormone (ACTH) and α -melanocyte-
stimulating hormone (α-MSH), that mediate their physiolog-
ical effects through specific G protein coupled receptors 
(melanocortin receptors) via activation of adenylyl cyclase 
and cyclic AMP signaling. ACTH stimulates melanocortin-2 
receptors in the adrenal gland whereas α -MSH acts via the 
melanocortin-1 receptor in the skin and the MC4R in the 
hypothalamus. MC4R activation by α -MSH induces satiety 
and suppresses hunger [324] (Fig. 5). 

 
Fig. (5). Summary of human pro-opiomelanocortin derivatives and 
their effects. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

Loss of function mutations in the human MC4R gene 
causes monogenic obesity due to irrepressible hunger and 
subsequent hyperphagia [325-328]. Most patients with con-
genital MC4R deficiency harbor heterozygous MC4R muta-

tions, but probands with homozygous MC4R changes have 
been identified and they usually show more severe clinical 
phenotype compared to heterozygotes [327-331]. 

Patients with inactivating mutations in the MC4R gene 
manifest normal weight at birth but they develop persistent 
hunger and subsequent hyperphagia during the first months 
of life that leads to progressive weight gain and early-onset 
obesity. Obese patients with MC4R mutations tend to have 
tall stature. In a case control study that enrolled 153 hetero-
zygous patients with MC4R deficiency and 1,392 matched 
controls, both heights during childhood and final adult height 
were higher in MC4R-deficient patients compared with con-
trols. Common multifactorial childhood obesity is usually 
associated with increased linear growth, but a disproportion-
ately accelerated linear growth is observed in patients with 
MC4R deficiency compared to obese controls [332, 333]. 

Patients with MC4R deficiency demonstrate obesity and 
elevated stature without other clinical peculiarities. Obesity 
is usually severe and develops early in life. Plasma leptin 
levels are high, as they reflect fat mass, but there is no dif-
ference between plasma leptin concentration in patients with 
MC4R deficiency and obese control subjects [334, 335]. 

The clinical phenotype of MC4R deficiency is more pro-
nounced during childhood. In a longitudinal population-
based study that evaluated 4,537 individuals, the slope of 
BMI increase was greater in individuals carrying an MC4R 
mutation compared with noncarriers during childhood but 
not during adulthood. Body mass accumulation was greatest 
during childhood but became similar to the rest of the popu-
lation group after puberty [333]. The intense hunger sensa-
tion during childhood becomes less pronounced later in life 
and consequently, hyperphagia tends to be less prominent 
with progression into adulthood, suggesting that the effects 
of the MC4R mutations are more apparent during childhood 
[329, 333]. In patients with MC4R deficiency, DEXA stud-
ies show that both body fat mass and lean mass are in-
creased, similar to subjects with common multifactorial obe-
sity. Patients with MC4R deficiency are typically severely 
obese and tall, with increased fat-free mass as well as fat 
mass [329].  

Information on the degree of insulin sensitivity is limited 
in patients with MC4R deficiency. Acanthosis nigricans has 
been reported in some patients with MC4R mutation. Fasting 
plasma insulin level has been found more elevated or similar 
to matched obese controls [328, 329, 334-336]. In prepuber-
tal children with MC4R deficiency, plasma insulin concen-
tration is greater compared with obese controls. However, 
the plasma insulin level is comparable to obese controls in 
adults with MC4R mutations [332]. Plasma triglyceride lev-
els and HOMA-IR values are usually elevated in adult pa-
tients with MC4R deficits compared to non-obese control 
subjects. However, they are comparable to obese controls 
[334, 335]. 

Unlike adults, children with MC4R mutations experience 
a higher risk of developing T2D, independent of BMI and 
other covariates. Before the age of 20 years, a greater pro-
portion of patients with MC4R deficiency developed T2D 
compared with control subjects (10.1% versus 2.6%), sup-
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porting the notion that the effects of MC4R mutations are 
more conspicuous during childhood [333].  

Patients with MC4R deficiency have been treated with 
bariatric surgery and setmelanotide (a MC4R agonist) [337-
339]. 

In addition to inactivating mutations, variation in the 
MC4R gene may involve activating (gain of function) mo-
lecular changes that result in stimulation of the receptor with 
subsequent satiety and protection from obesity [334, 340, 
341]. 

6.3. Pro-opiomelanocortin Mutations (POMC Deficiency) 

In 1998, biallelic mutations in the POMC gene were re-
ported to cause a distinct set of clinical findings that consist-
ed of adrenal insufficiency, red hair, and early-onset obesity. 
POMC deficiency leads to impaired formation of both 
ACTH and α-MSH. ACTH deficit causes reduced cortisol 
synthesis while deficit of α-MSH causes obesity (due to di-
minished action of α-MSH on MC4R in the hypothalamus) 
and reduced skin and hair pigmentation (due to reduced ac-
tivity of α-MSH activity on melanocytes) [324]. Subsequent 
reports confirmed the presence of this clinical picture. In 
patients with POMC mutations, ACTH deficiency and defec-
tive cortisol secretion are universally present and usually 
start during the neonatal period with hypoglycemic episodes, 
jaundice, and / or hypothermia. The birth weight is usually 
normal, but persistent hunger, reduced satiety and overfeed-
ing lead to progressive obesity that begins to develop during 
infancy. Skin hypopigmentation and red hair may occur, but 
patients with congenital POMC deficiency may show normal 
hair and skin pigmentation, indicating that mutations in the 
POMC gene should be considered in subjects with isolated 
ACTH deficiency and hypocortisolism, particularly associat-
ed with early onset obesity. In addition, patients with POMC 
deficiency may manifest hypogonadotropic hypogonadism, 
hypothyroidism, and type 1 diabetes (14%), widening the 
initial clinical phenotype of the disorder [330, 342-354]. 

Information on the degree of insulin sensitivity in pa-
tients with POMC deficiency is very limited. Acanthosis 
nigricans has been diagnosed in some patients. Hepatic stea-
tosis and hyperinsulinemia have been reported. In patients 
with type 1 diabetes and POMC mutations, insulin require-
ments have been noticed either similar or higher to type 1 
diabetes patients without POMC mutations [349-351, 354].  

Patients with POMC mutations should receive replace-
ment therapy with hydrocortisone to correct adrenal insuffi-
ciency and thyroid hormone when hypothyroidism is present. 
In addition, some patients have been treated with metformin 
[351, 354] or setmelanotide [323]. 

Subjects with heterozygous mutations in the POMC gene 
(from kindreds of probands with biallelic POMC mutations 
and subsequent POMC deficiency) are usually overweight or 
obese compared to wild-type relatives [342, 355]. 

7. ALSTRÖM SYNDROME AND BARDET-BIEDL 
SYNDROME  

The clinical phenotype of Alström syndrome and BBS 
share some commonalities, but it is different regarding insu-
lin resistance and obesity. Alström syndrome is associated 
with early-onset severe insulin resistance and short stature in 
adulthood while patients with BBS are predominantly obese, 
with normal adult height and mild insulin resistance (Table 4). 

7.1. Alström Syndrome 
Alström syndrome is an autosomal recessive disorder 

caused by mutations in the ALMS1 gene. The ALMS1 pro-
tein is ubiquitously expressed in human tissues, having been 
detected in all tissues surveyed, including adipose tissue. 
Alternative splicing produces several isoforms of the protein 
[356]. In cultured human cell lines, ALMS1 localizes to the 
centrioles and the basal bodies (centriole-derived structures 
that participate in the formation of the cilium). ALMS1 is 
closely associated with γ-tubulin, a component of the peri-
centriolar material [356, 357].  In addition, human ALMS1 
has been identified in the cytosol, outside the centrosome 

Table 4. Clinical commonalities and differences between Alström syndrome and Bardet Biedl syndrome. 

Alström Syndrome Bardet Biedl Syndrome 

Retinal dystrophy and severe visual impairment 
Sensorineural hearing loss 

Intellectual disability 
Kidney disease 

Kidney and urinary tract structural anomalies 
Hypogonadism 

Fingers or toes defects (syndactyly, brachydactyly or polydactyly) 
Hepatic fibrosis 

Higher circulating leptin levels compared to BMI-matched control subjects 

Dilated cardiomyopathy Cardiac malformations 

Hypothyroidism  Anosmia  

Normal height in children but short stature in adults  Short stature in children but normal height in adults 

Childhood obesity that tends to normalize later in life Frequent obesity 

Severe early-onset insulin resistance and pronounced multiorgan fibrotic 
infiltration 

Variable presence of mild insulin resistance 
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[358]. The precise function of ALMS1 is unknown. It has 
been proposed that this protein may be implicated in the 
formation and maintenance of primary cilia, intracellular 
trafficking, microtubule and actin organization, cell adhe-
sion, and extracellular matrix production [356]. In vitro stud-
ies using cultured human cell lines show that ALMS1 and 
some BBS proteins contribute to regulating Notch signaling 
by mediating the trafficking of this receptor toward the 
plasma membrane. In human embryonic kidney-293 cell 
lines, depletion of ALMS1, BBS1, BBS3, or BBS4 results in 
overactivation of Notch signaling, attributed to defective 
degradation of the Notch receptor [359].  

Clinical manifestations of Alström syndrome appear dur-
ing infancy and include retinal degeneration, severe visual 
impairment, sensorineural hearing loss, dilated cardiomyopa-
thy, growth hormone deficiency, adulthood short stature, 
obesity, hypothyroidism, kidney disease, and hypergonado-
tropic hypogonadism in males. Severe early-onset insulin 
resistance is a hallmark of Alström syndrome. Similar to 
T2D, patients with Alström syndrome show profound multi-
organ fibrotic infiltration [360-362]. 

Adult patients with Alström syndrome manifest uniform-
ly short stature compared to control subjects [44, 360, 362-
366]. Among 182 patients with this disorder, most children 
had rapid linear growth and obtained height above the 50th 
percentile before puberty. However, a progressive decelera-
tion in linear growth is documented after puberty and the 
final adult height is below the 5th percentile [360]. Similar 
findings are obtained in a longitudinal investigation that fol-
lowed 23 patients with Alström syndrome (age 1-52 years) 
for 10 years [366]. Growth hormone deficiency has been 
detected among adult patients with Alström syndrome [366]. 

Birth weight is within the normal range, but weight gain 
above normal is commonly observed during infancy and 
childhood in patients with Alström syndrome. After puberty, 
weight is comparable to controls and BMI tends to normalize 
in older individuals, suggesting that childhood obesity im-
proves with age in patients with Alström syndrome [358, 
360, 364-366]. In patients with this disorder, uncontrollable 
appetite and severe hyperphagia are not typically present, 
such that very high energy intake is not a definite determi-
nant to obesity. Caregiver-reported hyperphagia and food 
intake records to evaluate overfeeding have yielded incon-
clusive results [358, 360, 362]. In patients with Alström syn-
drome, the total percentage of body fat (measured by DEXA) 
is similar to control subjects and the percent of body fat de-
creases with age. DEXA scans, abdominal CT, and MRI 
show that the distribution of adipose tissue is widespread 
both in subcutaneous and visceral locations [358, 362, 364, 
367]. The level of serum leptin is higher in Alström syn-
drome patients compared to obese controls [44]. 

Patients with Alström syndrome show severe insulin re-
sistance (assessed by HOMA-IR, quantitative insulin sensi-
tivity check index, and hyperinsulinemic euglycemic 
clamps) that develops during early childhood. Therefore, the 
prevalence of T2D is strikingly high among these patients 
and the disease appears commonly during childhood or ado-
lescence. Other clinical manifestations of insulin resistance 
are also typically present, including hyperinsulinemia, hepat-
ic steatosis, vascular disease, essential hypertension, insulin 

resistance-related dyslipidemia (higher triglycerides and 
lower HDL-c). Elevated serum triglyceride level may precip-
itate pancreatitis [44, 358, 360, 362, 363, 365, 368]. Gluca-
gon level after a mixed meal is higher compared to matched 
control subjects [362]. In contrast to obesity and body fat 
(that decrease with age), insulin resistance continues to 
worsen into adulthood in patients with Alström syndrome 
[358, 364]. Consistently with the presence of insulin re-
sistance, Alström syndrome patients exhibit increased subcu-
taneous adipocyte size compared to obese controls. In a case-
control study that enrolled 12 Alström patients and 11 obese 
control subjects with common polygenic obesity, subcutane-
ous adipocyte size was 6,033 ± 875 µm2 in Alström partici-
pants versus 4,346 ± 880 µm2 in obese control subjects [44]. 

7.2. Bardet-Biedl Syndrome 

Bardet-Biedl syndrome is an autosomal recessive genet-
ically heterogeneous disorder. Mutations in more than 20 
genes have been reported to cause BBS up to now. BBS10 
and BBS1 are the most frequently mutated genes followed by 
BBS2 while mutations in the BBS4 and BBS9 genes are less 
frequent [369, 370]. Some (eight so far) BBS proteins as-
semble into a multiprotein complex. Other BBS proteins are 
thought to be chaperonin-like, as they display sequence ho-
mology with the CCT (chaperonin-containing tailless com-
plex polypeptide 1). The function of human BBS proteins 
remains to be fully elucidated. They have been implicated in 
the trafficking of proteins including receptors (such as insu-
lin receptor and leptin receptor) toward the plasma mem-
brane and the cilium [369]. Some human BBS proteins may 
be involved in the formation of a primary cilium that appears 
transitorily in preadipocytes during human adipocyte differ-
entiation. While mature adipocytes are non-ciliated cells, a 
primary cilium is transiently observed in differentiating 
preadipocytes. Upregulation of BBS6, BBS10, and BBS12 
proteins (located to the basal body) is detected in ciliated 
preadipocytes [371]. In addition, the knockdown of any of 
these BBS proteins results in a decreased number of ciliated 
cells compared to control cultures, suggesting that they may 
be involved in the formation of the primary cilium during 
adipogenic differentiation of human mesenchymal stem cells 
[372]. Further, the inactivation of BBS10 or BBS12 genes in 
differentiating preadipocytes upregulates adipogenic genes 
such as PPARG and induces nuclear accumulation of PPAR-
γ compared to control cells, suggesting adipogenesis activa-
tion in the BBS-depleted preadipocytes [371]. Accordingly, 
cultured adipocytes developed from BBS patients with muta-
tions in the BBS10 or BBS12 genes exhibiting higher fat ac-
cumulation compared to control adipocytes with wild-type 
proteins. The leptin level secreted in the culture medium is 
higher in the BBS mutated cells compared to the control 
cells, consistently with the high circulating leptin in patients 
with BBS [371, 372]. Similarly, gene-expression analysis of 
adipose tissue from patients with BBS demonstrated in-
creased expression of genes involved in adipogenesis, such 
as PPARG, compared to controls [372]. 

The phenotypic expression of mutations in the BBS genes 
includes retinal dystrophy that usually leads to blindness, finger 
anomalies (syndactyly, brachydactyly or polydactyly), obesity, 
intellectual disability (cognitive impairment, learning difficul-
ties or mental retardation), hearing loss, cardiac malformations, 
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urogenital tract and kidney structural defects, kidney failure, 
hypogonadism, reproductive abnormalities or infertility, child-
hood onset asthma, and hepatic fibrosis [369, 373-381]. 

Unlike patients with Alström syndrome, children with 
BBS are shorter than control subjects while adults with BBS 
show similar stature compared to control individuals [370, 
382]. Obesity is a common finding in patients with BBS. 
Birth weight is usually within the normal range, but most 
patients with BBS develop overweight or obesity during 
childhood which is sustained through adulthood [370, 373, 
375, 383]. The total percent of body fat assessed by DEXA 
is similar in patients with BBS and BMI-matched controls 
[370, 384]. The cause of obesity in patients with BBS is un-
clear. Constant hunger and severe overfeeding do not typi-
cally occur in patients with BBS. Small case-control studies 
show inconclusive results regarding hyperphagia and energy 
intake [382, 384]. Like Alström syndrome, BBS patients 
have higher circulating leptin than expected for their degree 
of adiposity, as serum leptin levels are higher in patients 
with BBS compared to BMI-matched controls [370]. 

Unlike patients with Alström syndrome, severe insulin 
resistance is uncommon in patients with BBS. The degree of 
insulin sensitivity is variable and insulin resistance, when 
present, is mild [369, 370, 373, 376, 377, 381, 383]. The rate 
of clinical manifestations of insulin resistance, such as in-
creased visceral fat [370, 373, 375]. and metabolic syndrome 
components (hyperinsulinemia, hypertriglyceridemia, and 
essential hypertension) [370, 383] has been reported higher 
in BBS patients compared to controls. HOMA-IR values are 
slightly higher in patients with BBS compared to controls 
but they show extensive overlap between the two groups 
[370, 383] and the prevalence of impaired glucose tolerance 
is similar for subjects with BBS and BMI-matched controls 
[370, 372] The rate of T2D among BBS patients varies 
markedly between studies, from 2% in younger patients 
(mean age 15 years) [370] to 48% in BBS patients from New-
foundland (median age 44 years) [385]. In Newfoundland, the 
high diabetes rate is comparable among subjects with (48%) 
and without (45%) mutations in the BBS genes [386]. Other 
T2D prevalence estimates that have been reported in patients 
with BBS include 15.8% (mean age 33.2 years) [383]. and 6% 
(mean age 26.3 years) [387]. In a study that enrolled 16 obese 
patients with BBS, histological examination of subcutaneous 
adipose tissue demonstrated similar adipocyte cell size (mean 
diameter of 100 µm) compared to control subjects with similar 
BMI, suggesting the absence of severe insulin resistance 
[372]. A correlation between BBS genotype and the degree of 
insulin resistance has been documented. BBS patients with 
mutations in the BBS10 370 or BBS9 381 genes show more 
severe insulin resistance than carriers of BBS1 mutations.  

Among individuals without BBS, genetic variation in 
BBS genes may be associated with obesity, metabolic syn-
drome traits, and T2D [378, 388, 389]. Case control studies 
find an association between single nucleotide polymor-
phisms in BBS2, BBS4, and BBS6 genes and hypertriglycer-
idemia, hypertension, impaired glucose tolerance, and T2D 
[378, 388]. Genetic variants in BBS1 and BBS9 have been 
associated with obesity [389]. The homozygous carriage of a 
variant in the BBS10 gene (c.1189A>G [p.Ile397Val].; 
rs202042386) confers increased risk for T2D [380].  

CONCLUSION 

In humans, unused energy is normally stored in the sub-
cutaneous adipose tissue as fat. The ability to accumulate 
triglycerides at that location is variable among individuals, 
being partly genetically determined. Defective adipocyte 
differentiation, impaired lipid droplet formation, or deficient 
synthesis of triglycerides compromise the ability of subcuta-
neous adipose tissue to store fat. A restricted capacity to 
store fat in the subcutaneous adipose tissue elicits insulin 
resistance. Both lean and obese humans develop insulin re-
sistance when the capacity to store fat in the subcutaneous 
adipose tissue has been exhausted. Subcutaneous adipocytes 
appear enlarged when their maximal capacity to store fat has 
been reached and no further triglycerides can be deposited. 
These large subcutaneous adipocytes reflect the presence of 
insulin resistance and consequently predict type 2 diabetes 
and cardiovascular disease. Surplus energy due to overfeed-
ing is then deposited in places outside the subcutaneous adi-
pose tissue, such as the abdominal cavity (visceral fat), the 
liver, the skeletal muscle, and the heart, as triglycerides can-
not be accumulated as subcutaneous fat. Therefore, like large 
adipocytes, excess visceral fat reflects insulin resistance and 
predicts type 2 diabetes and cardiovascular diseases. In con-
trast, unrestricted capacity to store fat in the subcutaneous 
adipose tissue reflects enhanced insulin sensitivity. The con-
nection between subcutaneous fat accretion and insulin sen-
sitivity is underscored by the effects of human PPAR-γ, a 
transcription factor that promotes subcutaneous adipocyte 
differentiation, subcutaneous fat deposition, insulin sensitivi-
ty and reduction of visceral fat. Consistently, congenital 
PPAR-γ deficiency due to loss of function mutations in the 
PPARG gene leads to the absence of subcutaneous adipose 
tissue and insulin resistance while PPAR-γ agonists like thi-
azolidinediones increase subcutaneous adipose tissue, en-
hance insulin sensitivity and reduce visceral fat. These drugs 
increase body weight but improve body fat distribution by 
promoting subcutaneous fat accretion, thus improving insu-
lin resistance. The link between the capacity to store fat in 
the subcutaneous adipose tissue and insulin sensitivity is 
further highlighted by case-control studies that show an as-
sociation between genetic predisposition to insulin resistance 
and lower subcutaneous fat mass and by prospective studies 
that reveal a relationship between larger amounts of subcuta-
neous adipose tissue at baseline and reduced incidence of 
impaired glucose tolerance at follow-up. Additionally, nu-
merous clinical studies establish an association between ex-
cess visceral fat or hepatic steatosis and insulin resistance. 
Furthermore, patients with a congenital lack of subcutaneous 
adipose tissue (congenital lipodystrophies) manifest insulin 
resistance whereas, on the opposite end of the clinical spec-
trum, patients with Prader-Willi syndrome experience severe 
subcutaneous obesity in the absence of insulin resistance.  

LIST OF ABBREVIATIONS 

ACTH = Adrenocorticotropic Hormone 
 α-MSH = α-melanocyte-stimulating Hormone 
 APOL1 = Apolipoprotein L1 
 BBS = Bardet Biedl Syndrome 
 BMI = Body Mass Index 
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 CT = Computed Tomography 
 CGL = Congenital Generalized Lipodystrophy 
 DEXA = Dual Energy X-ray Absorptiometry 
 FPL = Familial Partial Lipodystrophy 
 HOMA-IR = Homeostasis Model Assessment-insulin 

Resistance 
 MCR4 = Melanocortin-4 Receptor 
 MRI = Magnetic Resonance Imaging 
 PI3K = Phosphatidylinositol-3 Kinase 
 POLD1 = DNA Polymerase-δ1 
 POMC = Pro-opiomelanocortin 
 PPAR-γ = Peroxisome Proliferator-activated Re-

ceptor-gamma 
 PWS = Prader Willi Syndrome 
 T2D = Type 2 Diabetes 
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