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Despite the primary impression of mitochondria as energy factories, these
organelles are increasingly recognized for their multifaceted roles beyond energy
production. Intriguingly, mitochondria can transfer between cells, influencing
physiological and pathological processes through intercellular trafficking termed
‘mitochondrial transfer.” This phenomenon is important in maintaining metabolic
homeostasis, enhancing tissue regeneration, exacerbating cancer progression,
and facilitating immune modulation, depending on the cell type and microenviron-
ment. Recently, mitochondrial transfer has emerged as a promising therapeutic
target for tissue repair and antitumor therapy. Here, we summarize and critically
review recent advances in this field. We aim to provide an updated overview of
the mechanisms and potential therapeutic avenues associated with mitochondrial
transfer in various diseases from the perspective of different donor cells.

An overview of mitochondria and mitochondrial transfer

Mitochondria, membrane-bound organelles found in aimost all eukaryotic cells, are well-documented
for producing energy through cellular respiration and regulating various cellular metabolic processes.
The function of mitochondria can be traced back to their evolutionary origins approximately 1.5 billion
years ago, derived from an ancient endosymbiosis (see Glossary), where Proteobacteria were
engulfed and integrated to support energy production and cellular metabolism [1,2]. Mitochondria
are widely acknowledged as biosynthetic hubs crucial for generating nucleotides, fatty acids, amino
acids, cholesterol, heme, etc., while also maintaining redox homeostasis [3]. Beyond energy produc-
tion and cellular metabolism, these organelles are critically involved in cell signaling, aging, differentia-
tion, immune responses, and cancer progression [4,5]. To fulfill diverse functions, mitochondria
exhibit dynamic behavior characterized by continuous processes such as fission, fusion, mitophagy,
and interactions with other organelles. This dynamic nature is essential for maintaining optimal mito-
chondrial efficiency and enabling cellular adaptation to ever-changing metabolic demands.

Mitochondria provide the capacity for aerobic respiration, the creation of the eukaryotic cell, and
eventually complex multicellular organisms [2]. During mammalian evolution, mitochondria
adapted to meet the diverse energy demands of different species. Notably, endothermic species
developed specialized mitochondrial functions to support high metabolic rates required for ther-
moregulation and sustained activity [6]. These adaptations were crucial for the metabolic flexibility
that allowed mammals to thrive in various environmental conditions. Since cells cannot survive
without an energy supply, the replacement of their engines, mitochondria, seems to be the
most efficient way to revitalize exhausted cells [7,8]. Indeed, researchers first observed the trans-
port of organelles between mammalian cells in 2004 [9]. In 20086, researchers presented in vitro
evidence of mitochondrial transfer from mesenchymal stem cells (MSCs) to mammalian
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Mesenchymal stem/stromal cells are key
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Cancer cells hijack mitochondria from
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somatic cells [2], and in 2015 researchers provided in vivo evidence for this phenomenon using  “Be Li, Bingzhi Li, and Xianghe Qiao
syngeneic mouse models of cancer [10]. Since then, a growing body of evidence has revealed zgi]fti:::u;ifhi?:a”y to this workcand are
that mitochondrial function can transcend cellular boundaries through the intercellular trafficking  ®Lead contact author.

of intact mitochondria and/or mitochondrial DNA (mtDNA). Nowadays, mitochondrial transfer has

represented one of the most fascinating discoveries in relevant fields, which can be achieved

through various modes and routes (Box 1). Researchers have realized that intercellular mitochon-  “Correspondence: _

drial trafficking is implicated in plenty of scenarios, including maintaining mitochondrial quality and 'r':fz'i%%gf oy :(')'nio(r (L?) Lj and
quantity [11], thereby supporting cell survival and tissue homeostasis under various physiological

and pathological conditions [1,7,8]. Additionally, the outcomes of mitochondrial transfer vary con-

siderably, depending on donor cell types and their surrounding milieu. Among different donors,

stem cells — especially MSCs — have been studied most extensively and have emerged as key

players in mitochondrial transfer [7,8].

In this review, we aim to integrate the latest biological insights and findings on the mechanisms
and functions of intercellular mitochondrial transfer from the perspective of various donor cells
(see Table S1 in the supplemental information online), underscoring its potential as a promising
therapeutic strategy for tissue regeneration and the treatment of various diseases. This review

Box 1. Modes and routes of mitochondrial transfer
Common modes and routes are outlined in Figure |.

Extracellular vesicles

EVs facilitate mitochondrial transfer between various cells or even different tissues [110] and serve as an alternative
approach for maintaining mitochondrial quality control when lysosomal function is impaired [111]. Specifically, different
types of mitochondria-containing EVs, collectively termed ‘mitoEVs’ [98], are generated and released through different
mechanisms. For instance, mitochondria-containing microvesicles are formed by budding and shedding from the plasma
membrane, motivated by the interaction between ARRDC1 [24], while mitochondria-containing apoptotic vesicles are
generated during apoptosis, with phosphatidylserine externalization and annexin V positivity [112].

Gap junctions

Gap junctions are channels joining the cytoplasm of adjacent cells, formed by transmembrane proteins called ‘connexins’
(CXs), with CX43 being a major participant in mitochondrial transfer [104,113-118]. Gap junction-mediated mitochondrial
transfer contributes to regenerative effects in various disease models. Researchers have shown interactions between
mitochondria and gap junction plaques or annular gap junction vesicles, one of the most prominent cytoplasmic CX43-
containing structures [116]. Using 3D electron microscopy and immunogold labeling of CX43, researchers have observed
mitochondrial transfer processes mediated by CX43 in vivo [115].

Tunneling nanotubes

As one of the most popular routes of mitochondrial transfer, TNTs can be generated by multiple cells, including neurons,
epithelial cells, and most immune cells [7,8,20,29,105,119]. To date, two mechanisms for TNT formation have been
proposed: cell dislodgement and filopodial interplay. In the former, a membrane thread remains when two connected cells
begin to separate, eventually developing into a TNT structure. In the latter, cells extend filopodia toward neighboring cells,
which are subsequently transformed into TNTs. Several regulators of TNT formation have been identified, including mito-
chondrial Rho GTPase 1 (MIRO1) [31,120], melatonin [93,121,122], and growth-associated protein 43 [83]; however,
none of them are specifically targeted for intercellular mitochondria transportation [1,121].

Others

Cell fusion and free mitochondria release are less common but notable forms of mitochondrial transfer [1]. Cell fusion
involves merging plasma membranes and sharing cytosolic components, often triggered by injury, inflammation, or malig-
nancy. Recently, we found that mitochondrial transfer through cell fusion could fuel cancer progression [20]. Besides, free
mitochondria have been detected in mouse and human blood, relying on mitochondrial fission proteins [1,123], which are
later captured via endocytosis or micropinocytosis [124], although they are sometimes nonfunctional [125]. Additionally,
studies have shown that mitochondria can be transferred through synaptosomes and dendritic networks [16,126-129].

910  Trends in Molecular Medicine, October 2025, Vol. 31, No. 10



Trends in Molecular Medicine

(A) Extracellular vesicles (E) Free mitochondria
<:> )

Recipient cells

(D) Cell fusion

». (C) Tunneling nanotubes

(B) Gap junctions NEN

Recipient cells Recipient cells
Trends in Molecular Medicine

Figure I. Common modes and routes of mitochondrial transfer. Mitochondria can be packaged into extracellular
vesicles and transported to other cells (A). Also, mitochondrial transfer can be achieved through transient direct cellcell
contact, such as gap junctions (B) and tunneling nanotubes (C). Moreover, cell fusion (D), free mitochondria release (E),
synaptosomes, and dendritic networks are also employed for mitochondrial trafficking, although less commonly. Figure
created using BioRender.

is timely and important because mitochondrial dysfunction is implicated in many pathological
conditions. An in-depth understanding of intercellular mitochondrial transfer will shed light on
innovative treatment approaches. As such, this review contributes to advancing regenerative
medicine and mitochondria-based therapies.

Potential triggers leading to mitochondrial transfer

Mitochondrial transfer is usually initiated by distress signals from injured recipient cells, typically
characterized by their intracellular reactive oxygen species (ROS) overload or mitochondrial dys-
function within these cells [7,12—15]. Recent studies also have shown that ADP released from
stressed cells triggers mitochondrial transfer [16]. Because of limited experimental evidence,
only highly potential triggers are discussed below, including ROS, dysfunctional mitochondria
and their components, and ADP.

ROS

ROS are highly reactive chemicals formed as by-products during mitochondrial electron transport
when diatomic oxygen (O,) undergoes partial reduction. During mitochondrial respiration, elec-
tron leakage in the electron transport chain, particularly at complexes | and lll, can reduce O,
to produce a superoxide anion (O».). Under pathological conditions, injured cells produce

¢? CellPress

Glossary

Alveolar macrophages: also known
as dust cells, located in the lumens of
airways and the lung alveoli, playing a
role in pathogen defense and
inflammatory responses.
Endosymbiosis: the incorporation and
residence of one organism, the
endosymbiont, inside the other, the
host, recognized as a primary force in
eukaryotic cell evolution. Here, it refers to
the original internalization of prokaryotes
by an ancestral eukaryotic cell, resulting
in the formation of mitochondria.
Another well-known example is
chloroplasts in plant cells.
Extracellular vesicles (EVs): lipid-
bilayer enclosed vesicles, typically
ranging in size from 30 to 3000 nm,
including exosomes, microvesicles,
migrasomes, exophers, apoptotic
bodies, and others. EVs carry proteins,
lipids, nucleic acids, metabolites, and
organelles.

Mesenchymal stem cells (MSCs):
also referred to as ‘mesenchymal
stromal cells,” representing a highly
heterogeneous population of stem cells
located within the perivascular niche of
various tissues such as the bone
marrow, contributing to tissue
development and homeostasis. MSCs
are characterized by colony-forming
ability, capacity for self-renewal, and
multiineage differentiation potential.
Mitochondrial fragmentation: a
hallmark of mitochondrial stress that
isolates damaged mitochondria for
removal via mitophagy.

Mitochondrial transfer: mitochondria
usually segregate during cell division and
differentiation, passing directly from
parent to daughter cells along with their
mitochondrial DNA (mtDNA) through a
process known as ‘vertical inheritance.’
However, some cells can transfer their
mitochondria to developmentally
unrelated cells, a phenomenon termed
‘intercellular or horizontal mitochondrial
transfer.” In this review, mitochondrial
transfer explicitly refers to intercellular or
horizontal mitochondrial transfer.
Neutrophil extracellular traps:
weblike structures composed of
extracellular DNA and antimicrobial
proteins, formed by neutrophils as a
defense mechanism.

ROS-induced ROS release: an initial
burst of ROS triggers further mitochondrial
dysfunction, resulting in increased ROS
production and even spreading damage
to neighboring mitochondria.
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excessive ROS that cannot be effectively neutralized by intracellular antioxidant systems, resulting ~ Transmitophagy: a process whereby
in ROS overload and oxidative damage. Stress-induced ROS tend to trigger intercellular mito- ?amaged mitochondria are transferred

. . ; . o rom one cell to another, typically from
chondrial transfer [7,13-15]. For instance, the accumulation of ROS in hematopoietic stem  arons to neighboring astrocytes for
cells (HSCs) induced by bacterial infection activated phosphoinositide 3-kinase (PI3K) signaling  degradation via mitophagy.

and facilitated horizontal mitochondrial transfer from MSCs to HSCs [15]. MEnSTienEgy S el [(arsyening
mitochondrial dysfunction.

. ) . . . . . Tunneling nanotubes (TNTs):
Besides, excessive ROS usually lead to mitochondrial dysfunction, representing another trigger  Factin-based membranous protrusions

of mitochondrial transfer. First, superoxide anion may trigger the opening of the mitochondrial  that connect distant cells, supporting the
permeability transition pore (MPTP). The prolonged opening of mPTP disrupts mitochondrial ~ &xehange of cytoplasmic factors and
membrane potential and alters intra- and intermitochondrial redox states, causing a positive feed- ?Tgiﬁ“fagﬂ;;ﬁnge from 0.05to
back loop known as ‘ROS-induced ROS release’ [17]. Second, high ROS levels reduce mito-  warburg effect: the observation that
chondrial complex | activity and stimulate the ubiquitination of mitofusins such as MFN1 and ~ most cancers use aerobic glycolysis for
MFN2, leading to mitochondrial fragmentation [4]. Third, ROS overload suppresses the tran- ngrgy Z;O?:tit;?:hz\fgxi%::iigresence
scription of mitochondrial transcription factor A (TFAM) and promotes its degradation, causing phoZé%or’ylation.

mtDNA instability and damage, which exacerbates mitochondrial dysfunction [4,18]. The follow-

ing section discusses dysfunctional mitochondria and their components as potential triggers for

mitochondrial transfer.

ADP

Recently, researchers uncovered that ADP, when released from stressed cells, acts as a signaling
molecule that facilitates mitochondrial transfer to the recipient cells [16,19]. Specifically, within the
osteocyte dendritic network, osteocytes respond to distress signals in the form of ADP, subse-
quently triggering horizontal mitochondrial transfer through dendrites [16,19]. The recipient cell
receiving the mitochondria detects the ADP molecules via purinergic P2Y2 and P2Y6 receptors
on its plasma membrane [16,19]. This process helps osteocytes undergoing bioenergetic crisis
restore their mitochondrial dysfunction, leading to the normalization of mitochondrial respiration
and the recovery of physiological status [16,19]. Notably, the mechanism is further validated as
the absence of these receptors blocks intercellular mitochondrial trafficking [16,19]. Thus, ADP
has unequivocally been documented as a molecular trigger of horizontal mitochondrial transfer.

Dysfunctional mitochondria and their components

Researchers have found that mitochondrial dysfunction in recipient cells acts as a prerequisite for
mitochondrial transfer [20], attributed to several potential mechanisms. First, injured cells release
damaged mitochondria as ‘rescue me’ signals to alert nearby donor cells [7,12]. For instance, in a
coculture system of MSCs and distressed somatic cells, mitochondria from injured somatic cells
are engulfed and degraded by MSCs [12]. This process, known as transmitophagy, triggers
heme release and the production of heme oxygenase-1 (HO-1) in mitochondrial donor cells
[12]. HO-1 overexpression can promote the expression of nuclear respiratory factor 1 (NRF1)
and its coactivator, peroxisome proliferator-activated receptor y coactivator 1 (PGC1a), which in-
duces TFAM expression and initiates mitochondrial biogenesis and the restoration of mitochon-
drial function [12]. Moreover, HO-1 has been shown to inhibit the expression of the translocase of
outer mitochondrial membrane 20, a protein critically involved in mitochondrial fission and quality
control [21]. Thus, damaged mitochondria stimulate mitochondrial biogenesis in donor cells, after
which the newly generated functional mitochondria are transferred to rescue stressed cells.

Second, mitochondria and their components, such as mtDNA, can act as damage-associated
molecular patterns (DAMPs) [4,7] because of their bacterial ancestry [1,2], contributing to trans-
mitting distress signals and inducing mitochondrial transfer [8]. When released into the cytoplasm
or extracellular space, these DAMPs can provoke proinflamsnmatory responses by interacting with
pattern recognition receptors, including Toll-like receptors (TLRs) and cyclic GMP-AMP synthase
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(cGAS)-stimulator of interferon genes (STING) pathway, triggering proinflammatory immune
responses, thereby transferring and further amplifying the injury response. Innate immune cells,
such as natural killer and dendritic cells, can target cells containing allogeneic mtDNA [22].
Such mitochondria-dependent inflammatory responses are closely associated with intercellular
mitochondrial transfer [23,24]. Supporting this idea, MSCs under oxidative stress secrete arrestin
domain-containing protein 1 (ARRDC1)-mediated extracellular vesicles (EVs) containing
defective mitochondria, then are engulfed by macrophages; meanwhile, MSCs release
microRNA-containing EVs that inhibit macrophage activation and modulate TLR signaling, foster-
ing immune tolerance toward the transferred mitochondria [24]. Besides, mitochondria trans-
ferred from osteocytes to metastatic cancer cells have been found to activate the antitumor
response via the cGAS-STING pathway. Inhibition of mitochondrial transfer, achieved by
osteocyte-specific depletion of mitochondrial Rho GTPase 1 or MFN2, reduces tumor immuno-
genicity and promotes malignant progression, highlighting the role of mitochondrial transfer in
immune responses.

Therapeutic potential of mitochondrial transfer from different cells

Dissecting mitochondrial transfer by cell type is vital for understanding how different cells influ-
ence tissue repair, immune responses, and disease progression (Table S1 in the supplemental
information online). Here, we introduced common donor cells, including MSCs, cancer-
associated fibroblasts (CAFs), T cells, macrophages, astrocytes, and others (Box 2). This
perspective facilitates the development of targeted therapies for specific conditions, enhancing
both precision and treatment outcomes.

Versatile functions of mitochondrial transfer from MSCs

MSCs, because of their multifaceted functions and easy accessibility [25], are the most exten-
sively investigated donor cells capable of transferring mitochondria to various recipient cells
[7,26,27] (Figure 1). Increasing evidence unravels the therapeutic potential of MSC-mediated
mitochondrial transfer in various diseases [26,27], including neurological, cardiovascular, respira-
tory, and autoimmune diseases.

Neurological diseases often involve mitochondrial dysfunction, with MSC-derived mitochondrial
transfer emerging as a promising approach to restore neural functions via metabolic rewiring
and immune modulation. For example, in ischemic stroke, MSC transplant enhanced angiogen-
esis and reduced brain lesions and neurological deficits, with mitochondrial transfer observed
both in vitro and in vivo [28-30]. Notably, pre-coculturing MSCs with neurons enhanced neuro-
protection compared with native MSCs, implying that cytosol transfer may initiate or amplify
mitochondrial transfer [28,31]. Additionally, MSC-derived mitochondrial transfer plays an impor-
tant role in spinal cord injury recovery, reducing oxygen and glucose deprivation injury, promoting
neural regeneration, and restoring locomotor function in rats [32,33].

Mitochondrial transfer also holds potential in cardiovascular diseases. In ischemic myocardium
models, MSCs improve cardiac function, such as ejection fraction, by transferring mitochondria
to cardiomyocytes [34]. In a preclinical study, mitochondria-rich EVs from stem cell-derived car-
diomyocytes restored ATP production and cardiac function more effectively than free through
PGC1a, using a murine myocardial infarction model, highlighting their role in cellular bioenergetics
and regeneration [35].

In ophthalmic diseases, such as retinal ischemia and ganglion cell degeneration, MSC transplant
could restore mitochondrial function, promoting cell survival and regeneration, potentially through
mitochondrial transfer [36-39]. These findings suggest that leveraging mitochondrial transfer from
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Box 2. Other donor cells of mitochondrial transfer

Intercellular mitochondrial transfer has been observed across various tissues. Other cell types also engage in this process,
highlighting its widespread physiological and therapeutic significance [1,7,8].

Adipocytes

Under steady states, adipocytes transfer mitochondria to neighboring macrophages in white adipose tissue, a process
disrupted in obesity [130]. Impairing this transfer through genetic deletion of Ext7, the heparan sulfate biosynthetic gene,
in myeloid cells leads to fat accumulation and reduced energy expenditure [130]. Under energetic stress, such as chronic
obesity, adipocytes package damaged mitochondria into EVs and release them into the circulation, where they integrate
into cardiomyocytes, causing ROS bursts but also preconditioning the heart against ischemia-reperfusion injury [110].
Furthermore, dietary factors can shift adipocyte-derived mitochondrial transfer from macrophages to the circulation, with
long-chain fatty acids inhibiting local transfer [131]. In brown adipose tissue, adipocytes eject damaged mitochondria via
EVs for macrophage clearance, ensuring thermogenesis efficiency [132].

Bone-related cells

Mitochondrial transfer between osteolineage cells and other cells contributes to maintaining skeletal homeostasis. Most
recently, researchers found that osteolineage cells transfer mitochondria to myeloid cells, inhibiting their commitment to-
ward osteoclasts and activating ferroptosis, a process mediated by MIRO1 in osteolineage [120]. Besides, disruption of
this transfer leads to osteoporosis in animal models, highlighting its role in skeletal health [120]. Moreover, mitochondria
can transfer within osteocytes or from osteocytes to ECs [128,133], improving transcortical angiogenesis and reducing
ROS stress, potentially via the sphingolipid pathway [133]. Notably, in the context of bone metastasis, osteocytes transfer
mitochondria to metastatic cancer cells, activating the cGAS-STING pathway to enhance antitumor response [23].

Other cells

Various other cell types participate in mitochondrial transfer. Airway smooth muscle cells can exchange mitochondria
partially via EVs as a homeostatic mechanism for modulating bioenergetics and cellular function within the airways
[134]. Cardiomyocytes and erythroblasts eject dysfunctional mitochondria to macrophages as an alternative mitochondrial
clearance mechanism [117,135]. Moreover, platelets transfer functional mitochondria to cancer cells, leading to their
metabolic reprogramming to a metastatic state [136]. In bone marrow transplants following irradiation, HSCs and hema-
topoietic progenitors transfer mitochondria to the host’s stromal cells via CX43, aiding bone marrow regeneration and
hematopoietic engraftment [118]. Most recently, researchers have observed some transfer events occurring within cancer
cells, such as glioblastoma and hepatocellular carcinoma [137,138]. Overall, mitochondrial transfer across different cells
underscores the universality and therapeutic potential of this phenomenon in various pathophysiological processes.

MSCs could enhance recovery in tissues with limited regenerative capacity, such as neural and
cardiac tissues [30,32-37,40].

MSC-mediated mitochondrial transfer is essential for immunomodulation, particularly in respira-
tory diseases such as acute lung injury (ALI) and asthma. In ALI models, MSCs transfer mitochon-
dria to alveolar epithelial cells through connexin 43 (CX43)-containing gap junctions, EVs, and
tunneling nanotubes (TNTs), restoring cellular energy metabolism and modulating inflamsma-
tory responses, whereas inhibiting CX43 in MSCs abolishes these treatment effects [41]. Similar
mechanisms are seen in asthma, where MSC-derived mitochondrial transfer to bronchial epithe-
lial cells alleviated airway inflammation through CX43-mediated TNT formation [42]. More
recently, mitochondrial transfer from MSCs was shown to mitigate pulmonary fibrosis in mice
through CX43-containing gap junctions, which can be augmented by iron oxide nanoparticles
(IONPs) [43,44]. Furthermore, MSC-mediated mitochondrial transfer through EVs could alter
alveolar macrophage phenotypes, enhancing their anti-inflammatory and phagocytic func-
tions, and promoting tissue regeneration [45,46]. In autoimmune diseases, mitochondrial transfer
from MSCs is associated with enhanced regulatory T cell activation, inducing higher expression of
FOXP3, IL2RA, CTLA4, and TGF-f31, thus contributing to suppressing immune responses and
maintaining immune tolerance [47]. MSC-mediated immune suppression also involves repressing
T helper type 1 (Th1) and Th17 cells [48,49].

914  Trends in Molecular Medicine, October 2025, Vol. 31, No. 10



Trends in Molecular Medicine ¢? CellPress

Cardiomyocytes
yocy Ne

as mitochondrial
donor cells

SOSINg
Jreda. pue siseysoawoy anssi] (V)

Trends in Molecular Medicine

Figure 1. Different recipient cells and versatile functions of MSC-mediated mitochondrial transfer. Mitochondrial
transfer from MSCs exhibits versatile functions due to different recipient cell types, such as facilitating tissue homeostasis and
repair, immune regulation, and cancer progression. (A) MSCs facilitate tissue homeostasis and repair and resistance to
oxidative stress by transferring mitochondria to injured cells such as cardiomyocytes, neurons, and alveolar epithelial cells.
(B) Mitochondrial transfer from MSCs to immune cells displays immunoregulatory effects and is implicated in autoimmune
diseases. (C) In cancers, malignant cells hijack mitochondria from MSCs to relieve oxidative stress caused by
chemotherapy and boost cancer progression. Abbreviations: BMSCs, bone marrow stromal cells; ECs, endothelial cells;
MSCs, mesenchymal stem cells. Figure created using BioRender.

In response to acute bacterial infection, mitochondria are transferred from MSCs to HSCs, inducing
a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS), supporting rapid HSC
activation and leukocyte expansion [15]. This intercellular mitochondrial transfer is mediated by
ROS-induced oxidative stress and activation of PI3K signaling [15]. Intriguingly, mitochondria traf-
ficking from MSCs happens even before HSCs initiate their own mitochondrial biogenesis program
[15]. Taken together, these findings indicate that MSC-mediated mitochondrial transfer is an effi-
cient strategy for regulating immune homeostasis under inflammatory and autoimmune conditions.

While MSC-mediated mitochondrial transfer benefits tissue regeneration and immune modula-
tion, it also implicates cancer progression [50-56]. MSCs can transfer mitochondria to tumor
cells, supporting their high metabolic demands and chemotherapy resistance. For instance, in
B-cell acute lymphoblastic leukemia (B-ALL), chemotherapy-induced oxidative stress activates
MSCs into a CAF phenotype, prompting them to donate mitochondria to B-ALL cells and rescue
cancer cells from apoptosis [51]. In acute myeloid leukemia (AML), mitochondrial transfer from

Trends in Molecular Medicine, October 2025, Vol. 31, No. 10 915
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MSCs through TNTs enables tumor cells to sustain OXPHOS, a primary metabolic process for ATP
generation in AML [52], albeit that such metabolism is less common than the ‘Warburg effect’ seen
in most cancers. This transfer can be enhanced by oxidation phosphorylation inhibitors or certain
chemotherapeutics, such as cytarabine, and reduced by daratumumab, an anti-CD38 monoclonal
antibody [52,57,58]. Similarly, mitochondrial transfer via TNTs is associated with CD38 expression in
multiple myeloma, which may contribute to tumor survival and sustained growth [53].

Collectively, these findings indicate that MSC-mediated mitochondrial transfer, while supporting
tissue homeostasis, regeneration, and immunomodulation, can also enhance cancer cell survival,
proliferation, and invasion, representing a double-edged sword in therapeutic applications.

Mitochondria transferred from CAFs boost cancer progression

CAFs are pivotal components of the tumor stroma, facilitating cancer progression through reciprocal
interactions with cancer cells. Fibroblasts or CAFs undergo metabolic alterations in response to ox-
idative stress induced by cancer cells, leading to mitochondrial dysfunction and enhanced glycolysis
[20,51,59-61]. In turn, fibroblasts or CAFs provide cancer cells with metabolites that fuel their pro-
gression. Furthermore, CAFs transfer intact mitochondria or mtDNA to cancer cells, a process
linked to increased tumor invasion and resistance to chemotherapy [51,61-63] (Figure 2).

Cancer cells
Macrophages

Proliferation 1

Growth T
Invasion T
Drug resistance T

L-778123
6-Thio-GTP
ML-141

Trends in Molecular Medicine

NKT cells

Figure 2. Mitochondria transferred from CAFs and immune cells boost cancer progression. Cancer cells hijack
mitochondria from CAFs and immune cells to support their high metabolic demand for growth, proliferation, invasion, and
chemotherapy resistance. Macrophages transfer dysfunctional mitochondria to cancer cells, causing ROS accumulation
and activating ERK signaling for cell proliferation. Cancer cells induce oxidative stress in CAFs, causing mitochondrial
dysfunction and increased aerobic glycolysis; in return, lactate transported from CAFs to cancer cells to MCT fuels energy
production in cancer cells. Meanwhile, mitochondrial transfer from CAFs to cancer cells further supports mitochondrial
respiration and boosts cancer progression. Besides, cancer cells acquire mitochondria from NKT cells through TNTs,
supporting their metabolism. Pharmacological inhibitors, such as ML-141 (inhibits CDC42), 6-thio-GTP (inhibits RAC1),
and L-778123 (inhibits FPTase and GGPTase-l), reduce TNT formation and mitochondrial transfer from NKT to cancer
cells. Abbreviations: CAFs, cancer-associated fibroblasts; MCT, monocarboxylate transporter; NKT cells, natural killer
T cells; ROS, reactive oxygen species. Figure created using BioRender.
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In prostate cancer, mitochondrial transfer from CAFs fosters cancer cell respiration and invasive-
ness in a lactate-dependent manner [61]. Blocking the lactate transporter monocarboxylate
transporter 1 (MCT1) hinders this transfer, highlighting its critical role in cancer progression
[61]. Similarly, in breast cancer, CAFs transfer free mtDNA through EVs or TNTs, promoting
cancer cell metabolic activities and resistance to hormone therapies [62,64]. CAF-mediated mito-
chondrial transfer has also been observed in other cancers, such as B-ALL and lung cancer, con-
tributing to cancer metastasis and chemotherapy resistance [51,63]. These findings underscore
the potential of targeting CAF-medicated mitochondrial transfer in tumor growth, metastasis, and
therapy resistance, although the underlying molecular mechanisms await further investigation.

Mitochondrial transfer from innate and adaptive immune cells
Both innate and adaptive immune cells, such as macrophages and T cells, engage in intercellular
mitochondrial transfer, affecting cellular metabolism, tissue homeostasis, and disease outcomes.

Macrophages, typically responsible for digesting dysfunctional mitochondria to maintain homeo-
stasis, can also donate mitochondria in pathological contexts. In osteoporosis, macrophages
with an M1-like phenotype transfer mitochondria to MSCs, inducing ROS bursts that impair the
osteogenic differentiation of MSCs [65]. Conversely, M2-like macrophages facilitate the resolution
of inflammatory pain through transferring mitochondria to sensory neurons, mediated by the
CD200 receptor (CD200R) on macrophages and its noncanonical ligand iISEC on sensory neu-
rons [66]. In chronic heart failure and hypertension, macrophages are recruited to the heart and
deliver mitochondria to cardiomyocytes, causing injury through ferroptosis via glutathione metab-
olism dysregulation and lipid peroxidation [67]. In the tumor microenvironment, tumor-associated
macrophages transfer dysfunctional mitochondria to cancer cells, triggering ROS production,
activating extracellular signal-regulated kinase signaling, and promoting cancer proliferation [68]
(Figure 2). Besides, conditioned media from macrophages stimulate TNT formation and mito-
chondrial transfer in vitro, enhancing motility and epithelial-mesenchymal transition of pancreatic
cancer cells [69].

T cells also transfer mitochondria to cancer cells, facilitating immune evasion. For example,
natural killer T cells transfer mitochondria via TNTs, enhancing cancer cell basal respiration,
spare respiratory capacity, and growth [70]. Recently, researchers developed a statistical
deconvolution method called ‘MERCI’ to track and measure mitochondrial transfer between
cancer and T cells, linking this process to increased cancer cell cycle activity and poor clinical out-
comes in various cancers [71]. Hence, targeting mitochondrial hijacking might offer new avenues
for developing next-generation immunotherapies.

Supportive roles of mitochondrial transfer from astrocytes

Astrocytes maintain neuronal health by promoting synaptogenesis, axonal growth, and metabo-
lism in the central nervous system [72]. Mitochondrial transfer between astrocytes and neurons is
bidirectional. When stimulated by acidosis, excitotoxicity, or oxidative stress, neurons release
injured mitochondria into the extracellular space, signaling astrocytes for help [73]; in turn, astro-
cytes deliver healthy mitochondria to neurons, supporting their survival and plasticity [72,74,75].
Astrocyte-mediated mitochondrial transfer has been shown to ameliorate oxidative stress-
damaged neurons in animal models of ischemic stroke [76].

This transfer depends primarily on CD38 [7,74,77-80]. For instance, ginsenoside RB1 can pre-
serve astrocytic mitochondria and enhance their delivery to ROS-injured neurons via CD38
against ischemic insult [77]. Suppression of CD38 signaling reduced extracellular mitochondria
transfer and worsened neurological outcomes [74]. Beyond neurons, astrocytes also support

¢? CellPress

Trends in Molecular Medicine, October 2025, Vol. 31, No. 10 917




¢? CellPress Trends in Molecular Medicine

microglia by transferring mitochondria and humanin, an mtDNA-encoded peptide, improving
microglial phagocytosis and reducing inflamsnmation, potentially beneficial for treating intracerebral
hemorrhage [81]. Moreover, astrocytes transfer mitochondria to endothelial cells (ECs) to maintain
the blood-brain barrier integrity during aging [82]. In glioblastoma, astrocytes transfer mitochondria
to cancer cells via TNTs, upregulating metabolic pathways related to proliferation and tumorigenic-
ity [83]. This process is regulated by the growth-associated protein 43, which facilitates intercellular
connections. Astrocytes also receive mitochondria from glioblastoma cells, adopting a tumor-like
metabolic profile and increasing resistance to hypoxia [84]. Notably, it was recently reported that
microglia also play a supportive role by delivering healthy mitochondria to neurons, restoring
neuronal dysfunction by reducing oxidative stress and normalizing gene expression [85].

Mitochondrial transfer-targeted strategies and therapies

Recent advances have highlighted the potential of artificial mitochondrial transfer/transplant
(AMT/T) and stem cell-mediated mitochondrial transfer, focusing on replacing dysfunctional mito-
chondria to achieve functional tissue repair [86]. These strategies and therapies deliver healthy mi-
tochondria to damaged cells, aiding recovery across various diseases (see Clinician’s corner).

Avrtificial mitochondrial transfer/transplantation

AMT/T, pioneered by researchers in 1982 [87], involves extracting healthy mitochondria from tis-
sues and then transplanting and replenishing them into damaged tissues, offering therapeutic ef-
fects by restoring cellular metabolism. The liver and skeletal muscle are vital sources of
mitochondria because of their high metabolic activity [35,88,89]; meanwhile, platelets offer an-
other abundant and easily accessible supply [90] (Figure 3).

Preclinical research has shown that AMT/T can significantly alleviate ischemia-reperfusion injuries
in various tissues, including the brain, heart, liver, and kidney [18,35,91-95]. A proof-of-concept
preclinical study has demonstrated that intramyocardial injection of mitochondria-rich EVs en-
hanced post-myocardial infarction cardiac function in vivo using murine models [35]. Moreover,
AMT/T has shown beneficial effects in ischemia-reperfusion-injured peripheral muscles in vivo
in mouse models [94]. A systematic review of animal and human studies confirmed the effects
of AMT/T in treating such injuries, with improvements observed in tissue function and survival
[96].

Beyond repairing ischemia-reperfusion injuries, AMT/T holds promise for treating cognitive impair-
ments. Mitochondria acquired from human MSCs, administered nasally, improved cognitive
deficits in mice with cisplatin-induced memory impairment, restoring white matter integrity and syn-
aptic damage in vivo [92]. Similarly, platelet-derived mitochondria injected into the brain mitigated
diabetes-related cognitive decline, with attenuated neuronal apoptosis and oxidative stress and
decreased accumulation of amyloid-3 and Tau in the hippocampus in vivo in diabetic mice [90].

However, there are significant differences among mitochondrial isolation, dosage, and adminis-
tration methods. Recent preclinical research has shown MSC-derived EVs as an ideal AMT/T
delivery system whose safety has been confirmed in animals and healthy volunteers [35,97,98].
EVs maintain mitochondrial stability and have shown better therapeutic effects in animal models
of myocardial infarction, liver ischemia, and acute respiratory distress syndrome (ARDS)
[35,95,98,99]. For example, mitochondria-containing EVs demonstrated superior recovery of
myocardial bioenergetics compared with isolated mitochondria in a mouse model of myocardial
infarction [35]. Additionally, MSC-derived EVs were shown to reduce neutrophil extracellular
trap formation in liver tissue by transferring mitochondria to intrahepatic neutrophils, thereby
alleviating ischemia-reperfusion injury in vivo in mice [95].
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Figure 3. Artificial mitochondrial transfer/transplantation in clinical trials. Mitochondria-containing EVs are isolated
from cultured MSCs, which are usually harvested from bone marrow, umbilical cord, platelets, and adipose tissue. The
safety of MSC-derived EVs has been confirmed in animals and healthy volunteers. In addition, healthy mitochondria for
AMT/T can be isolated from the liver and skeletal muscle due to their high metabolic activity. Clinical trials have
investigated the therapeutic effects of AMT/T in various diseases, such as ARDS caused by COVID-19, chronic kidney
disease, and myocardial infarction/dysfunction. Abbreviations: AMT/T, artificial mitochondrial transfer/transplant; ARDS,
acute respiratory distress syndrome; COVID-19, coronavirus disease 2019; EVs, extracellular vesicles; MSCs,
mesenchymal stem cells. Figure created using BioRender.

Several clinical trials have explored mitochondrial transfer due to beneficial effects observed in
preclinical models (Figure 3). In 2017, the first-in-human clinical application of autologous mito-
chondrial transplant was performed in pediatric patients who required extracorporeal membrane
oxygenation support for ischemia-reperfusion injury after cardiac surgery, showing promising
outcomes [100]. Healthy mitochondria were isolated from the rectus abdominis muscle and di-
rectly injected into the ischemic myocardium, leading to rapid recovery of ventricular function
[100,101]. In another phase 2 clinical trial, MSC-derived EVs were found to significantly reduce
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Clinician’s corner

Mitochondrial transfer has emerged as
a cutting-edge therapeutic approach
with the potential to restore cellular
function across various diseases, es-
pecially those marked by mitochondrial
dysfunction [7,86]. By harnessing the
capacity of donor cells, particularly
MSCs, to deliver healthy mitochondria
to stressed cells, mitochondrial
transfer shows promise in preclinical
models for treating conditions such as
neurodegenerative diseases, cardiac
injury, and ischemia-reperfusion injury.

In addition to the transfer of competent
mitochondria from healthy donor cells,
such as MSCs, to stressed cells, recent
studies also uncovered the essential role
of trafficking damaged mitochondria
from diseased cells to healthy
neighboring recipient cells in cellular
homeostasis [119,139]. This intercellular
trafficking allows stressed cells to
share the burden of degrading defective
mitochondria, thus preventing the
accumulation of cellular damage. Such
findings highlight the versatile nature of
mitochondrial transfer, suggesting its
significant therapeutic implications in
broader pathophysiological settings.

For clinicians, the implications of
mitochondrial transfer therapies are
profound. These treatments could offer
novel strategies to improve recovery in
patients where traditional therapies may
fall short, especially for those with
chronic conditions that exacerbate
cellular energy production. Notably, the
role of mitochondrial transfer differs
significantly between cancerous and
noncancerous diseases. In cancer,
inhibiting mitochondrial  transfer is
generally considered beneficial, because
it may limit tumor growth, progression,
and metastasis by preventing cancer
cells  from  hijacking  functional
mitochondria from healthy cells. By
contrast, promoting mitochondrial
transfer in noncancerous diseases can
enhance tissue repair and regeneration
by supplying damaged cells with
healthy mitochondria. This distinction
is critical when considering the
therapeutic potential of mitochondrial
transfer in clinical applications.
Therefore, it is important to keep in
mind that mitochondrial transfer can
lead to diverse outcomes, depending
on the disease context.
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the 60-day mortality in patients of all ages with severe ARDS caused by COVID-19 [102]. Further-
more, clinical trials are investigating the therapeutic effects of AMT/T in conditions such as repeated
in vitro fertilization failure (NCT06020742"; ongoing), myocardial ischemia (NCT02851758";
recruiting), cerebral ischemia (NCT04998357"; recruiting), and coronary artery bypass graft
surgery (NCT05669144"; unknown status).

Stem cell-mediated mitochondrial transfer

Stem cell-mediated mitochondrial transfer has emerged as a promising strategy leveraging stem
cells’ ability to deliver mitochondria to damaged tissues. This approach enhances the therapeutic
effects of stem cells by combining their regenerative properties with AMT/T. Mitochondria are
well-preserved within stem cells, and injury signals from recipient cells and bidirectional commu-
nication between stem cells and injured tissues facilitate this transfer [12].

Preclinical research has explored various methods to enhance mitochondrial transfer in stem cell
therapy. Highly purified MSCs, such as the rapidly expanding clones, display superior ability for
mitochondrial transfer in vitro, using EVs and CX43 gap junctions as primary routes [103,104].
Genetic modifications such as overexpressing MIRO1 or CD157, and treatments such as mela-
tonin preconditioning, can further boost mitochondrial transfer in vitro and in vivo [31,32,93]. In
pulmonary fibrosis animal models, combining pioglitazone with IONPs significantly increased
mitochondrial biogenesis in MSCs via PGC1ca/ NRF1/TFAM signaling and enhanced their transfer
by promoting CX43 gap junction formation in vitro and in vivo [44].

Most recently, stem cell-mediated mitochondrial transfer has been studied in EC transplants
in vivo [29]. Researchers found that preloading ECs with mitochondria from MSCs enhanced
EC engraftment and angiogenesis, while blocking this transfer impairs EC engraftment, albeit
that exogenous mitochondria did not integrate into the EC mitochondrial pool [29]. Likewise, in
T-cell based immunotherapies, MSC-mediated mitochondrial transfer could supercharge CD8*
T cells by supplying exogenous mitochondria to them via TNTs, which required Talin 2 on
donor and recipient cells [105]. Consequently, mitochondria-empowered T cells expanded
more robustly and showed superior antitumor effects in tumor-bearing animals, extending their
survival [105]. Although no clinical trials have specifically tested stem cell-mediated mitochondrial
transfer, stem cell therapies for ischemic stroke, multiple sclerosis, and other diseases have been
studied widely [106—-108]. These clinical trials have demonstrated the safety and efficacy of stem
cell therapies. However, further research is required to directly assess the potential of mitochon-
drial transfer mediated by stem cells during patient treatment.

Concluding remarks

Mitochondrial transfer introduces a paradigm shift in intercellular communication, primarily
through EVs, gap junctions, and TNTs. Mitochondrial transfer occurs in both physiological
and pathological contexts, especially under oxidative stress driven by excessive ROS, but the
precise triggers and regulatory mechanisms remain to be explored. Moreover, evidence of mito-
chondrial transfer in humans in vivo remains scarce because of technical limitations, such as the
difficulty in accurately tracking and visualizing mitochondrial transfer within living tissues (see
Outstanding questions). This review highlights significant progress in understanding mitochondrial
transfer across various donor cells and their potential applications (Table S1 in the supplemental
information online).

MSC-derived mitochondria have attracted widespread attention for their versatile roles in tissue
regeneration, immune regulation, and cancer progression. Selectively enhancing mitochondrial

transfer from MSCs could optimize stem cell therapies for injury repair. Plus, CAFs and immune
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As this field moves closer to clinical
application, relevant novel therapies
may soon expand the clinician’s
toolkit, such as AMT/T and stem cell-
mediated mitochondrial transfer. To
this end, future research should focus
on large-scale, multicenter, random-
ized controlled clinical trials to evaluate
the safety, efficacy, and feasibility of
mitochondrial transfer-related treat-
ments. Such clinical trials should ad-
dress challenges such as efficient
mitochondrial delivery, minimizing im-
mune rejection, and ensuring targeted
therapy. Hopefully, mitochondrial
transfer will offer a targeted and inno-
vative approach to address cellular
dysfunction and related diseases at its
core organelle, transforming outcomes
into conditions once believed
untreatable.
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cells participate in mitochondrial transfer, especially within the tumor microenvironment, where
cancer cells hijack mitochondria to gain metabolic support for malignant progression. Thus,
inhibiting mitochondrial transfer offers a promising antitumor strategy [109]. However, despite
promising results in preclinical settings, the pathway to clinical applications is complicated. Stan-
dardizing protocols for mitochondrial isolation, optimizing delivery mechanisms, and tailoring
protocols to individual patient needs are all critical steps before clinical implementation. We advo-
cate that as research progresses toward human trials, clinicians should stay updated on the
developments, especially regarding safety, efficacy, delivery methods, and long-term outcomes
data, that will shape the future landscape of mitochondrial transfer therapies.

Besides, it is crucial to understand the precise role of intercellular mitochondrial transfer in differ-
ent disease settings. In cancer, suppressing mitochondrial transfer usually reduces tumor
growth, albeit that some contradictory findings exist, whereas promoting mitochondrial transfer
can enhance tissue repair in noncancerous diseases (see Clinician’s corner). Although ongoing
clinical trials hold promise, their success is uncertain because of difficulties in controlling transfer
and the need for disease-specific approaches. Further research into the mechanism of mitochon-
drial transfer and developing selective inhibitors or agonists is required. Here, we recommend that
future studies focus on mechanisms behind selective mitochondrial transfer and harness their
therapeutic power, overcoming the complexity of mitochondrial dynamics and potential immune
responses and off-target effects. Overall, targeting mitochondrial transfer is a promising thera-
peutic strategy, representing a revolutionized prototype of organelle therapy in regenerative
medicine, oncology, and beyond.
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