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SUMMARY

Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine disorder characterized by intertwined 

reproductive and metabolic abnormalities. While its causal origins remain incompletely understood, accumu

lating evidence suggests metabolic dysfunctions—manifested by insulin resistance, obesity, hyperglycemia, 

and dyslipidemia—as key contributors to the pathogenesis and progression of PCOS. Emerging interven

tions targeting these metabolic disturbances, including caloric restriction, GLP-1-based therapies, and bar

iatric surgery, have shown efficacy in alleviating PCOS symptoms and potentially blocking their inheritance. 

By addressing the metabolic roots and therapeutic opportunities in PCOS, this perspective highlights a crit

ical shift in fundamentally recognizing PCOS as a metabolic disorder. The future promises more metabolic- 

focused research to unravel the underlying pathogenesis and develop precise, long-term strategies for man

aging this complex disease.

INTRODUCTION

Polycystic ovary syndrome (PCOS) is one of the most common 

and complex reproductive endocrine disorders in women of 

reproductive age, affecting an estimated 10%–13% of women 

worldwide.1 PCOS poses lifelong health threats for women 

from adolescence to menopause and beyond, yet it is substan

tially understudied.2,3 It is a heterogeneous condition character

ized by hallmark signs of hyperandrogenism, ovulatory dys

function, polycystic ovarian morphology, and/or elevated 

anti-Müllerian hormone (AMH).1 Beyond its classic reproductive 

symptoms, the vast majority of PCOS women concurrently 

exhibit metabolic disturbances—notably insulin resistance, hy

perinsulinemia, overweight/obesity, and dyslipidemia—facing 

significantly elevated risks for developing type 2 diabetes (T2D) 

and other metabolic diseases.2,4,5 To make matters worse, 

PCOS is known to have strong genetic and epigenetic bases, 

with evidence of familial clustering and transgenerational trans

mission to both female and male offspring.6 This inheritance na

ture amplifies the syndrome’s long-term threats, extending its 

adverse effects beyond individual women to future generations.

Despite its widespread impacts, the coexistence of reproduc

tive and metabolic abnormalities makes PCOS particularly chal

lenging to study and manage. Over the past decade, research 

advances have highlighted the crucial roles of metabolic fac

tors—such as adiposity and insulin signaling—in PCOS patho

physiology. While mounting evidence has established strong as

sociations between metabolic dysfunction and PCOS, the field 

continues to grapple with a basic question: is PCOS fundamen

tally a metabolic disorder with reproductive consequences, an 

ovarian disorder with metabolic side effects, a primary endocrine 

disorder with both metabolic and reproductive consequences, or 

a combination of these pathways? Disentangling underlying rela

tionships and identifying modifiable characteristics have an 

important bearing on the development of effective ways to ease 

long-term sequelae for this prevalent and refractory condition.

In this piece, we integrate recent genetic and experimental 

achievements to review the pathogenesis of PCOS from the 

viewpoint of metabolic regulation and discuss promising meta

bolic intervention strategies identified in both preclinical work 

and clinical trials of PCOS. Based on emerging evidence detailed 

in subsequent sections, we propose that metabolic dysfunction 

is a critical driver of PCOS development. This perspective further 

highlights metabolic modulation as a promising intervention 

avenue for managing PCOS and mitigating its inheritance 

burden. Through an advanced understanding of PCOS as an 

endocrine-metabolic disorder, we can reframe the narrative 

around PCOS, transforming how this complex disorder can be 

prevented and reversed.

METABOLIC FACTORS ASSOCIATED WITH PCOS

The bidirectional interplay between metabolic and 

reproductive axes in PCOS pathophysiology

Female reproductive function is closely and intricately linked to 

energy metabolism.7 Reproduction represents one of the most 
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energetically demanding biological processes, requiring sub

stantial investment to support folliculogenesis, ovulation, 

and pregnancy.8 Adequate energy availability is essential for 

maintaining reproductive competence, whereas energy imbal

ance can disrupt sex hormone homeostasis and impair repro

ductive function. Physiologically, metabolic factors impose tight 

control over the hypothalamus-pituitary-ovarian (HPO) axis.9

Conversely, ovarian-derived androgens also exert important 

regulatory roles in energy metabolism.10 This bidirectional inter

action is especially important in the pathophysiology of PCOS, a 

condition characterized by the dual features of reproductive and 

metabolic dysfunctions.

In the development of PCOS, an increase in the pulsatile 

release of gonadotropin-releasing hormone (GnRH) from the hy

pothalamus, which is sensitive to energy balance, leads to hy

persecretion of luteinizing hormone (LH) relative to follicle-stim

ulating hormone (FSH) from the pituitary gland.11,12 Elevated 

LH level and LH/FSH ratio are observed in the vast majority of 

women with PCOS.13 This heightened LH secretion, particularly 

when coupled with increased insulin levels under obesity or insu

lin resistance, can independently stimulate androgen production 

by ovarian theca cells, resulting in hyperandrogenism and follic

ular maturation arrest.14,15 Studies further demonstrate that 

chronic overactivation of GnRH neurons is sufficient to induce 

key reproductive and endocrine features of PCOS, reinforcing 

the neuroendocrine contribution to PCOS pathogenesis.16

Moreover, hyperinsulinemia suppresses hepatic synthesis of 

sex hormone-binding globulin (SHBG), further increasing the 

circulating free androgens.17

Androgen excess has been well characterized to have detri

mental effects on female metabolism.18 Excessive androgens 

disrupt adipocyte differentiation and promote adipocyte hypertro

phy, leading to adipose tissue dysfunction of PCOS.19 In addition, 

androgen excess impairs insulin signaling in key metabolic tissues 

such as the liver and skeletal muscle.20,21 These effects contribute 

to systemic insulin resistance and form a self-reinforcing loop with 

hyperinsulinemia, further exacerbating the metabolic and repro

ductive dysfunction in PCOS. Indeed, hyperandrogenism and hy

perinsulinemia are now recognized as core pathogenic factors for 

PCOS. Therefore, PCOS emerges from a complex interplay 

wherein metabolic derangements and hormonal imbalances 

perpetuate each other, forming a vicious circuit.

Insulin resistance in PCOS

Insulin resistance is a cornerstone metabolic abnormality in 

PCOS, present in approximately 60%–90% of women with the 

syndrome.22 Although it can be exacerbated by a higher body 

mass index (BMI), insulin resistance is intrinsic to PCOS and in

dependent of adiposity.23,24 Non-obese women with PCOS also 

exhibited a higher prevalence of insulin resistance compared 

with non-obese healthy controls.25 It is also noteworthy that 

PCOS patients with hyperandrogenism tend to have more se

vere insulin resistance than those with milder or non-hyperan

drogenic PCOS phenotypes.26 Genetic evidence further sup

ports a causal role of elevated testosterone in increasing the 

risks of T2D and PCOS in women,27 highlighting the interplay be

tween hyperandrogenism and metabolic dysfunction.

The molecular mechanisms underlying insulin resistance in 

PCOS are still not fully elucidated, with available data suggesting 

unique post-receptor signaling abnormalities in insulin-respon

sive tissues. In skeletal muscle (which accounts for most periph

eral glucose uptake), insulin-stimulated glucose disposal is sub

stantially impaired. Myotubes from PCOS women showed 

decreased insulin receptor substrate-1 (IRS-1)-induced phos

phatidylinositol 3-kinase (PI3K) activity and defects in the down

stream AKT signaling cascade.28 These molecular defects blunt 

GLUT4 translocation and glucose uptake, predisposing PCOS 

patients to impaired glucose tolerance. Multiple mechanisms 

likely contribute to this impaired insulin signaling, including 

reduced AMP-activated protein kinase (AMPK), defective ERK 

signaling response, mitochondrial dysfunction, and ectopic lipid 

accumulation.29–32 Transcriptomic and epigenomic analyses 

further found abnormal gene expression and DNA methylation 

profiles in skeletal muscle from PCOS women, potentially 

contributing to impaired insulin signaling.33,34

Insulin resistance in the liver and adipose tissue is also evident 

in PCOS and can be directly induced by androgen excess.21,35

Adipocytes in PCOS are often resistant to insulin’s anti-lipolysis 

effects, leading to elevated free fatty acid flux to the liver and 

muscle.10 This ectopic fat deposition and lipotoxicity further 

impair metabolic function and exacerbate insulin resistance. To 

be noted, insulin resistance in PCOS tends to be ‘‘selective’’— 

while metabolic actions of insulin are blunted, insulin’s gonado

tropic effects on the HPO axis, especially ovarian theca cells, 

remain intact or even exaggerated. This selective insulin resis

tance (metabolic insulin resistance with preserved ovarian insulin 

sensitivity) is a distinctive feature of PCOS pathogenesis, the 

precise mechanisms of which require further investigation.

Obesity and adipose dysfunction in PCOS

Overweight and obesity are widely prevalent among women with 

PCOS. Women with PCOS tend to have larger adipocytes and a 

tendency toward increased visceral fat deposition, even in those 

with normal weight.36,37 The presence of obesity amplifies key 

reproductive features of PCOS: menstrual irregularity and anov

ulation rates are higher in obese PCOS women, and signs of hy

perandrogenism (hirsutism, acne) are often more severe.38 From 

a metabolic standpoint, overweight or obese women with PCOS 

had higher fasting glucose, fasting insulin, insulin resistance in

dex, and worsened lipid profiles than normal-weight PCOS sub

jects.39 Obesity per se has adverse impacts on oocyte quality 

and female fertility, and its combination with PCOS further ag

gravates the reproductive outcomes in terms of pregnancy and 

live birth rates.40,41 Additionally, enzymes involved in steroid 

metabolism within adipose can generate androgens locally.42

Studies suggest intra-adipose testosterone production via the 

enzyme AKR1C3, which is widely expressed in PCOS adipose 

tissue and can be induced by insulin, might contribute to adipose 

remodeling and a pro-lipogenic profile in PCOS.43 This active 

interaction of insulin and androgen creates a vicious loop where 

adipose tissue both responds to and produces androgens, exac

erbating adverse metabolic performance in PCOS.

Beyond excess adiposity, the dysfunction of adipose tissues 

plays a critical role in the pathogenesis of PCOS.44 Adipose tis

sues in PCOS often show signs of pathologic hypertrophy and 

endocrine dysfunction, including dysregulation in storage ca

pacity and lipolysis, impaired insulin-mediated glucose trans

port, and altered adipokine and cytokine secretion.45,46 Even in 
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normal-weight PCOS women, subcutaneous abdominal adipose 

stem cells demonstrate accelerated adipogenesis and increased 

lipid accumulation, which correlates with systemic insulin sensi

tivity and androgen levels, pointing to intrinsic functional defects 

beyond just excess fat mass.47 Additionally, white adipose tis

sues in PCOS secrete an abnormal profile of adipokines. For 

example, low adiponectin levels are commonly observed in 

PCOS, which correlates with insulin resistance.48 Conversely, 

the levels of leptin, which is synthesized in adipocytes, are often 

elevated in PCOS in proportion to fat mass; however, high leptin 

does not exert the expected satiety-promoting effects, hinting at 

leptin resistance.49 The imbalance of adipokines fosters an insu

lin-resistant, pro-inflammatory milieu characteristic of PCOS.50

This state of low-grade chronic inflammation is closely associ

ated with insulin resistance and hyperandrogenemia in 

PCOS.51,52

Another intriguing aspect of adipose biology in PCOS is the 

role of brown adipose tissue (BAT), which is responsible for ther

mogenesis and energy expenditure. Studies have found that 

BAT activity is reduced in women with PCOS, which may 

contribute to lower energy expenditure and a weight gain ten

dency in PCOS.53 Therefore, obesity and adipose tissue 

dysfunction are critical features of PCOS metabolic pathologies. 

Excess adiposity amplifies insulin resistance and hyperandroge

nemia, while intrinsic adipose tissue dysfunctions in PCOS, such 

as adipokine imbalance and impaired energy expenditure via 

BAT, further compound metabolic risk. Targeting adipose tissue 

health is thus critical in the management of PCOS.

Dyslipidemia in PCOS

Dyslipidemia is highly prevalent in women with PCOS, with 

epidemiological studies reporting abnormal lipid levels in roughly 

50%–90% of patients.54,55 The characteristic pattern is an 

atherogenic lipid profile marked by elevated triglycerides and 

low-density lipoprotein (LDL) cholesterol, along with reduced 

high-density lipoprotein (HDL) cholesterol, regardless of BMI.56

Consistent with an insulin-resistant dyslipidemia, low HDL ap

pears to be the most common lipid derangement in this popula

tion. This unfavorable lipid profile of PCOS varies by phenotype. 

Obesity exacerbates lipid disturbances, but PCOS-related dysli

pidemia is not solely explained by excess weight. Notably, even 

non-obese PCOS patients have higher odds of hypertriglyceri

demia and low HDL levels.25 Androgen excess appears to be a 

key determinant: hyperandrogenic PCOS phenotypes tend to 

have higher total cholesterol and lower HDL than those without 

hyperandrogenism.57 Mechanistically, insulin resistance and 

androgen excess act in concert to drive dyslipidemia in PCOS, 

possibly by increasing triglyceride synthesis, altering adipose 

lipolysis and muscle fatty acid oxidation, and modulating hepatic 

lipoprotein processing.10 These findings reinforce that obesity 

and androgen status both contribute to the adverse lipid profile 

in PCOS.

Pancreatic β cell dysfunction and hyperinsulinemia 

in PCOS

Fasting hyperinsulinemia and an exaggerated insulin release af

ter meals or glucose load are common in PCOS patients. Indeed, 

pancreatic β cell dysfunction is an intrinsic defect in women with 

PCOS that is independent of obesity.58 Both lean and obese 

PCOS patients showed significantly higher basal insulin levels 

and greater early-phase insulin secretion after glucose stimula

tion compared with lean controls,59,60 contributing to the charac

teristic hyperinsulinemia in PCOS. On the molecular level, 

androgen exposure can directly stimulate insulin hypersecretion 

in mouse and human pancreatic islets in an androgen receptor- 

dependent manner.18,61 Over time, this chronic insulin demand 

on β cells, combined with oxidative injury and peripheral insulin 

resistance, promoted secondary β cell failure, predisposing to 

hyperglycemia in females.18

There is ongoing debate surrounding the causative relation

ship between hyperinsulinemia and insulin resistance in 

PCOS.62 The traditional view of hyperinsulinemia is that it is 

the result of compensatory insulin hypersecretion in response 

to insulin resistance, as insulin resistance, particularly in cases 

of obese PCOS patients, often concurrently accompanies hyper

insulinemia. However, it should also be noted that hyperinsuline

mia can precede insulin resistance in the development of PCOS. 

Early hyperinsulinemia without insulin resistance has been 

observed in lean PCOS patients, daughters of women with 

PCOS, and androgen-programmed animal models,63–66 sug

gesting pancreatic β cell dysfunction may represent an early 

contributor to PCOS pathogenesis rather than a compensatory 

response to insulin resistance. Therefore, PCOS is characterized 

by a dynamic interplay of primary hyperinsulinemia and periph

eral insulin resistance that eventually gives way to glucose intol

erance, at least in a subset of PCOS patients. This evidence 

leads to the conceptual framework shift recognizing early hyper

insulinemia as a key featured defect in the pathogenesis of 

PCOS and related metabolic diseases,67,68 highlighting the ne

cessity to suppress hyperinsulinemia by targeting insulin hyper

secretion.

Metabolic diseases associated with PCOS

Women with PCOS face substantially elevated risks of a spec

trum of metabolic conditions. Over the last decade, an enhanced 

understanding of PCOS has led to its recognition as not just a 

reproductive disorder but also a major metabolic disorder with 

profound multisystem health implications. Key PCOS-associ

ated metabolic factors are illustrated in Figure 1. This section 

summarizes main metabolic diseases associated with PCOS 

(with obesity discussed in the section obesity and adipose 

dysfunction in PCOS).

Diabetes

PCOS confers an earlier and markedly increased lifetime risk of 

glucose intolerance and T2D.69 Longitudinal studies showed 

that women with PCOS have more than four times the prospec

tive risk of developing T2D compared with age-matched con

trols.4,70 They also exhibit a 2-fold higher risk of developing 

gestational diabetes.71 Notably, this diabetic risk is not solely ex

plained by obesity. PCOS appears to be an independent risk fac

tor for T2D after adjusting for BMI.72 Hyperandrogenic PCOS 

phenotypes are especially vulnerable—PCOS women with hy

perandrogenism have an even greater T2D risk than those 

without hyperandrogenism.72 The increased risk of T2D in hyper

androgenic PCOS phenotypes may stem from chronic insulin 

resistance and pancreatic β cell dysfunction. While both 

androgen and insulin signaling contribute to metabolic deteriora

tion in PCOS, it remains unresolved which factor acts as the 
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primary driver, and a synergistic interplay between the two is 

likely. International evidence-based guidelines now recommend 

routine screening for abnormal glucose metabolism in PCOS, 

regardless of the patient’s age or BMI.73 Early, targeted 

screening and intervention are required to prevent the progres

sion to diabetes in women affected by this syndrome.74

MetS

Metabolic syndrome (MetS) is diagnosed by the constellation of 

central obesity, high triglycerides, low HDL cholesterol, hyper

tension, and impaired fasting glucose. With the high incidence 

of abdominal obesity, insulin resistance, and dyslipidemia, it is 

not surprising that MetS is far more prevalent in PCOS patients, 

as they have common risk factors. Among women with PCOS, 

one-third to one-half meet these criteria for MetS.75 The preva

lence of MetS in overweight or obese PCOS patients was 

higher.5 Moreover, PCOS women with MetS exhibited worse 

fertility, in vitro fertilization, and pregnancy outcomes than those 

without MetS.76,77 It is therefore necessary to clinically screen 

PCOS patients for MetS parameters—measuring blood pres

sure, fasting lipid profile, and glucose parameters—to mitigate 

long-term risks.

MASLD

Metabolic dysfunction-associated steatotic liver disease 

(MASLD) describes a spectrum of liver diseases that is due to he

patic steatosis and is frequently present in women with PCOS.78

PCOS women showed a 2- to 4-fold higher risk of MASLD, even 

after adjusting for BMI.79 The risk of developing metabolic 

dysfunction-associated steatohepatitis (MASH), which is the 

advanced stage of MASLD, is also higher in reproductive-age 

PCOS women,80 highlighting the large burden of these liver 

Figure 1. Metabolic factors associated with PCOS 

Multiple metabolic factors and metabolic diseases are intricately associated with PCOS. These metabolic factors include insulin resistance in the muscle, liver, 

and adipose tissue; obesity with adipose dysfunction; dyslipidemia; pancreatic β cell dysfunction; and hyperinsulinemia. In addition, metabolic diseases such as 

T2D, MetS, and MASLD are closely intertwined with hyperandrogenemia, collectively contributing to the pathogenesis and clinical manifestations of PCOS.

ll

4 Cell Metabolism 37, October 7, 2025 

Perspective 

Please cite this article in press as: Zhang et al., Polycystic ovary syndrome: A metabolic disorder with therapeutic opportunities, Cell Metabolism 

(2025), https://doi.org/10.1016/j.cmet.2025.08.002



diseases in this population. Androgen excess appears to 

contribute to MASLD development in PCOS. PCOS patients 

with hyperandrogenemia have significantly higher liver fat con

tent than those without hyperandrogenemia that is independent 

of obesity and insulin resistance.81 High androgens may drive 

hepatic fat accumulation by increasing visceral adiposity and im

pairing hepatic lipid metabolism. Hyperinsulinemia in PCOS can 

also promote de novo lipogenesis in the liver, leading to hepatic 

steatosis.79 Notably, the circulating level of SHBG, as a hepato

kine, is decreased in fatty liver and inversely associated with T2D 

risk.82 As low SHBG levels predict high androgen bioactivity, this 

SHBG suppression in MASLD may contribute to hyperandrogen

ism in PCOS, although its specific role remains understudied. 

Given that MASLD can progress to cirrhosis and hepatocellular 

carcinoma, its strong association with PCOS has raised con

cerns for early screening in this at-risk group.

METABOLIC ABNORMALITIES AS CAUSAL DRIVERS 

FOR PCOS: GENETIC, EXPERIMENTAL, AND 

DEVELOPMENTAL EVIDENCE

While the strong associations between PCOS and multiple meta

bolic factors have been well established, accumulating evidence 

suggests that metabolic abnormalities are not just correlates but 

can be causal drivers of PCOS. Studies in genetics and animal 

models have begun to clarify how perturbations in metabolic regu

lation might precipitate the reproductive and endocrine features of 

PCOS. In this section, we integrate key findings from recent ge

netic, experimental, and developmental advances that support a 

causal role for metabolic abnormalities in PCOS etiology.

Genetic causality between metabolic factors and PCOS

Mendelian randomization (MR) is a robust genetic approach 

leveraging genetic variants from genome-wide association 

studies (GWASs) as instrumental variables to infer causality be

tween exposure and outcome. By targeting genetically proxied 

metabolic risk factors, the MR approach minimizes confounding 

and reverse causality, mimicking randomized controlled trials 

and providing reliable evidence to determine causal links be

tween metabolic traits and PCOS. A growing body of MR-based 

research supports the notion that metabolic dysfunctions are not 

the consequences but critical contributors to PCOS etiology. 

These studies revealed significant causal roles for BMI, body 

fat, waist-to-hip ratio, T2D, MASLD, triglyceride, LDL, and HDL 

cholesterol in the risk of PCOS.83–86 For example, BMI and 

HDL cholesterol emerged as top-ranked risk factors for PCOS 

in female-specific MR analyses.83 Furthermore, genetically pre

dicted fasting insulin—indicative of insulin resistance—was 

causally associated with PCOS that is independent of BMI.84

In addition to these glucose and lipid metabolic dysregulations, 

excess branched-chain amino acids have also been implicated 

in PCOS development.87 Importantly, these findings are unidi

rectional, as no significant effects of genetically predicted 

PCOS on the aforementioned metabolic traits were observed,83

thereby supporting the possibility that metabolic dysfunction 

may act as an upstream contributor to PCOS development—at 

least in genetically predisposed individuals.

To be noted, excessive adiposity during childhood or adoles

cence significantly contributes to the risk of PCOS. Genetically 

determined childhood body size showed an independent effect 

on PCOS risk after adjusting for adult body size,86 pinpointing 

an early causative role of adiposity on PCOS pathogenesis. Ge

netic predisposition to PCOS was also associated with higher 

childhood BMI and adiposity, which persisted through late 

adolescence.88 Additionally, genome-wide cross-trait analysis 

identified positive genetic correlations between adulthood BMI, 

childhood BMI, and PCOS.89 A positive overall genetic correla

tion between T2D and PCOS was also observed,84 suggesting 

a shared genetic basis underlying obesity, T2D, and PCOS.

Another important line of evidence comes from the male 

phenotype of PCOS. Accumulating studies suggest that a male 

equivalent of PCOS exists, especially among those with a family 

history of PCOS.2 A confirmative study explored the genetic risk 

factors for PCOS in men, showing phenotypic consequences 

including obesity, T2D, dyslipidemia, and marked androgenic al

opecia.90 This study suggests that ovarian function is not 

required for PCOS features, pointing to PCOS as a metabolic 

condition with manifestations in both men and women.91 The 

above genetic studies provide compelling evidence to consider 

metabolic dysfunctions, specifically obesity, dysglycemia, and 

dyslipidemia, as contributing etiological factors in PCOS patho

genesis, at least in a subset of PCOS cases. These insights lay 

the groundwork for understanding PCOS as a metabolic disor

der. Further studies are warranted to identify additional meta

bolic risk factors that may contribute to PCOS, allowing for a 

more comprehensive understanding of its metabolic under

pinnings.

Functional roles of PCOS genetic susceptibility genes in 

metabolic regulation

PCOS is characterized by familial clustering and has a strong 

heritability.92 Large-scale GWASs conducted in Han Chinese 

and European ancestries have identified numerous loci associ

ated with PCOS that are extensively replicated and shared be

tween populations,93–97 suggesting a common genetic architec

ture for this condition. The susceptibility genes identified by 

PCOS GWAS were revealed to be important regulators for 

gonadotropin and androgen levels as well as ovarian func

tion.94,95 Intriguingly, many of these genes also play essential 

roles in metabolic regulation and are also implicated in metabolic 

diseases such as T2D and obesity (Table 1),98–104 highlighting 

the metabolic etiologies of PCOS. Among these, variants in the 

INSR gene, which encodes the insulin receptor and serves as 

a key molecule in classic insulin signaling, are significantly asso

ciated with PCOS,94 suggesting a genetic predisposition to insu

lin resistance in PCOS. Variants in INSR are strongly linked to hy

perandrogenemia and anovulation,105,106 two clinical diagnostic 

features of PCOS. Consistently, reduced expression levels of 

INSR were observed in adipose tissue and skeletal muscle of 

obese PCOS patients.107 These findings provide strong support 

for the role of genetically programmed insulin resistance in the 

pathogenesis of PCOS.

Among PCOS-associated susceptibility genes, THADA and 

TOX3 have been found to be associated with hyperglycemia 

and insulin resistance. PCOS-GWAS susceptibility variants in 

THADA and TOX3 confer significant risks for MetS and insulin 

resistance in women with PCOS.111 Interestingly, a risk variant 

for T2D had already been identified in the THADA gene.108
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Functional studies further identified that THADA maintains insu

lin secretion and functional β cell mass through regulating β cell 

calcium homeostasis and endoplasmic reticulum stress- 

induced apoptosis.109 The dysregulation of THADA could thus 

lead to impaired β cell function and hyperglycemia. Additionally, 

the PCOS susceptibility gene TOX3 has been shown to control 

hepatic gluconeogenesis and insulin sensitivity via activating he

patic transcriptional programs.117 Dysregulation of TOX3 exac

erbates insulin resistance and glucose intolerance, mechanisms 

central to both T2D and PCOS pathogenesis. The functional 

roles of these susceptibility genes connect glucose metabolic 

pathways to PCOS pathogenesis.

The PCOS susceptibility gene THADA has also been found to 

modulate energy storage and thermogenesis balance in 

Drosophila,110 linking it to obesity and adipose metabolic 

dysfunction. Another PCOS susceptibility gene, HMGA2, plays 

a crucial role in adipogenesis and diet-induced obesity.113

More recent GWAS meta-analyses have expanded the list of 

PCOS loci and reinforced their influence on both reproductive 

and metabolic pathways. For example, one study has identified 

FTO as a novel PCOS susceptibility gene,114 the genotype of 

which was strongly associated with obesity in PCOS.115 FTO is 

a key regulator of brown adipocyte thermogenesis and energy 

expenditure, and its dysfunction contributes to diet-induced 

obesity.116 Interestingly, FTO also plays regulatory roles in 

mouse oocyte and embryonic development as well as granulosa 

cell function,118,119 bridging metabolic and reproductive pheno

types. The pleiotropic roles of these PCOS susceptibility genes 

in glucose and lipid metabolism further support the idea that 

metabolic disturbances confer risks for PCOS in susceptible in

dividuals, corroborating their contribution to the development of 

PCOS from a genetic perspective.

As PCOS phenotypes are heterogeneous, refined clinical clus

tering of PCOS has allowed for its classification into metabolic 

and reproductive subtypes.120 Genetic studies revealed that 

the metabolic subtype of PCOS exhibits a distinct genetic archi

tecture, characterized by loci associated with insulin resistance, 

lipid dysregulation, and obesity.121 This genetic distinction pro

vides additional evidence supporting the hypothesis that meta

bolic abnormalities represent a pivotal etiological driver in 

PCOS. In summary, human genetic evidence strongly links 

metabolic dysfunction to PCOS predisposition.

Metabolic animal models of PCOS

PCOS-like animal models induced by androgen excess at prena

tal, peripubertal, and adult stages have been extensively charac

terized, each exhibiting varying degrees of reproductive 

and metabolic features.122,123 Beyond these hyperandrogenic 

models, elevated AMH exposure has also been shown to 

recapitulate hallmark neuroendocrine and metabolic features 

of PCOS, including increased adiposity, hyperinsulinemia, 

impaired glucose tolerance, and insulin resistance.124,125 While 

these models support the pathogenic roles of androgen and 

AMH excess, animal models that directly induce metabolic dis

turbances have further enabled testing of whether metabolic 

dysfunction alone is sufficient to trigger PCOS-like phenotypes. 

A variety of such metabolic models have been developed, and 

they reinforce the causal role of metabolic aberrations in the 

pathogenesis of PCOS. Studies in mice demonstrate that 

chronic administration of a high-fat and high-sucrose diet 

Table 1. PCOS-GWAS susceptibility genes in metabolic regulation

Locus Implicated genes First GWAS report

Clinical associations with 

metabolic trait

Functional roles in metabolic 

regulation References

2p21 THADA Chen et al.93 type 2 diabetes insulin secretion, 

thermogenesis

Chen et al.,93 Zeggini 

et al.,108 Zhang et al.,109 and 

Moraru et al.110

2q34 ERBB4 Day et al.95 BMI obesity, metabolic 

syndrome, hepatic 

lipogenesis

Day et al.,95 Burns et al.,97

Zhang et al.,98 Zeng et al.,99

and Wang et al.100

9q33.3 DENND1A Chen et al.93 insulin levels, insulin 

resistance

– Chen et al.,93 Tian et al.,111

and Li et al.112

12q13.2 ERBB3 Shi et al.94 type 1 diabetes, type 2 

diabetes, MASLD

hepatic lipogenesis, 

pancreatic β cell hyperplasia 

in insulin resistance

Shi et al.,94 Wang et al.,100

Arai et al.,101 and Törn 

et al.102

12q14.3 HMGA2 Shi et al.94 obesity, type 2 diabetes adipogenesis Shi et al.,94 Ng et al.,103 and 

Anand and Chada113

16q12.2 FTO Moolhuijsen et al.114 obesity, BMI adiposity, brown fat 

thermogenesis

Moolhuijsen et al.,114

Wojciechowski et al.,115 and 

Zhang et al.116

16q12.1 TOX3 Shi et al.94 insulin resistance hepatic gluconeogenesis Shi et al.,94 Tian et al.,111 and 

Liu et al.117

19p13.3 INSR Shi et al.94 metabolic syndrome, insulin 

resistance

insulin signaling Shi et al.,94 Tian et al.,111 and 

Jones et al.107

22q12 CHEK2 Tyrmi et al.96 type 2 diabetes insulin secretion Tyrmi et al.96 and Chong 

et al.104

The implicated genes listed are those reported from PCOS GWAS and are associated with energy metabolism.
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induced PCOS-like reproductive phenotypes in females, 

including hyperandrogenism and impaired folliculogenesis, as 

well as led to adiposity and insulin resistance.126 The female 

Goto-Kakizaki (GK) rat, which is a typical spontaneous T2D 

model marked by hyperglycemia and insulin resistance, also ex

hibited hallmark PCOS traits such as anovulation, hyperandro

genism, and polycystic morphology.127 Comparisons between 

the above rodent models and clinical parameters of women 

with PCOS revealed consistent reproductive signatures.126,127

Moreover, chronic obesogenic western-style diet administration 

initiating at puberty induced PCOS-like polycystic morphology in 

rhesus macaque females, which further worsened the reproduc

tive dysfunction and infertility in the presence of hyperandroge

nemia.128–130 The metabolic and reproductive abnormalities in 

these animals closely replicate the main characteristics in human 

PCOS, further validating that diet-induced energy excesses are 

critical pathogenic drivers for PCOS.

Studies in knockout mouse models provide compelling evi

dence for the role of metabolic dysfunction in the pathogenesis 

of PCOS. Deletion of the insulin receptor in ovarian theca cells 

was effective to correct the hyperandrogenism and infertility in 

female mice, corroborating the pathogenic role of insulin 

signaling on ovarian function.15 The hypothalamic kisspeptin 

neurons, which control GnRH release and serve as the central 

governor for reproductive function, are also subjected to the 

regulation of metabolic factors.131 Female mice with neuron- 

specific insulin receptor deletion exhibited impaired ovarian fol

licle maturation due to dysregulated LH release.132 Moreover, 

combined disruption of insulin and leptin signaling in hypotha

lamic neurons can induce a PCOS-like phenotype,133 illustrating 

the role of central metabolic sensing in reproductive homeosta

sis. In addition to insulin-related pathways, androgen signaling is 

also a critical regulator of reproductive and metabolic features in 

PCOS. Notably, knockout of the androgen receptor specifically 

in the brain or adipose tissue reverses PCOS-like phenotypes 

in androgen-exposed mice, restoring ovulatory function, 

improving insulin sensitivity, and reducing adiposity.134,135

These findings support the view that disturbances in metabolic 

signaling—whether through insulin or androgen pathways— 

can perturb reproductive and systemic homeostasis, tipping 

the balance toward a PCOS-like state. Insulin and androgen 

pathways appear to engage in a tightly coupled feedback loop, 

contributing collectively to the heterogeneous clinical manifesta

tions observed in women with PCOS. Further dissecting the mo

lecular and temporal interactions between these pathways will 

be essential to fully understand PCOS etiology.

Developmental programming of PCOS

During the last decade, strong clinical associations have been 

established between childhood obesity and the predisposition 

to PCOS, with those mothers having obesity exhibiting a higher 

risk of later PCOS.86,136–138 Evidence from GK rats suggests that 

metabolic dysregulation during fetal life, especially maternal in

trauterine hyperglycemia and hyperandrogenism, programs 

reproductive and metabolic impairments that manifest in puberty 

and adulthood.127 These observations align well with the 

concept of developmental origins of health and disease (DO

HaD), suggesting that adverse maternal environments during 

the early developmental stage prime later onset of PCOS.

Accumulating evidence from studies on PCOS offspring 

strongly supports the theory that PCOS susceptibility is shaped 

by developmental and transgenerational metabolic programming, 

as illustrated in Figure 2. A breakthrough study by Risal et al. in 

2019 provided the first evidence for transgenerational inheritance 

of PCOS.139 They found that daughters born to mothers with 

PCOS display a 5-fold-increased risk of developing the syndrome. 

More importantly, in mouse models prenatally exposed to 

androgen and obesity, PCOS-like reproductive and metabolic fea

tures can be transmitted across three generations (from F1 to F3) in 

female offspring, which exhibited impaired energy balance, 

including adiposity and liver lipid accumulation.139 A pioneering 

study by Tata et al. demonstrated that prenatal exposure to high 

AMH was sufficient to reprogram the fetus and induce PCOS- 

like phenotypes in female offspring.124 This prenatal AMH model 

provided further transgenerational evidence that PCOS reproduc

tive and metabolic traits can be passed down to the third genera

tion via epigenetic modifications.125 Building on this, Cotellessa 

et al. introduced the mini-AMH model, showing that exposure to 

high AMH during minipuberty—a critical postnatal window for 

HPO axis maturation—can similarly lead to long-term reproductive 

and metabolic abnormalities in female mice.140 These studies pro

vide robust evidence that both prenatal and early postnatal hor

monal milieus contribute to the developmental programming of 

PCOS. By employing in vitro fertilization-embryo transfer and sur

rogacy, the most recent progress from our team substantiated that 

this transgenerational inheritance of PCOS was mediated by oo

cytes that were independent of intrauterine exposure.141 These 

findings are in agreement with previous studies showing transmis

sion of PCOS traits through altered DNA methylation land

scape.125,139 Specifically, DNA methylation changes in PCOS oo

cytes and embryos predominantly affect genes involved in 

metabolic pathways,139,141 thus establishing a clear mechanistic 

link between epigenetic inheritance and transgenerational PCOS 

transmission. This compelling evidence echoes the DOHaD theory 

and supports the developmental origins of PCOS, where 

an adverse maternal environment—excess androgen, AMH, 

obesity, or diabetes—can rewire the metabolic and reproductive 

axis toward PCOS in offspring.

The adverse metabolic programming associated with 

maternal PCOS is not confined to female offspring. Recent 

data have expanded the understanding of PCOS, demonstrating 

transgenerational inheritance of reproductive and metabolic 

dysfunctions in the male lineage. Sons born to mothers with 

PCOS display elevated risks for obesity, dyslipidemia, and 

pancreatic β cell dysfunction.112,142,143 Mouse models repli

cating maternal hyperandrogenism as well as high AMH during 

minipuberty revealed that metabolic dysfunctions, including 

glucose intolerance, abnormal insulin release, and insulin resis

tance, were also observed in males,140,143 supporting the exis

tence of a male metabolic phenotype of PCOS. Consistent alter

ations of small non-coding RNAs and DNA methylation were 

observed in sperm from offspring mice and blood from sons 

with PCOS mothers, suggesting conserved epigenetic mecha

nisms underlying male germline transmission of PCOS-associ

ated metabolic dysfunction.142,143 The observations from both 

female and male offspring lineages collectively demonstrate 

that PCOS exhibits transgenerational developmental origins 

that are mediated by germ cell epigenetic inheritance. These 
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‘‘epigenetic memories’’ in the metabolic pathway are respon

sible for transmitting PCOS-like traits to future generations and 

shaping disease susceptibility in both sexes. The sustained 

metabolic traits across multiple generations further suggest 

that metabolic disturbances may play a fundamental role in 

PCOS onset from an early stage.

Taken together, evidence from genetic studies, clinical obser

vations, and experimental animal models collectively indicates 

that metabolic dysfunction—characterized by obesity, insulin 

resistance, hyperglycemia, and dyslipidemia—plays a pivotal 

role in the development and progression of PCOS (Figure 3). 

Notably, altered sex steroids, particularly androgen and AMH 

excess, also contribute to these metabolic disturbances. Both 

metabolic and endocrine derangements are tightly intercon

nected and synergistically drive the heterogeneous clinical fea

tures of PCOS, although their causal hierarchy remains incom

pletely resolved. The multi-generational transmission of the 

syndrome further highlights the urgency for early interventions, 

which may reset developmental programming and break the 

transgenerational cycle of PCOS.

METABOLIC INTERVENTIONS FOR PCOS: A PROMISING 

FRONTIER

Given the critical role of metabolic dysfunction in PCOS, thera

pies targeting metabolic disturbances have gained prominence 

as strategies to prevent and even reverse aspects of the syn

drome. Traditional treatments for PCOS have often focused on 

managing reproductive symptoms, yet they do not address the 

underlying metabolic issues. In recent years, a ‘‘metabolic 

approach’’ to PCOS has been recognized as a promising fron

tier, spanning lifestyle dietary modifications, metabolic-targeting 

medications, and even metabolic surgery. Here we summarize 

key metabolic intervention strategies and the evidence support

ing their efficacy in PCOS management (Figure 3).

CR

Dietary interventions targeting impaired energy metabolism have 

shown remarkable potential in mitigating key PCOS reproductive 

symptoms.144 Recent studies further highlight caloric restriction 

(CR) as an effective dietary intervention strategy not only for 

Figure 2. Transgenerational epigenetic inheritance of PCOS in female and male offspring 

PCOS exhibits developmental origins and transgenerational inheritance, with metabolic and reproductive dysfunctions transmitted through both female and male 

lineages. In mouse models exposed to androgen or AMH excess in utero, metabolic phenotypes—including adiposity, hyperglycemia, glucose intolerance, and 

impaired insulin secretion—persist across three generations (F1–F3) via maternal and paternal germlines independently. This inheritance is mediated through 

epigenetic alterations, specifically DNA methylation dysregulation in oocytes and DNA methylation/small non-coding RNA (sncRNA) changes in sperm. Abnormal 

methylation of insulin secretion-related genes appears conserved across offspring sexes. These epigenetic abnormalities impair offspring metabolic functions 

and predispose them to future disease risks.
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alleviating PCOS symptoms but also for preventing their inheri

tance to offspring.141 In mouse models of PCOS induced by pre

natal androgen exposure, maternal CR showed the potential to 

restore the aberrant DNA methylation in oocytes and offspring 

metabolic tissues, specifically targeting genes involved in insulin 

secretion and AMPK signaling pathways,141 both of which play 

central roles in maintaining glucose homeostasis and energy bal

ance. The restored DNA methylation by maternal CR effectively 

prevented metabolic and reproductive dysfunctions passing on 

to female offspring. Moreover, these benefits of CR were further 

validated in embryos from women with PCOS. These findings 

underscore the epigenetic plasticity of PCOS and suggest that 

preconception metabolic modification can prevent the transmis

sion of PCOS in successive generations.

Interestingly, CR’s impacts extend beyond maternal inheri

tance of PCOS. Male offspring from androgen-exposed mothers 

Figure 3. Metabolic dysfunctions as contributing factors and intervention targets for PCOS 

Evidence from genetic causality analyses, functional roles of genetic susceptibility genes, animal models, and developmental programming studies collectively 

suggests that metabolic dysfunctions contribute to the development of PCOS. Targeted metabolic interventions—including CR, pharmacological approaches 

(e.g., metformin and GLP-1RA), brown adipose activation, and weight-loss surgery—show therapeutic promise in alleviating PCOS symptoms and blocking its 

inheritance. BMI, body mass index; BAT, brown adipose tissue; GLP-1RA, GLP-1 receptor agonist.
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also demonstrated improved glucose metabolism following CR 

intervention, which further blocked the male-lineage inheritance 

of metabolic abnormalities.143 These improvements were attrib

uted to restored DNA methylation in sperm of prenatal androgen

ized mice, leading to corrected expression of genes critical for 

pancreatic β cell function. The normalization of these aberrant 

DNA methylations prevented the transmission of hyperglycemia 

and impaired insulin secretion to subsequent generations, high

lighting the potential of CR to block inheritance of PCOS-related 

traits in both female and male offspring. A particularly intriguing 

discovery is that CR targets the shared insulin secretion pathway 

to correct DNA methylation aberrations in germ cells from both 

maternal and paternal lineages.141,143 This suggests that insulin 

secretion dysfunction is critical for the pathogenesis and inheri

tance of PCOS. By restoring normal insulin signaling, CR offers a 

mechanism to mitigate energy surplus and reset metabolic pro

gramming, thus preventing the transmission of PCOS-related 

traits to future generations. These findings highlight the tremen

dous potential of CR in reversing PCOS features and breaking its 

cycle of inheritance.

The ability of CR to remodel DNA methylation patterns in both 

oocytes and sperm provides compelling evidence that precon

ception metabolic modulations can reset the developmental pro

gramming of PCOS, establishing a strong scientific foundation 

for translating CR-based metabolic interventions into clinical ap

plications. In line with these animal model findings, clinical ran

domized controlled trials have shown that weight loss of 5%– 

10% was able to restore spontaneous ovulation and menstrual 

regularity in women with PCOS, along with reduced serum 

testosterone and free androgen index, improved insulin sensi

tivity, and improved lipid profiles.145–147 These clinical benefits 

have informed international guidelines to recommend lifestyle in

terventions (diet plus exercise) as first-line therapy for over

weight or obese PCOS.1 Future studies should explore whether 

similar effects can be achieved through tailored dietary regimens 

or pharmacological approaches that mimic the beneficial effects 

of CR.

Other metabolic-modifying dietary strategies

Ketogenic diets, which are very low in carbohydrates and high in 

fats, have garnered interest as a metabolic therapy for PCOS. By 

drastically reducing dietary carbohydrates and shifting meta

bolism toward ketone production, ketogenic diets often produce 

rapid weight loss and robustly lower insulin levels, which can be 

particularly advantageous in PCOS. Several clinical trials have 

shown the beneficial effects of ketogenic diets on overweight/ 

obese women with PCOS. An 8- to 12-week ketogenic diet 

significantly reduced blood androgen and LH levels and 

decreased body weight and fat mass, as well as improved insulin 

resistance in PCOS subjects.148,149 A randomized controlled trial 

compared a 16-week very-low-calorie ketogenic diet to a stan

dard low-calorie diet in obese PCOS women. The ketogenic 

approach yielded greater visceral fat loss and significantly better 

improvements in hyperandrogenemia and ovulatory function.150

This suggests that beyond equal-calorie dieting, a ketogenic diet 

may confer added endocrine benefits. Despite these promising 

outcomes, ketogenic diets must be approached carefully. 

More research is needed on long-term adherence and safety 

(e.g., effects on lipid profiles or nutrient status).

Intermittent fasting

Intermittent fasting approaches aim to leverage metabolic bene

fits of fasting, such as increased fat oxidation, which could coun

teract PCOS-related metabolic disturbances. Time-restricted 

eating—confining food intake to a limited window each day 

without necessarily reducing calorie intake—has emerged as a 

promising strategy to improve insulin sensitivity and combat 

obesity.151 Clinical trials suggested women with PCOS could 

also benefit from time-restricted eating, which showed significant 

improvements in menstrual cycle regularity and hyperandrogene

mia, alongside a comprehensively improved metabolic profile.152

While larger clinical trials are needed, time-restricted eating could 

be a feasible lifestyle intervention for PCOS women who find 

continuous calorie counting challenging. Other intermittent fasting 

paradigms (e.g., 5:2 diets or alternate-day fasting) warrant further 

study in PCOS, as broadly improved insulin sensitivity and weight 

loss in MetS populations have been observed.

Pharmacological approaches

Metformin and other insulin sensitizers

Insulin-sensitizing therapies form a cornerstone of pharmacolog

ical management in PCOS. Metformin represents the most 

widely used drug due to its efficacy in improving metabolic and 

reproductive outcomes and its favorable safety and cost profile, 

which has been extensively studied in PCOS patients.153 A 

meta-analysis of randomized controlled trials showed that met

formin exerted superior effects on testosterone, free androgen 

index, and SHBG levels when combined with oral contraceptive 

pills in women with PCOS.154 Recent studies further identify the 

efficacy of metformin in restoring endometrial health in PCOS 

patients and further blocking inheritance of PCOS-related traits, 

fueling the role of its long-term beneficial effects.143,155 Beyond 

metformin, other thiazolidinediones, such as pioglitazone and ro

siglitazone, working on enhancing insulin sensitivity, also 

conferred clinical benefits for PCOS.156 Although due to their 

side effects, thiazolidinediones are not routinely used in PCOS, 

these clinical trials are still instructive in highlighting insulin resis

tance as a key druggable pathway. Additionally, other agents 

with insulin-sensitizing or metabolic actions, such as orlistat (a 

lipase inhibitor reducing lipid absorption), berberine (an AMPK 

activator), and resveratrol (sirtuins and mitochondrial function 

activator), have also shown promise in PCOS.

Incretin-based therapies

The cutting-edge incretin-based therapies have been used 

beyond glucose control and weight loss and are emerging as 

powerful pharmacological approaches for managing PCOS. A 

landmark randomized trial revealed that the GLP-1 receptor 

agonist liraglutide exerted beneficial roles in reducing body weight 

and ameliorating ovarian dysfunction in PCOS women with 

obesity.157 Further clinical trials reported substantially superior 

weight loss with GLP-1 agonists compared with metformin or 

diet, along with additional metabolic and reproductive benefits 

for PCOS.158,159 It is noteworthy that the reproductive benefits of 

GLP-1 agonists in PCOS appear largely secondary to weight 

loss, as the improvement in menstrual regularity of PCOS women 

was proportional to the weight lost.160 This suggests that losing 

fat—especially visceral fat—rather than a direct action of GLP-1 

on ovaries may be the key mediator. Beyond GLP-1 analogs, the 

newer dual incretin agonists (such as tirzepatide, a GLP-1/GIP 
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dual agonist) produce even greater weight loss in obesity clinical 

trials.161 Although formal studies in PCOS are pending, these 

agents hold great potential to reverse the obesity-insulin resis

tance axis in PCOS to a remarkable degree. Therefore, incretin- 

based drugs provide a powerful tool to tackle the obesity and insu

lin resistance of PCOS.162 Their role in PCOS management is 

expanding, and ongoing clinical studies may solidify their place. 

The weight loss achievable with GLP-1 drugs opens a new avenue 

in PCOS management, offering a unique opportunity to improve 

both fertility and metabolic health.

Androgen and AMH pathway blockade therapies

Hormonal signaling pathways have emerged as promising tar

gets for the prevention and treatment of PCOS. Anti-androgen 

therapy, such as the use of androgen receptor antagonists (e. 

g., flutamide), has demonstrated efficacy in improving PCOS- 

like phenotypes in animal models by reversing the reproductive 

and metabolic dysfunctions.163 In parallel, the AMH pathway 

has garnered attention as both a biomarker and a potential driver 

of PCOS pathophysiology. A recent study developed a mono

clonal antibody that selectively targets AMH receptor 2 

(AMHR2), enabling precise blockade of AMH signaling.140

Administration of this AMHR2-neutralizing antibody during mini

puberty effectively prevented the development of PCOS-like 

reproductive and metabolic cardinal defects in adult mice. Ther

apeutic administration of this AMHR2 antibody in adulthood also 

alleviated established PCOS phenotypes.140 While the optimal 

timing and clinical applicability of these endocrine interventions 

remain to be defined, these findings highlight the translational 

promise of targeting androgen and AMH signaling pathways 

for the prevention and treatment of PCOS.

BAT activation

Emerging evidence suggests that BAT activation may serve as a 

promising metabolic intervention for PCOS. Studies in rodent 

models have demonstrated that BAT transplantation can effec

tively reverse PCOS phenotypes, including hyperandrogenism, 

anovulation, and polycystic ovarian morphology.164 Interest

ingly, BAT transplantation led to increased circulating levels of 

adiponectin, a key regulator of ovarian physiology and whole- 

body energy metabolism. Consistent with this finding, direct 

administration of adiponectin similarly rescued PCOS traits, sug

gesting that BAT-mediated adiponectin signaling may play a 

crucial role in alleviating PCOS symptoms.164 Further supporting 

the role of BAT in PCOS treatment, pharmacological activators 

of BAT, including ginsenoside compound K and rutin, both are 

natural bioactive compounds, significantly activated BAT and 

ameliorated PCOS symptoms.165,166 Ginsenoside compound K 

treatment restored estrous cyclicity, normalized ovarian ste

roidogenic enzyme expression, and reduced the number of 

cystic follicles.165 Given these benefits, BAT activation repre

sents a promising metabolic intervention that targets both sys

temic energy expenditure and ovarian function. Strategies to 

enhance BAT activity—whether through transplantation, phar

macological activators, or lifestyle interventions—warrant further 

investigation as potential therapeutic approaches for PCOS.

Weight-loss surgery

Bariatric surgery, a proven weight-loss treatment for severe 

obesity, holds great promise for PCOS management. In a prospec

tive trial comparing the efficacy between drugs and bariatric sur

gery for women with PCOS and obesity, bariatric surgery yielded 

a higher complete remission rate in these patients, with the 

endpoint BMI being the major contributing factor.167 The 

BAMBINI trial is the first randomized controlled trial demonstrating 

that vertical sleeve gastrectomy increased spontaneous ovulation 

rates and improved metabolic profiles in women with PCOS and 

obesity, outperforming lifestyle and pharmacological (metformin 

and/or orlistat) interventions.168 Despite higher complication rates, 

the profound benefits in improving reproductive and metabolic 

outcomes position bariatric surgery as a prioritized option for se

vere obesity and refractory PCOS. Given the highly effective and 

sustained weight reduction after bariatric procedures, it directly 

addresses the driving factor of obesity in PCOS. The magnitude 

of these changes often exceeds what is achievable with medica

tion alone. Future research should continue to follow post-bariatric 

PCOS patients to confirm long-term benefits. As the epidemic of 

obesity intersects with PCOS, metabolic surgery may play an 

increasing role in the therapeutic landscape.

OPENING QUESTIONS AND DIRECTIONS FOR FUTURE 

RESEARCH

The advances in metabolic underpinnings and interventions for 

PCOS highlight how far we have come in addressing this com

plex condition. These findings substantiate that PCOS is not 

only a reproductive disease but is indeed a metabolic disorder, 

offering a transformative lens through which this disorder can 

be understood and treated. By targeting the metabolic roots of 

PCOS, we have an unprecedented opportunity to tailor interven

tions that not only alleviate its symptoms but also disrupt the cy

cle of its inheritance. Therefore, metabolic dysfunction in PCOS 

acts analogously to the Yin-Yang duality of Tai Chi, serving both 

as a fundamental factor driving its pathogenesis and as a target

able pathway for effective prevention and therapies (Figure 3). At 

present, PCOS research stands at the crossroads of pressing 

challenges and promising opportunities. As we look ahead, 

several opening questions emerge regarding how we define 

and manage this syndrome.

The fundamental etiological question—is PCOS initiated by 

reproductive/ovarian defects or metabolic dysfunction (or vary

ing combinations in different patients)?—remains open. As re

viewed, existing evidence suggests a plethora of metabolic fac

tors, such as obesity and insulin resistance, can cause PCOS 

features, yet PCOS also occurs in lean women with seemingly 

primary ovarian or neuroendocrine abnormalities. This pheno

typic and biological heterogeneity indicates the need to shift 

away from considering it as merely a reproductive disease to 

raising awareness of its broader implications. It is likely that 

PCOS in nature is an umbrella diagnosis for reproductive and 

metabolic derangements. Future research needs to disentangle 

distinct PCOS subtypes, identify specific causal pathways, and 

follow up their respective long-term outcomes. Advanced 

multi-omics (e.g., genomics, proteomics, and metabolomics) in 

large PCOS cohorts could help define distinct molecular signa

tures and biomarkers, which will facilitate the development of 

precision therapeutic strategies.

A deeper understanding of PCOS pathogenesis from genetic, 

environmental, mechanistic, and clinical avenues is urgently 
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needed. Although results from PCOS genetic studies have 

yielded important insights into its reproductive and metabolic 

pathways, the genetic basis of PCOS remains largely unresolved 

given its high heritability. It also remains unclear whether PCOS’s 

origins lie in specific pathways, tissues, or cell types in geneti

cally predisposed individuals. Moreover, identifying the specific 

genes involved and elucidating their functional significance are 

still crucial challenges for decoding the biological mechanisms 

of PCOS and translating these findings into clinical application. 

Additionally, certain environmental contributions, such as how 

in utero exposure leads to germ cell epigenetic reprogramming 

in PCOS, warrant further study. In view of the transgenerational 

effects and developmental programming of PCOS, future 

research should explore early-life determinants that set the 

stage for later PCOS-related risk. Such mechanistic insights 

will lay the groundwork to inform PCOS management. 

Advancing our understanding of how genetic, environmental, 

and epigenetic factors intersect in metabolism and reproduction 

will pave the way for more precise preventive and therapeutic 

strategies for women with PCOS.

While CR has demonstrated potential as a promising strategy 

for reversing PCOS and preventing its transmission to offspring, 

rigorous clinical studies are needed to bridge these findings from 

animal models to clinical patients. Future research should 

explore whether other lifestyle metabolic adjustments, such as 

intermittent fasting, tailored macronutrient compositions, or 

structured exercise programs, can achieve similar benefits. 

These lifestyle intervention strategies could expand current ther

apeutic avenues and address the unmet needs in PCOS first-line 

treatment. Furthermore, building on the transgenerational epige

netic discoveries, medication therapies targeting at reversing 

key epigenetic marks may loom on the horizon for PCOS man

agement.

Looking forward, we anticipate new classes of medications (e. 

g., dual/triple incretin agonists, advanced insulin sensitizers, and 

natural Chinese medicine products) will be tested in PCOS. The 

roles of innovative pharmacotherapies and metabolic surgeries 

in managing PCOS traits and their inheritance should be a prior

ity for investigation, especially assessing their long-term repro

ductive and metabolic outcomes. Currently, dramatic weight 

loss by bariatric surgery confers substantial benefits for obese 

PCOS, but the challenge lies in combating weight regain. How 

this affects PCOS in the long run is still unknown. Addressing 

the sustainability of metabolic therapy outcomes is critical for 

PCOS, given its lifelong burden from adolescence to post-meno

pause. Large-scale and well-designed clinical trials are essential 

to translate these insights into evidence-based guidelines, 

ensuring that metabolic interventions become integral to PCOS 

management.

Despite the current gaps in our knowledge, recognizing meta

bolic dysfunction as a cornerstone in PCOS pathogenesis repre

sents a significant leap forward. Targeting these metabolic path

ways offers a strategic opportunity to advance precision 

prevention and treatment for this prevalent complex disorder, 

providing hope for women affected by this condition and safe

guarding the health of future generations. While our understand

ing of PCOS remains in its infancy, the strides made thus far lay a 

solid foundation for transforming PCOS management through 

the lens of metabolic regulation.
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