

Check for updates

REVIEW

Comparative Efficacy of Exercise Type on Visceral Adipose Tissue in Patients With Prediabetes and Type 2 Diabetes Mellitus: A Systematic Review With Pairwise and Network Meta-Analyses

Mousa Khalafi¹ | Saeid Fatolahi² | Michael E. Symonds³ | Farnaz Dinizadeh⁴ | Sara K. Rosenkranz⁵ | Alexios Batrakoulis^{6,7} |

¹Department of Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran | ²Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran | ³Centre for Perinatal Research, Academic Unit of Population and Lifespan Sciences, School of Medicine, University of Nottingham, Nottingham, UK | ⁴Department of Sport Sciences, Tabriz Branch, Azad University, Tabriz, Iran | ⁵Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA | ⁶Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece | ⁷Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece

Correspondence: Mousa Khalafi (mousa.khalafi@kashanu.ac.ir) | Alexios Batrakoulis (abatrako@phyed.duth.gr)

Received: 30 October 2024 | Revised: 6 June 2025 | Accepted: 15 September 2025

Keywords: aerobic training | combined training | glucose intolerance | high-intensity interval training | resistance training | visceral fat

ABSTRACT

The aim of this systematic review with pairwise and network meta-analyses was to examine the effects of different exercise types on visceral adipose tissue (VAT) in patients with prediabetes and type 2 diabetes mellitus (T2DM). A comprehensive search was conducted in PubMed, Web of Science, and Scopus using four main keywords including "exercise training," "visceral fat," "diabetes," and "randomization" from inception to April 2025. Thirty-three randomized controlled trials or clinical trials with parallel groups were included (1740 patients), in which exercise training was compared with either nonexercise or other types of exercise training. Combined training (n=5) (-0.63 [95% CI -0.95 to -0.30], p=0.001), high-intensity interval training (n=11) (-0.53 [95% CI -0.86 to -0.19], p=0.001), and aerobic training (n=24) (-0.38 [95% CI -0.59 to -0.18], p=0.001), but not resistance training (n=8) (-0.25 [95% CI -0.54 to 0.03], p=0.08) were more effective for reducing VAT as compared with controls. Subgroup analyses based on age, health status, body mass index, or intervention duration confirmed that combined training, high-intensity interval training, aerobic training, but not resistance training, induced advantageous alterations in VAT compared to the control group. The main findings show that the P-score-based ranking of interventions reported the highest probability ranking for CT (0.89), followed by HIIT (0.76), AT (0.52), and RT (0.32). These findings provide compelling evidence to support the use of exercise training as a noninvasive and cost-effective nonpharmacological intervention for the reduction of VAT in patients with prediabetes and T2DM.

PROSPERO Registration Number: CRD42024598045.

© 2025 World Obesity Federation.

1 | Introduction

1.1 | Glucose Metabolism and Visceral Fat

Impaired glucose metabolism, frequently associated with excess body weight or adiposity, is a common global public health issue that increases the risk of morbidity and mortality associated with cardiovascular diseases [1]. Consequently, physically inactive individuals with poor glucose control commonly demonstrate metabolic dysregulation and cardiovascular complications, as well as excess visceral adiposity [2, 3]. People with prediabetes and type 2 diabetes mellitus (T2DM) usually exhibit abdominal obesity associated with increased visceral adipose tissue (VAT) located within the abdominal cavity surrounding internal organs, including the liver and intestines [4]. Excessive VAT accumulation fosters harmful diabetes-related health effects resulting in an increased risk of hepatic steatosis, cardiovascular diseases, and metabolic syndrome [5]. Moreover, abnormal VAT leads to chronic lowgrade inflammation, elevated oxidative stress, low antioxidant capacity, and compromised immune function [6]. In order to improve metabolic health among people with prediabetes and T2DM, reducing visceral adiposity is therefore considered more effective than other anthropometric parameters in glucose management [7].

1.2 | Role of Exercise in Visceral Fat

In light of these considerations, the prioritization of nonpharma-cological interventions, such as physical exercise, has emerged as an important approach for medical practitioners, healthcare professionals, and policymakers striving to address the adverse health consequences and concomitant economic burdens associated with T2DM [8]. Physical exercise can be a noninvasive and cost-effective therapeutic tool for reducing VAT and improving glucose homeostasis in individuals with metabolic health impairments [9–12]. Although regular exercise may not always reduce body weight, extra literature indicates that exercise can decrease visceral adiposity, even in the absence of weight loss [13], and improve hormonal alterations that impact the regulation of glucose levels and fatty acid metabolism among people with poor glucose control [14].

1.3 | Impact of Different Exercise Types on Visceral Fat

Exercise training can have inconsistent effects on VAT among individuals with prediabetes and T2DM [9, 15]. A plethora of studies investigating some of the most popular exercise training modalities in both exercise communities and clinical practice [16] display positive effects on VAT in populations with prediabetes and T2DM. In particular, aerobic training, high-intensity interval training (HIIT) and combined aerobic and resistance training, but not resistance training alone, exhibit favorable changes in VAT [9, 13, 17–29]. However, these beneficial exercise-induced changes are not always clinically significant, and the role of different exercise types in lowering VAT requires further elucidation. Any discrepancies may be attributed to diverse study populations, which may have

resulted in varying outcomes [9, 30–33], meaning whether there is an optimal type of exercise for patients with prediabetes and T2DM is unknown.

1.4 | Research Objectives

Although robust evidence supports a vital role for exercise in improving cardiometabolic risk associated with diabetes [34], the comparative efficacy of the most widely used exercise types for reducing VAT among individuals with prediabetes and T2DM remains unclear. The objectives of the present systematic review that uniquely adopted pairwise and network meta-analyses was to investigate the efficacy of different types of exercise for reducing VAT in patients with prediabetes and T2DM and to identify the most effective type of exercise training.

2 | Methods

2.1 | Registration

This systematic review with pairwise and network metaanalyses was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [35] and the Cochrane Handbook for Systematic Reviews of Interventions [36]. The present study was registered at the International Prospective Register of Systematic Reviews (PROSPERO) with registration number: CRD42024598045

2.2 | Literature Search Strategy

A comprehensive search was conducted in PubMed, Web of Science, and Scopus using four main keywords, including "exercise training," "visceral fat," "diabetes," and "randomization" from inception to July 2024. There were restrictions set for the English language and studies of humans, where possible. The full search strategy is summarized in Table S1. In addition, the search was updated through to April 2025. In addition, the reference lists of the included studies, additional relevant meta-analyses [9, 13, 18] and Google Scholar were manually searched to ensure that all relevant studies were included in the meta-analyses. Two authors (M.K. and S.F.) independently performed the database and manual searches.

2.3 | Study Selection and Eligibility Criteria

All retrieved records were imported to EndNote and duplicate articles excluded. Subsequently, the records were screened against the inclusion and exclusion criteria. The screening process was conducted in two stages: 1) title and abstract screening and 2) screening of the full texts of eligible articles. Study selection was completed by two independent authors (S.F. and F.D.) and any disagreements were resolved through discussion with another author (M.K.). Interrater agreement [37] assessed using Cohen's κ statistic was 0.86 before resolving discrepancies. The studies included in the meta-analysis met the following criteria: they must have been written in

the English language. Additionally, the studies must have met the following population, intervention, comparison, outcomes, and study (PICOS) criteria to be included: For population, studies must have involved adults with prediabetes or type 2 diabetes mellitus (T2DM) with mean ages \geq 18 years, regardless of biological sex. Prediabetes was defined as fasting blood glucose (FBG) between 6.1 and 6.9 mmol/L, twohour blood glucose (2h-BG) between 7.8 and 11.1 mmol/L, or glycated hemoglobin (HbA1c) between 5.7 and 6.4% (39-46 mmol/mol). T2DM was defined as FBG \geq 7.0 mmol/L, or $2h\text{-BG} \ge 11.1 \text{ mmol/L}$, or $HbA1c \ge 6.5\%$ (48 mmol/mol). HbA1c was prioritized among these glycemic markers for diagnosing prediabetes or T2DM [38-40]. In addition, participants with obesity, metabolic syndrome, or fatty liver diseases were included if they met the prediabetes definition. For intervention, studies were included if they involved any mode of exercise including aerobic training, resistance training, HIIT, or combined aerobic and resistance training and had a duration ≥ 2 weeks. In addition, studies involving other exercise types such as Pilates, yoga, or tai chi were included. In order to facilitate comparison, studies involving nonexercise or usual care control groups and other exercise training groups were included. For outcomes, studies had to measure visceral fat, interabdominal fat, or preperitoneal fat before and after intervention using valid measurement units such as grams/kg, percentages, mm, cm², L, or cm³ [41]. To ensure the methodological quality of the study, randomized controlled trials or clinical trials with parallel groups that had undergone peer review were included when they compared exercise training and nonexercise or other types of exercise. Exclusion criteria were nonoriginal, nonrandomized studies. In addition, studies without more than one group or studies that used the bioelectrical impedance method were excluded because of some concerns about the validity of quantifying VAT, especially in clinical settings [42, 43].

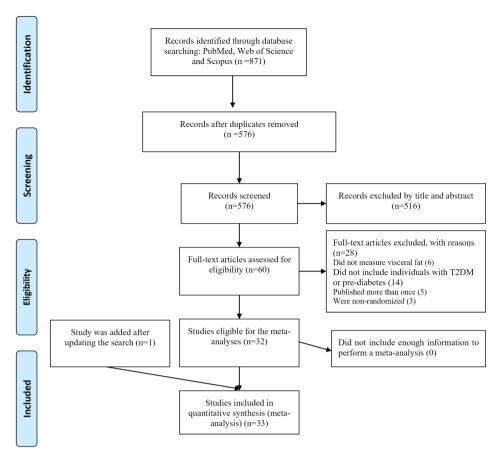
2.4 | Data Extraction

Two authors (S.F. and F.D.) independently extracted the data, and any disagreements were resolved by discussion with another author (M.K.). The following data were extracted: 1) publication characteristics, including first author name and publication year; 2) study design, including randomized controlled or clinical trials; 3) participant characteristics, including sample size, ages, body mass indexes (BMI), and health status; 4) exercise characteristics, including type, intensity, duration of intervention, and protocol; 5) outcome variable (VAT), including measurement methods and reported units.

2.5 | Data Synthesis

In order to perform the requisite analyses, the mean changes and their standard deviations (SDs) were extracted. However, when required, these data were calculated from means and SDs of preintervention and postintervention data using a relevant formula with conservative values of 0.5 for correlations, as recommended in the Cochrane Handbook. In addition, when required, means and SDs were calculated from other data such as standard errors, medians, and interquartile ranges (IQRs),

and 95% confidence intervals, or were extracted from figures using Getdata software [44–46]. If studies had more than one intervention arm with different exercise types (such as aerobic and resistance), each one was included as a separate arm, and the sample size of the control group was divided by the number of intervention arms in the pairwise analysis. However, if studies had more than one exercise arm with the same exercise type (such as aerobic training with moderate versus high intensities), these were combined using the relevant formulas recommended by the Cochrane Handbook for Systematic Reviews of Interventions. In addition, studies involving exercise training plus a dietary intervention, versus dietary intervention alone, were included in the analyses if the diet was the same in all intervention arms.


2.6 | Quality Assessment

The overall quality of the included studies was assessed using the Physiotherapy Evidence Database (PEDRO) scale, which contains 11 items [47]. However, two items, including "blinding of all subjects," and "blinding of all therapists who administered the therapy," were excluded from our review because of the impossibility of applying them in exercise interventions. Finally, the quality of the included studies was assessed using the 9 remaining items by two independent authors (S.F. and F.D.), and any disagreements were resolved by discussion with another author (M.K.). The scores ranged from 0 to 9, with higher scores demonstrating higher quality. The quality assessment scores are summarized in supplementary Table 2.

2.7 | Statistical Analysis

The pairwise meta-analysis was conducted using comprehensive meta-analysis software (version 3) to compare the effects of exercise training versus nonexercise control groups. The standardized mean differences (SMDs) were calculated using random effects models, and effect sizes were interpreted using the Cochrane guidelines, with 0.20-0.49, 0.50-0.79, and \geq 0.80 indicating small, medium, and large effect sizes, respectively [36]. The heterogeneity among included studies was determined using I^2 and Q-statistics, with the I^2 interpreted according to the Cochrane guidelines, with 25%, 50%, and 75% indicating low, moderate, and high heterogeneity, respectively. Publication bias was assessed using the visual interpretation of funnel plots and Egger's tests as a secondary measure, where a p value of < 0.10indicated possible publication bias [48]. A sensitivity analysis was conducted by removing individual studies to ascertain that the findings were not unduly influenced by a single study. Additionally, several subgroup analyses were performed based on the age of participants (middle-aged: < 60 years, older: ≥ 60 years), health status (prediabetes, T2DM), BMI classification (nonobese: BMI < 30 kg m^2 , obese: BMI $\geq 30 \text{ kg m}^2$), and intervention duration (short-term: < 16 weeks, long-term: ≥ 16 weeks). To investigate the direct and indirect effects of exercise modes, the network meta-analysis was conducted with a frequentist framework using the netmeta package in the statistical software R (V.4.4.1). Because the visceral fat reported with different measurement units in the included studies, the standardized mean differences (SMDs) were determined using

Obesity Reviews, 2025 3 of 23

FIGURE 1 | Flow diagram of systematic literature search.

a random effects model to calculate the effect size. Network forest plots and league tables were used to show the relative estimate of mixed (direct and indirect) effect sizes and 95% CIs for all combinations of interventions in the network. P score values (ranging from 0 to 1) were used to rank each intervention, with smaller values indicating the better rank. In addition, the transitivity assumption was assessed by a visual inspection of participant characteristics including age, biological sex, and health status; study design characteristics including randomization; and intervention characteristics including intervention duration. The assumption of consistency was assessed using direct and indirect estimates via node-splitting models, and statistical inconsistency was considered present when $p \le 0.05$ [49, 50]. Heterogeneity was assessed using the I² and Q-statistic according to Cochrane guidelines, which describe within-design heterogeneity and between-design inconsistency. Publication bias was assessed using the visual interpretation of funnel plots and confirmed using Egger's tests.

3 | Results

3.1 | Search Strategy

The initial search yielded 871 records, of which 576 remained after removing duplicates. Subsequently, 516 articles were removed based on title and abstract screening, and 60 articles were deemed eligible for the full-text screening. Following the complete screening process, 28 studies were removed because

of reasons such as not measuring visceral fat (n=6), not including individuals with T2DM or prediabetes (n=14), published more than once (n=5), and being nonrandomized (n=3) as presented in Figure 1. In addition, 1 study was added after updating the search [51]. Finally, 33 studies met all inclusion criteria and were included in the analyses [52–83]. Among the included studies, six did not have a control group and were not included in the pairwise meta-analysis but were included in the network meta-analysis [53, 54, 65, 70, 74, 76]. All included studies were randomized control or clinical trials with parallel groups. The details of the searches and study selection process are presented in Figure 1, and study characteristics are summarized in Table 1.

3.2 | Participants and Interventions Characteristics and Quality Assessment

Overall, 1740 participants with a mean age ranging from 45 to 70 years and a mean BMI ranging from 25 to 40 kg m² were included in the meta-analysis, with 20 studies having participants with T2DM [51–57, 59–62, 67, 68, 70–75, 77, 81] and 12 with prediabetes [58, 63–66, 69, 76, 78–80, 82, 83]. In addition, the participants had other comorbidities such as nonalcoholic fatty liver disease [52, 58, 63, 64], nonalcoholic steatohepatitis [28, 66], metabolic dysfunction–associated [80], and metabolic syndrome [75, 76] before or stage I hypertension [62]. The intervention duration ranged from 2 to 24weeks, with a weekly frequency of exercise sessions ranging from 2 to 7 sessions per week. Different modes of

TABLE 1 | Characteristics of participants and interventions.

Measurement method and unit	MRI – cm²	DXA—kg	MRI - cm ²
N Supervision	_δ	ν	ω
Ex program duration, frequency and type	8-wk, 3×/wk., HIIT: 40min: warmup: 5min, cycle ergometer: 3 × 4 min at 80%–85% of VO _{2max} , between intervals recovery: 2 min at 50% of VO _{2max} , cooldown: 5 min. AEx: 40–50 min: warmup: 5 min, cycle ergometer: 60–70% of HR _{max} , cooldown: 5 min.	10-wk, 3×/wk.; cycling, HIIT: 29 min, warmup: 10 min at low-intensity, 5 intervals of 1 min divided into 30, 20 and 10s at low ~ 30−100 W, moderate ~ 60−180 W and maximal ≥ 400 W intensity, between intervals recovery; passive 2 min; AEx: 50 min at 60%−75% of HRR.	16-wk, 3x/wk., AEx: cardiovascular training equipment, 60 min at 60%-65% of HRR. REx: weight machines and free weights, 60 min: 3 sets of 70%-80% of 1-RM.
BMI (kg/m²)	HIIT: 36.3±4.5 AEx: 36.7±3.4 C: 35.9±5.3	HIIT: 30.6±5.4 AEx: 30.7±4.4	AEx: 29.50±4.69 REx: 29.20±4.47
Age (years)	HIIT: 54.40±5.80 AEx: 54.90±4.70 C: 55.20±4.30	HIIT: 61.0±6.2 AEx: 61.2±7.1	AEx: 57.2 ± 5.65 REx: 55.6 ± 5.83
Glycemic marker (s)	HbA1c: 6.56±0.50%	FBG: 161±61.50 mg/dL	FBG: 143.5±31.93 mg/dL
Participants characteristics	T2D, obese, NAFLD	T2DM	T2DM
Sample size (male, female)	47 (M, F)	44 (M)	38 (M, F)
Groups	HIIT,	HIIT,	AEX, REX
Source, year	Abdelbasset et al., 2020 [52]	Baasch-Skytte et al., 2020 [53]	Bacchi et al., 2012 [54]

(Continues)

5 of 23

(Continues)

TABLE 1 | (Continued)

Measurement method	USG—mm	MRI—cm ²	MRI—cm ²
Supervision	N	N	Both
Ex program duration, frequency and tyne	12-wk, 3×/wk., warmup: treadmill, REx: traditional machines, 15 RMs (avoided failure), 2–3 sets, between sets recovery: 60s, plus functional exercises, 2–3 sets, more than 6 on OMNI scale, between sets recovery: 60s.	8-wk, 3×/wk.; continuous exercise: 2×/wk., 45 min at 75% of VO _{2peak} plus intermittent exercise: 1×/wk., 5 × 2 min at 85% of VO _{2peak} , between intervals recovery: 3 min at 50% of VO _{2peak} . C: 1×/wk.; bicycle ergometer: 60 R.P.M. for 20 min at low intensity (30 W).	12-wk, 3X/wk; cycle ergometer, warmup: 5 min at 9–13 RPE, 5 intervals: pedal cadence of more than 80 R.P.M. at RPE of 16–17, between cycle recovery: active 3 min.
BMI (kg/m²)	REx: 28.20±3.60 C: 28.64±3.26	AEx: 28.30±3.90 C: 30.85±5.20	HIIT: 31±50 C: 32±60
Age (vears)	REx: 70.6 ± 6.70 C: 68.6 ± 7.06	AEx: 42.90±5.20 C: 47.90±8.35	HIIT: 61 ± 90 C: 59 ± 90
Glycemic marker (s)	FBG: 144.07±41.18 mg/ dL	FBG: 160.50±31.14mg/ dL	FBG: 124±23.80 mg/dL 2h-BG: 218±54.90 mg/dL HbA1c: 7±0.78%
Participants characteristics	Т2БМ	T2DM	T2DM
Sample size (male, female)	44 (M, F)	16 (M)	23 (M, F)
Groups	REx, C	AEx, C	HIIT, C
Source, vear	Botton et al., 2018 [55]	Boudou et al., 2003 [56]	Cassidy et al., 2016 [57]

6 of 23

1467789x, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.111/obr.70031 by loffe Institute, Wiley Online Library on [16/10/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-ad-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

ied)	
(Continued	
_	
ABLE	
_	

Measurement method and unit	1H-MRS, – kg	CT — cm^2	CT—cm ²	
Supervision	∞	Non	_∞	
Ex program duration, frequency and type	24-wk, 2-3x/wk; Nordic brisk walking + stretching and other exercises, warmup: 5min, 30-60 min at 60%-75% VO _{2max} , cooldown: 5 min. Diet: 24-32 w, lunch: 30%-40% of the total daily energy intake: 37%-40% carbohydrate with 9-13g as fiber, 35%-37% fat (SAFA 10%, MUFA 15%-20%, PUFA 10%) and 25%-27% protein.	12-wk, 5x/wk;; walking, 60 min at moderate intensity	16-wk, 3x/wk.; CEx: AEx: 75 min of aerobic exercise equipment at 60%–75% HRR plus REx: weight machines: 2 sets of 12 reps with progressive intensity. AEx: structured exercise classes: 75 min plus low-impact low intensity dynamic movement ~ 0.1 kcal.min ⁻¹ .kg ⁻¹	
BMI (kg/m²)	AEx: 26.84±3.25 C: 26.82±2.76	26.8±2.4	AEx: 32.5± 4.2 CEx: 33.3±4.74 C: 36.7±6	
Age (years)	AEx: 59.51 ± 3.95 C: 60 ± 3.75	AEx: 53.8 ± 7.2 C: 55.0 ± 6.0	AEx: 59.4±5.7 CEx: 63.4±6.95 C: 60±8.7	
Glycemic marker (s)	FBG: 20.8±11.88 mg/dL 2h-BG: 144.7±27 mg/dL HbA1c: 6.09±0.44%	FBG: 139.29±30.33 mg/ dL	HbA1c: 6.70±1.06%	
Participants characteristics	PD, NAFLD	T2DM	T2DM, obese, postmenopausal	
Sample size (male, female)	85 (M, F)	75 (F)	28 (F)	
Groups	AEx, C	AEx, C	AEx, CEx, C	
Source, year	Cheng et al., 2017 [58]	Choi et al., 2012 [59]	Cuff et al., 2003 [60]	

Obesity Reviews, 2025 7 of 23

TABLE 1 | (Continued)

Measurement method and unit	1H-MRS—cm ²	MRI—kg	MRI—cm ²
Supervision	N	∞	N
Ex program duration, frequency and type	12-wk, 3×/wk.; cycling, 30–40 min: warmup: 5 min, 5 intervals in 2–3 min and 50s at RPE of 16–17, between intervals recovery: 3 min, cooldown: 3 min.	2-wk, 3x/wk.; cycle ergometer, 4–6 x 30s all-out intervals; healthy participants: 7.5% of whole-body weight (kg) and in defective glucose tolerance participants: 10% of lean body mass (kg), between intervals recovery: 4 min. AEx: cycle ergometer, 40–60 min at 60% of VO _{2peak}	12-wk, 3x/wk; 45-60 min, warmup: 5 min; AEx: cycling: 3 × 2 min at RPE of 16-18, between intervals recovery: 1 min and plus REx: circuit cycles at RPE of 14-16
$ m BMI~(kg/m^2)$	HIIT: 31±4 C: 31±5	HIIT: 29.8 ± 2.76 AEx: 31.1 ± 4.05	CEx: 33±5 C: 33±7
Age (years)	HIIT: 54±10 C: 52±12	HIIT: 47 ± 4.59 AEx: 47 ± 4.72	CEx: 54±12 C: 51±16
Glycemic marker (s)	FBG: 100.63±26.82mg/ dL 2h-BG: 161.82±70.38mg/ dL HbA1c: 6.60±1.50%	FBG: 131.04±12.96 mg/ dL HbAlc: 5.74±0.58%	FBG: 112.50±29.34 mg/ dL
Participants characteristics	PD, NAFLD	PD	PD, NASH
Sample size (male, female)	23 (F)	16 (M)	24 (N. R)
Groups	HIIT, C	HIIT, AEX	CBx, C
Source, year	Hallsworth et al., 2015 [64]	Honkala et al., 2017 [65]	Houghton et al., 2017 [66]

(Continues)

TABLE 1 | (Continued)

Measurement method and unit	MRI—cm ²	CT—cm ²
Supervision	\sim	Non
Ex program duration, frequency and type	CEx ₁ (medium) + diet: 16-wk, 3×/wk., AEx: 2×/ wk., 50 min, stationary bikes, 60–100% of HR _{max} + CEx: 1×/wk. AEx: 30min, stationary bikes + REx: 30–45 min, large muscle groups, upper and lower body exercises, 2–3 sets of 8–12 reps at 0–3 RIR, time/ wk. ~ 150–165 min. CEx ₂ (high) + diet: 16-wk, 6×/ wk., AEx: 4×/wk. same + CEx: 2×/wk., exercise training, time/wk. ~ 300– 330 min. Diet: ~25%–30% caloric restriction, CHO: 45%–60% + protein: 15%–20%, fat <35% (<7% sat. fat), personalized meal plan + 3 dietitian sessions, 3-day food diaries for monitoring.	12-wk, 5x/wk.; 500 kcal/ day; AEx1: 5x/wk., 30 min, 5.3 METs, AEx2: 5x/wk., 60 min, 3.5 to 5.2 METs
BMI (kg/m²)	CEx ₁ : 33.2±4.1 ce ₂ : 33.4±3.5 C: 33.2±3.8	AEx: 25.7±1.51 C: 27.7±3.4
Age (years)	CEx ₁ ; 60.9 ± 7.6 ce ₂ ; 57.3 ± 11.8 C: 55.9 ± 10	AEx: 52.6±8.21 C: 55.5±7.6
Glycemic marker (s)	FBG: 147.24±35.46 mg/ dL HbA1c: 6.72±4.03%	FBG: 138.34±32.66mg/ dL
Participants characteristics	T2DM	Т2DМ
Sample size (male, female)	62 (M, F)	28 (F)
Groups	CEx ₁ , ce ₂ , C	AEx C
Source, year	Lyngbak et al. 2024 [51]	Jung et al., 2012 [67]

10 of 23

(Continues)

1467789x, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.111/obr.70031 by loffe Institute, Wiley Online Library on [16/10/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-ad-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Continued	minaca)	
۲	ζ,	
\simeq	ر	
_	-	
_	4	
Ι	1	
LA RI E	Ì	
4	i	
4	ė,	
Ĺ	7	

		Sample size (male,	Participants	Glycemic			Ex program duration,		Measurement method
Source, year	Groups	female)	characteristics	marker (s)	Age (years)	$BMI (kg/m^2)$	frequency and type	Supervision	and unit
Karstoft et al., 2013 [68]	HIIT, AEx, C	32 (M, F)	T2DM	FBG: 140.04±15.48 mg/ dL	HIIT: 57.5 ± 8.31 AEx: 60.8 ± 7.62 C: 57.1 ± 8.48	HIIT: 29±4.5 AEx: 29.9±5.54 C: 29.7±5.37	16-wk, 5x/wk; 60 min, walking, HITT: 3 min of brisk walking above target and 3 min of slow walking below target, target: 70% of the peak energy-expenditure rate AEx: moderate intensity, target: 55% of the peak energy-expenditure rate energy-expenditure rate	Non	MRI—L
Keating et al., 2023 [69]	HIIT, C	HIIT, C 12 (M, F)	PD, NASH	FBG: 132.48±26.10 mg/ dL	HIIT: 53±12 C: 61±5	HIIT: 39.6 ± 7.1 C: 38.3 ± 6.9	12-wk, 3x/wk.; treadmill running/walking with aerobic exercise equipment, warmup: 5 min at 60% of HR _{max} , 4 x 4-min intervals at 85%–95% of HR _{max} , between intervals recovery: 3 min at 60% of HR _{max} , cooldown: 5 min	w	MRI—cm ²
Koh et al., 2018 [70]	HIIT, AEx	16 (M, F)	T2DM	FBG: 151.20±37.80 mg/ dL	HIIT: 56±5 AEx: 58±9	HIIT: 27.6±2.7 AEx: 28.6±2.5	11-wk, 3×/wk.; cycle ergometer; AEx: 4 min at 50% of W _{peak} , HIIT: 20 min, alternating 95% of W _{peak} and 20% of W _{peak} at 1 min each.	N	DXA—kg
									(Continues)

Obesity Reviews, 2025 11 of 23

TABLE 1 | (Continued)

Measurement method and unit	CT—cm ²	DXA—g	MRI—cm ²
Supervision	Non	ω	S
Ex program duration, frequency and type	12-wk, lifestyle intervention, C and AEx: mild hypocaloric diet (30 kcal per kg of ideal bodyweight per day) + brisk walking for 120 min/day ~ 500 kcal/day. Diet and AEx + diet: reduce usual energy intake to 1200 kcal/day + ≥ 150 min/wk. Dietary macronutrient composition: same for groups, carbohydrate: 50%-55% of energy intake, protein: 15%%-20% and fat: 20%-25%.	12-wk, 5x/wk; REx: elastic band exercise in 3 sets of 15-20 reps at 40%-50% of maximal exercise capacity, AEx: walking, 60 min at moderate intensity (3.6-5.2 METs)	24-wk, 3x/wk.; aerobic dancing, warmup: 5 min, 50 min at 60%–70% of HR _{max} , cooldown: 5 min
BMI (kg/m²)	AEx: 28.98 ± 3.73 C: 27.42 ± 2.01	AEx: 27.1±2.4 REx: 27.1±2.3 C: 27.4±2.8	AEx: 24.27±2.76 C: 24.77±3.02
Age (years)	AEx: 55.7 ± 6.97 C: 57 ± 7.88	AEx: 55.7 ± 7.0 REx: 55.7 ± 6.2 C: 57.8 ± 8.1	AEx: 65.15±5.00 C: 67.62±5.91
Glycemic marker (s)	FBG: 128.88±29.52 mg/ dL	FBG: 122.13±18.26 mg/ dL HbA1c: 7.43±0.87%	FBG: 122.76±32.4 mg/dL HbA1c: 6.97±1.09%
Participants characteristics	T2DMM	T2DM, overweight	T2DM
Sample size (male, female)	64 (F)	44 (F)	106 (M, F)
Groups	AEx, C	AEx, REx, C	AEx, C
Source, year	Koo et al., 2010 [71]	Ku et al., 2010 [72]	Li et al., 2022 [73]

(Continues)

1467789x, 0, Downloaded from https://onlinelibrary.vinley.com/doi/10.1111/obr.70031 by Infe Institute, Wiley Online Library on [16/10/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License.

TABLE 1 | (Continued)

Measurement method	and unit	DXA—kg	CT—cm ²	DXA—g	(Continues)
Me	Supervision	S	ω	Both	
Ex program duration.		16-wk, 2x/wk.; warmup: 5 min, HIIT: 60 x 8s at 77%–85% of HR _{max} , between sets recovery: active 12s at 20–30 R.P.M., MICT: 40 min at 55%–60% of HRR, cooldown: 5 min	48-wk, 3x/wk.; pneumatic resistance equipment, power training: concentric phase: as quickly as possible, and the eccentric phase: over 4s in 3 sets of 8 reps at 80% of 1-RM	16-wk, treadmill or cycle ergometer, unsupervised: outdoor/indoor: large muscle groups; AEx: 5x/wk., 30 min at 60%-70% of HR _{peak} ; HIIT ₁ : 38 min, warmup: 10 min, 3x/wk: 4 × 4 min at 85%-95% of HR _{peak} , between intervals recovery: 3 min at 50%-70% of HR _{peak} , cooldown: 3 min; HIIT ₂ : 17 min, warmup: 10 min, 3x/wk. 1 × 4 min at 85%-95% of HR _{peak} , cooldown: 3 min; HIIT ₂ : 17 min, warmup: 10 min, 3x/wk.	
	$BMI (kg/m^2)$	HIIT: 32.6±4.8 AEx: 29.7±3.39	REx: 31.3 ± 4.6 C: 31.6 ± 6.1	HIIT ₁ : 30.8 ± 6.1 HIIT ₂ : 31.96 ± 4.79 AEx: 34 ± 6.5	
	Age (years)	HIIT: 68.2 ± 5.37 AEx: 70.1 ± 6.78	REx: 67.1 ± 4.8 C: 68.9 ± 6.0	HIIT ₁ : 54±10 HIIT ₂ : 57±8 AEx: 54±9	
Glycemic	marker (s)	FBG: 162.9±36.18 mg/dL	HbA1c: 7.16±1.18%	FBG: 112±40.86 mg/dL	
Participants	characteristics	T2DM, postmenopausal, overweight, obese	T2DM, older adult, MetS	PD, MetS	
Sample size (male,	female)	16 (F)	84 (M, F)	39 (M, F)	
	Groups	HIIT,	REx, C	HIIT ₁ , HIIT ₂ , AEx	
	Source, year	Maillard et al., 2016 [74]	Mavros et al., 2013 [75]	Ramos et al., 2020 [76]	

1467789x, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/obr.70031 by Infe Institute, Wiley Online Library on [16/10/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

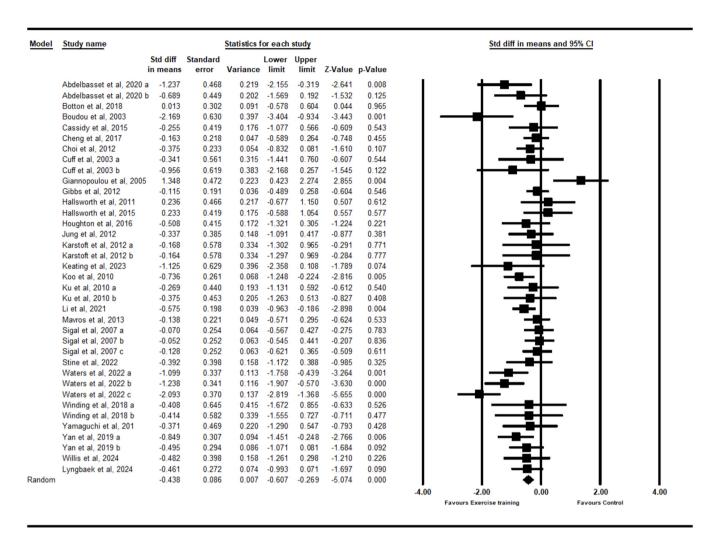
TABLE 1 | (Continued)

Measurement	and unit	CT—cm²	DXA—lbs	MRI — cm^2	MRI—mL
M	Supervision	N	ω	~	Both
Ex program duration	frequency and type	26-wk, 3x/wk; AEx: treadmills or bicycle ergometer, 15–45 min at 60%–75% of HR _{max} , REx: weight machines in 2–3 sets of maximum weight lifted of 7–9 reps. CEx: AEx+RT	20-wk, 5×/wk.; 30 min at 45%–55% of VO _{2peak}	26-wk, 3x/wk.; target: weight loss ~ 10%, 60-90 min, warmup and cooldown: 15 min; AEx: aerobic exercise equipment at ~ 65%-85% of HR _{peak} . REx: weight machines: upper and lower-body exercises in 1-3 sets of 8-12 reps at 65-85-% 1-RM. Weight management program: 1x/wk.: nutritional counseling to achieve a 500-750 kcal deficit/d and 1g protein/kg/day	6-wk, 4×/wk.; AEx: 65–50 min, walking or cycling, warmup: 5 min, 70%–75% of HR _{max} , cooldown: 10 min
	$BMI (kg/m^2)$	AEx: 35.6±10.1 REx: 34.1±9.6 CEx: 35.0±9.6 C: 35.0±9.5	AEx: 34.3 ± 4.9 C: 35.1 ± 4.9	AEx: 35.9 ± 4.4 REx: 36.7 ± 5.8 CEx: 35.8 ± 4.5 C: 36.7 ± 5.0	AEx: 34.1±5.6 C: 31.9±4.1
	Age (years)	AEx: 53.9±6.6 REx: 54.7±7.5 CEx: 53.5±7.3 C: 54.8±7.2	AEx: 52.9±11.5 C: 45.0±10.2	AEX: 70±4 REX: 70±5 CEX: 70±5 C: 70±5	AEx: 61±17 C: 63±18
Glycemic	marker (s)	HbA1c: 7.44±1.44%	FBG: 130.94±41.49 mg/ dL HbA1c: 6.3±1.2	FBG: 100.1±16.51 mg/dL 2h-BG: 154±13.18 mg/dL	FBG: 135.9±28.99 mg/dL HbA1c: 6.75±1.29%
Particinants	characteristics	T2DM	PD, NASH	PD, older adult, obese	T2DM, MASLD
Sample size	female)	251 (M, F)	28 (M, F)	160 (M, F)	26 (M)
	Groups	AEx, REx, CEx, C	AEx, C	AEx, REx, CEx, C	AEx, C
	Source, year	Sigal et al., 2007 [77]	Stine et al., 2022 [78]	Waters et al., 2022 [79]	Willis et al., 2024 [80]

TABLE 1 | (Continued)

Obesity Reviews, 2025

Measurement method and unit	DXA—kg	CT—cm²	CT—cm²
Mc Supervision	Non	Non	Ω
Ex program duration, frequency and type	11-wk, 3×/wk.: cycling, AEx: 40min, warmup: 5min, 50% of W _{peak} , HIIT: 20min, 5min at 40% of W _{peak} , 10 × 1-min intervals at 95% of W _{peak} , between intervals recovery: active 1 min at 20% of W _{peak}	4-wk, 7×/wk.; treadmill walking, 2×30-min bouts at anaerobic threshold by HR.	48-wk, 3×/wk.; REx: 50 min in 6–15 reps at 50%–60% of 1-RM. AEx: 60 min, warmup: 5–10 min, aerobic dancing with music at 60%–70% of HR _{max} . C: maintain usual habits.
$ m BMI~(kg/m^2)$	HIIT: 28.1±3.5 AEx: 27.4±3.1 C: 28±3.5	AEx: 27.9 ± 6.0 C: 27.8 ± 5.6	AEx: 23.25±3.59 REx: 24.84±3.12 C: 24.63±4.60
Age (years)	HIIT: 54±6 AEx: 58±8 C: 57±7	AEx: 50±3.1 C: 50±2.7	AEx: 64.23±5.75 REx: 62.06±8.11 C: 60:31±7:56
Glycemic marker (s)	FBG: 152.64±37.62 mg/ dL	FBG: 161.37±68.72mg/ dL HbA1c: 9.94±2.53%	FBG: 104.22±10.62 mg/ dL 2h-BG: 144.54±82.62 mg/ dL HbA1c: 5.94±0.35%
Participants characteristics	T2DM	PD, Obese	PD
Sample size (male, female)	32 (M, F)	AEx, C 19 (M, F)	105 (M, F)
Groups	HIIT,	AEx, C	AEx, C
Source, year	Winding et al., 2018 [81]	Yamaguchi et al., 2011 [82]	Yan et al., 2019 [84]


Abbreviations: 1H-MRS, proton magnetic resonance spectroscopy; 1-RM, one repetition maximum; 2h-BG, 2 hour blood glucose; AEx, aerobic exercise training; C, control; CT, computed tomography; DXA, dual energy x-ray absorptiometry; F, female; FBG, fasting blood glucose; HbA1c, glycated hemoglobin; HIIT, HIGH INTERVAL TRAINING; HR_{max}, heart rate maximum; HRR, heart rate reserve; M, male; MET, metabolic equivalent; MetS, metabolic syndrome; MICT, moderate intensity continuous training; MRI, magnetic resonance imaging; MUFA, monounsaturated fatty acids; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; PD, prediabetes; PUFA, polyunsaturated fat; R.P.M., revolution per minute; reps, repetitions; REx, resistance exercise training; RIR, repetitions in reserve; RPE, rate of perceived exertion; SAFA, saturated fatty acid; T2DM, type 2 diabetes mellitus; USG, ultrasound sonography; W, watt; W_{peak}, peak power output.

1467789x, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/obr.70031 by loffe Institute, Wiley Online Library on [16/10/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rems-ad-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Cerative Commons Licenses.

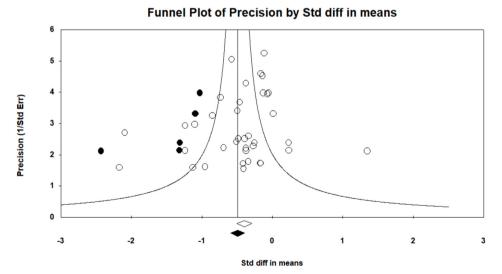
15 of 23

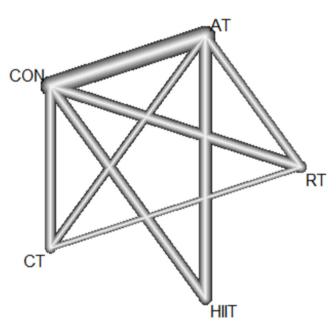
exercise training, including aerobic training, resistance training, combined aerobic and resistance training, and HIIT, were used in the interventions. The details of participant and intervention

characteristics are presented in Table 1. The overall quality of included studies was summarized in supplementary Table 2, which reported that PEDro scale scores ranged from 5 to 9.

Meta Analysis

FIGURE 2 | Forest plot of the effects of exercise training versus CON on visceral fat. Data are reported as SMD. SMD: standardized mean difference.




FIGURE 3 | Funnel plots of the meta-analyses of the effects of exercise training on visceral fat.

3.3 | Meta-Analysis

Overall, 37 intervention arms were included in the metaanalysis. Compared with controls, exercise training demonstrated a significant reduction in VAT (-0.43, p=0.001)(Figure 2). The I^2 statistic revealed a high degree of heterogeneity among the included studies ($I^2=54.80\%, p=0.001$). In addition, the visual interpretation of funnel plots suggested publication bias, which was not confirmed by the Egger's test (p=0.23) (Figure 3). The trim and fill method identified five missing studies from the left side of the funnel plot. After accounting for the missing studies, the overall effect size increased to (-0.55).

3.3.1 | Subgroup Analyses

Several subgroup analyses were performed with results showing that when compared with a control group, VAT was reduced in both middle-aged (-0.34, $p\!=\!0.001$) and older adults (-0.54, $p\!=\!0.001$), in adults with prediabetes (-0.71, $p\!=\!0.001$) and T2DM (-0.28, $p\!=\!0.001$), with (-0.43, $p\!=\!0.002$) or without

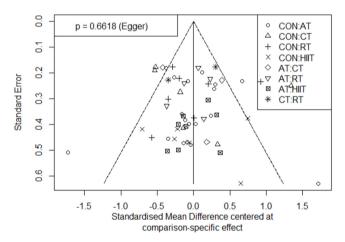


FIGURE 4 | Network geometric map of studies investigating the effects of exercise training on visceral fat.

obesity (-0.46 [95% CI -0.62 to -0.29], p = 0.001), and following short-term (-0.37, p = 0.009) and longer-term (-0.49, p = 0.001) intervention duration (supplementary Table 3).

3.4 | Network Meta-Analysis

Network geometry for visceral fat is displayed in Figure 4. Thirtythree studies involving 54 pairwise comparisons, 5 treatment arms, and 10 study designs were eligible for NMA. Compared with a control group, combined training (-0.63, p=0.001), HIIT (-0.53, p = 0.001), and aerobic training (-0.38, p = 0.001) were effective for reducing VAT, but resistance training was not (-0.25, p=0.08) (Figure 5, supplementary Table 4). In addition, the P score-based ranking of interventions is shown in Figure 5. The highest ranking was for combined training (0.89), followed by HIIT (0.76), aerobic training (0.52), and resistance training (0.32) (Figure 5). The results of heterogeneity and inconsistency tests are summarized in supplementary Table 3 and demonstrated considerable heterogeneity with $I^2 = 55.2\%$ (36.0%; 68.6%) (Q statistics in supplementary Table 5). Nevertheless, the node splitting analysis results, which were conducted to compare direct and indirect evidence, demonstrated no significant inconsistency between the direct and indirect estimates (supplementary Table 6). In addition, Egger's test revealed no significant publication bias in the network meta-analysis (p = 0.66) (Figure 6).

FIGURE 6 | Funnel plots of the network meta-analyses of the effects of exercise training on visceral fat.

Treatment	Comparison: other vs 'CON' (Random Effects Model)	SMD	95%-CI	P-score
CT HIIT AT RT CON	-0.5 0 0.5	-0.531 -0.386	[-0.954; -0.305] [-0.865; -0.197] [-0.591; -0.180] [-0.541; 0.035]	0.89 0.76 0.52 0.32 0.01
	SMD			

FIGURE 5 | Forest plot of the network meta-analyses of the effects of exercise training on visceral fat.

Obesity Reviews, 2025 17 of 23

4 | Discussion

In this systematic review with pairwise and network metaanalyses, we provide strong evidence regarding the advantageous effects of four exercise types on VAT in patients with prediabetes and T2DM. When compared with a control group, combined aerobic and resistance training, aerobic training, and HIIT, but not resistance training, resulted in larger reductions in visceral fat in both patient groups, irrespective of age, health status, BMI, or duration of intervention. This important outcome provides healthcare professionals and public health policymakers with clear evidence of a noninvasive, nonpharmacological, and cost-effective clinical strategy for supporting patients with impaired metabolic health [85].

Reducing visceral fat in patients with prediabetes and T2DM has significant metabolic effects [86]. Regular exercise is an effective lifestyle intervention for reducing VAT among patients with metabolic dysfunction [9-12] and reducing their risk of cardiovascular disease morbidity and mortality [87]. This process improves insulin signaling, inflammation, mitochondrial function, oxidative stress, lipid metabolism, adipokine regulation, cortisol and the hypothalamic-pituitary-adrenal axis, insulin and glucagon, and incretin hormone activity, which are all driven by molecular and hormonal mechanisms [86]. Collectively, these adaptations improve glucose homeostasis, reduce cardiometabolic risk, and delay disease progression. Consequently, the focal point of diabetes management is the targeting of visceral fat through structured lifestyle interventions or pharmacotherapy [88]. Our findings indicate that combined training, HIIT, and aerobic training facilitate reductions in VAT, which is commonly associated with low-grade chronic inflammation in patients with prediabetes and T2DM who have BMIs ranging from 25 to 40 kg m². The present outcomes align with other systematic reviews and meta-analyses investigating the effects of different forms of exercise on VAT in various populations with metabolic health dysregulation [9, 12, 18, 22, 30-33].

Combining aerobic and resistance training has been widely reported as the most effective exercise strategy for improving cardiometabolic health-related indicators [25, 34], including body composition and inflammatory markers [24, 89-92]. The present network meta-analysis showed that combined training may be the best exercise strategy for reducing VAT in individuals with prediabetes and T2DM. The combination of resistance training with aerobic exercise has been established as an effective approach for enhancing muscular fitness and bone mass, while aerobic exercise appears to be an effective strategy for reducing VAT [9, 93]. Furthermore, numerous meta-analytical studies have reported that combined training may be the optimal form of exercise for improving chronic low-grade inflammation [91, 93, 94]. Hence, combined training is recommended for cardiometabolic health improvements, including VAT reduction in populations with glucose metabolism derangements.

HIIT appears to be the second-best exercise type for reducing VAT in patients with prediabetes and T2DM. This vigorous and time-efficient exercise strategy has been widely reported to improve body composition, liver fat, chronic inflammation, glycemic markers, and cardiovascular disease risk factors in people with metabolic health dysfunction [25, 27, 95–102]. Vigorous

intermittent exercise can increase the secretion of cytokines and myokines, whereas moderate-intensity continuous aerobic exercise does not [9]. This may be the mechanism by which HIIT reduces VAT, as interleukin 6 and other adipo-myokines exert favorable effects on metabolism [103–105]. HIIT seems to augment basal metabolic rate and enhance postexercise oxygen consumption more than moderate-intensity continuous aerobic exercise in participants with a high BMI, promoting beneficial changes in VAT [106–108].

The P-score ranking showed that aerobic exercise ranks third, suggesting that aerobic exercise may be the least effective training modality for reducing VAT in patients with prediabetes and T2DM. Nevertheless, substantial evidence demonstrates the positive impact of aerobic exercise on visceral adiposity in populations who are overweight or obese and at high risk of impaired glucose control [9, 28, 31]. Interestingly, a previous meta-analysis found a minimal visceral fat reduction by various aerobic exercise interventions using different training parameters in participants with overweight and obesity [28]. In our study, aerobic exercise interventions were characterized by moderate-intensity protocols and not high-intensity stimulation used in HIIT interventions. This difference may play a key role in activating the molecular and hormonal mechanisms behind visceral fat reduction, even without clinically significant weight loss [28, 109]. Taken together, the present results indicate that vigorous-intensity aerobic exercise may be superior to moderate-intensity in reducing VAT. However, intensity is not the only training parameter affecting the efficacy of aerobic exercise on visceral fat, as volume also plays a key role, because the dose-response relationship between aerobic exercise and VAT reduction occurs in people with excess adiposity but without obesity-related illness [109].

Although resistance training can improve numerous cardiometabolic health-related indicators in populations with prediabetes and T2DM [25, 87], the present results do not confirm its efficacy on the VAT reduction as a standalone exercise. This outcome corroborates previous meta-analyses, showing that muscle-strengthening should be supplemented by some forms of aerobic-based activities to reduce visceral fat in participants with overweight or obesity [28, 31, 32]. However, this finding does not agree with other meta-analyses investigating the influence of resistance training on VAT in individuals with overweight or obesity, but without prediabetes or T2DM [9, 12, 33]. It is worth mentioning that in the meta-analysis by Chen et al. [9], resistance training had a relatively small overall effect and was the least effective form of exercise compared to aerobic training, combined training, and HIIT. Furthermore, the literature on resistance training protocols reveals a considerable diversity in the prescribed training parameters, including frequency, intensity, and duration, that could influence the outcomes of visceral fat.

4.1 | Future Directions and Clinical Implications

The present findings support clinicians, practitioners, and the public health authorities responsible for formulating and implementing policy with robust data of a nonintrusive, nonpharmaceutical, and cost-effective approach for supporting patients with prediabetes and T2DM. Interestingly, different exercise

interventions, such as combined aerobic and resistance training, aerobic training, or HIIT, can be incorporated into a patients' management plan in healthcare settings as a feasible and lowrisk clinical strategy for reducing visceral fat in these populations. However, future clinical trials should focus on HIIT-type, resistance-based training protocols [110] or concurrent HIIT and resistance training, aiming to identify whether this popular exercise approach [16] elicits positive alterations in VAT not only in individuals with excess body weight and adiposity [9] but also in those with prediabetes and T2DM.

4.2 | Limitations

The current meta-analysis has several limitations that should be acknowledged. Specifically, limitations include the fact that we did not report other anthropometric, body composition, and chronic inflammatory variables to investigate whether the effects of various types of exercise on these outcome measures were consistent with the effects on VAT, as these were consistently unavailable. Second, the present review aimed to investigate the exclusive role of different forms of exercise in visceral fat reduction. Thus, combined exercise and diet interventions were not included, and therefore, the impact of diet was not considered. Future meta-analyses are suggested to explore the efficacy of various exercise types combined with dietary strategies. Finally, the dose–response effects of different forms of exercise were not examined because of the limited number of original studies, which did not allow for valid subgroup analyses.

5 | Conclusions

The present systematic review with pairwise and network meta-analyses provides evidence that various exercise types, including combined aerobic and resistance training, HIIT, and aerobic training, but not resistance training, can reduce VAT in patients with prediabetes and T2DM. The highest ranking for VAT reduction was reported for combined training, followed by HIIT, and aerobic exercise training. This evidence provides a foundation for clinicians and practitioners to prescribe a range of exercise interventions for patients with prediabetes and T2DM, for whom abdominal adiposity is a common characteristic, resulting in insulin resistance due to low-grade chronic inflammation.

Author Contributions

M.Kh., S.F., M.E.S., A.B., and S.K.R. conceptualized and designed the protocol. M.Kh., S.F., and F.D. carried out the screenings and reviews, and the analysis of the articles. M.Kh. and A.B. drafted the manuscript, and M.E.S., S.K.R., M.Kh., and A.B. revised the manuscript. All authors read and approved the final manuscript.

Acknowledgments

This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

All data generated or analyzed during this study is included in this published article.

References

- 1. S. N. Bhupathiraju and F. B. Hu, "Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications," *Circulation Research* 118, no. 11 (2016): 1723–1735.
- 2. J.-J. Liu, S. Liu, J. Wang, et al., "Risk of Incident Heart Failure in Individuals With Early-Onset Type 2 Diabetes," *Journal of Clinical Endocrinology & Metabolism* 107, no. 1 (2022): e178–e187.
- 3. K. J. Moore and R. Shah, "Introduction to the Obesity, Metabolic Syndrome, and CVD Compendium," *Circulation Research* 126, no. 11 (2020): 1475–1476.
- 4. T. Karlsson, M. Rask-Andersen, G. Pan, et al., "Contribution of Genetics to Visceral Adiposity and Its Relation to Cardiovascular and Metabolic Disease," *Nature Medicine* 25, no. 9 (2019): 1390–1395.
- 5. H. Kwon, D. Kim, and J. S. Kim, "Body Fat Distribution and the Risk of Incident Metabolic Syndrome: A Longitudinal Cohort Study," *Scientific Reports* 7, no. 1 (2017): 10955.
- 6. A. Koster, R. A. Murphy, G. Eiriksdottir, et al., "Fat Distribution and Mortality: the AGES-Reykjavik Study," *Obesity (Silver Spring)* 23, no. 4 (2015): 893–897.
- 7. R. J. Verheggen, M. F. Maessen, D. J. Green, A. R. Hermus, M. T. Hopman, and D. H. Thijssen, "A Systematic Review and Meta-Analysis on the Effects of Exercise Training Versus Hypocaloric Diet: Distinct Effects on Body Weight and Visceral Adipose Tissue," *Obesity Reviews* 17, no. 8 (2016): 664–690.
- 8. M. Tremmel, U. G. Gerdtham, P. Nilsson, and S. Saha, "Economic Burden of Obesity: A Systematic Literature Review," *International Journal of Environmental Research and Public Health* 14, no. 4 (2017): 435.
- 9. X. Chen, H. He, K. Xie, L. Zhang, and C. Cao, "Effects of Various Exercise Types on Visceral Adipose Tissue in Individuals With Overweight and Obesity: A Systematic Review and Network Meta-Analysis of 84 Randomized Controlled Trials," *Obesity Reviews* 25, no. 3 (2024): e13666.
- 10. P. Farzanegi, A. Dana, Z. Ebrahimpoor, M. Asadi, and M. A. Azarbayjani, "Mechanisms of Beneficial Effects of Exercise Training on Non-Alcoholic Fatty Liver Disease (NAFLD): Roles of Oxidative Stress and Inflammation," *European Journal of Sport Science* 19, no. 7 (2019): 994–1003.
- 11. P. T. Katzmarzyk, T. S. Church, I. Janssen, R. Ross, and S. N. Blair, "Metabolic Syndrome, Obesity, and Mortality: Impact of Cardiorespiratory Fitness," *Diabetes Care* 28, no. 2 (2005): 391–397.
- 12. M. Khalafi, A. Malandish, S. K. Rosenkranz, and A. A. Ravasi, "Effect of Resistance Training With and Without Caloric Restriction on Visceral Fat: A Systemic Review and Meta-Analysis," *Obesity Reviews* 22, no. 9 (2021): e13275.
- 13. F. Recchia, C. K. Leung, A. P. Yu, et al., "Dose-Response Effects of Exercise and Caloric Restriction on Visceral Adiposity in Overweight and Obese Adults: A Systematic Review and Meta-Analysis of Randomised Controlled Trials," *British Journal of Sports Medicine* 57, no. 16 (2023): 1035–1041.
- 14. R. H. Coker, R. H. Williams, P. M. Kortebein, D. H. Sullivan, and W. J. Evans, "Influence of Exercise Intensity on Abdominal Fat and Adiponectin in Elderly Adults," *Metabolic Syndrome and Related Disorders* 7, no. 4 (2009): 363–368.
- 15. T. Miller, S. Mull, A. A. Aragon, J. Krieger, and B. J. Schoenfeld, "Resistance Training Combined With Diet Decreases Body Fat While Preserving Lean Mass Independent of Resting Metabolic Rate: A

Obesity Reviews, 2025 19 of 23

- Randomized Trial," *International Journal of Sport Nutrition and Exercise Metabolism* 28, no. 1 (2018): 46–54.
- 16. A. M. Newsome, R. Reed, J. Sansone, A. Batrakoulis, C. McAvoy, and M. W. Parrott, "2024 ACSM Worldwide Fitness Trends: Future Directions of the Health and Fitness Industry," *ACSM's Health & Fitness Journal* 28, no. 1 (2024): 14–26.
- 17. S. Rao, A. Pandey, S. Garg, et al., "Effect of Exercise and Pharmacological Interventions on Visceral Adiposity: A Systematic Review and Meta-Analysis of Long-term Randomized Controlled Trials," *Mayo Clinic Proceedings* 94, no. 2 (2019): 211–224.
- 18. A. Sabag, K. L. Way, S. E. Keating, et al., "Exercise and Ectopic Fat in Type 2 Diabetes: A Systematic Review and Meta-Analysis," *Diabetes & Metabolism* 43, no. 3 (2017): 195–210.
- 19. E. T. Poon, W. Wongpipit, H. Y. Li, et al., "High-Intensity Interval Training for Cardiometabolic Health in Adults With Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomised Controlled Trials," *British Journal of Sports Medicine* 58 (2024): 1267–1284.
- 20. R. Wang, X. Zhang, H. Ren, et al., "Effects of Different Exercise Types on Visceral Fat in Young Individuals With Obesity Aged 6-24 Years Old: A Systematic Review and Meta-Analysis," *Frontiers in Physiology* 13 (2022): 987804.
- 21. H. Wang, R. Cheng, L. Xie, and F. Hu, "Comparative Efficacy of Exercise Training Modes on Systemic Metabolic Health in Adults With Overweight and Obesity: A Network Meta-Analysis of Randomized Controlled Trials," *Frontiers in Endocrinology* 14 (2023): 1294362.
- 22. F. Kazeminasab, A. Bahrami Kerchi, N. Behzadnejad, et al., "The Effects of Exercise Interventions on Ectopic and Subcutaneous Fat in Patients With Type 2 Diabetes Mellitus: A Systematic Review, Meta-Analysis, and Meta-Regression," *Journal of Clinical Medicine* 13, no. 17 (2024): 5005.
- 23. S. B. Al-Mhanna, A. Batrakoulis, M. Mohamed, et al., "Home-Based Circuit Training Improves Blood Lipid Profile, Liver Function, Musculoskeletal Fitness, and Health-Related Quality of Life in Overweight/Obese Older Adult Patients With Knee Osteoarthritis and Type 2 Diabetes: A Randomized Controlled Trial During the COVID-19 Pandemic," *BMC Sports Science, Medicine and Rehabilitation* 16, no. 1 (2024): 125.
- 24. S. B. Al-Mhanna, A. Batrakoulis, W. S. Ghazali, et al., "Effects of Combined Aerobic and Resistance Training on Glycemic Control, Blood Pressure, Inflammation, Cardiorespiratory Fitness and Quality of Life in Patients With Type 2 Diabetes and Overweight/Obesity: A Systematic Review and Meta-Analysis," *PeerJ* 12 (2024): e17525.
- 25. A. Batrakoulis, A. Z. Jamurtas, G. S. Metsios, et al., "Comparative Efficacy of 5 Exercise Types on Cardiometabolic Health in Overweight and Obese Adults: A Systematic Review and Network Meta-Analysis of 81 Randomized Controlled Trials," *Circulation. Cardiovascular Quality and Outcomes* 15, no. 6 (2022): e008243.
- 26. S. B. Al-Mhanna, S. Rocha-Rodriguesc, M. Mohamed, et al., "Effects of Combined Aerobic Exercise and Diet on Cardiometabolic Health in Patients With Obesity and Type 2 Diabetes: A Systematic Review and Meta-Analysis," *BMC Sports Science, Medicine and Rehabilitation* 15, no. 1 (2023): 165.
- 27. A. Batrakoulis, A. Z. Jamurtas, and I. G. Fatouros, "High-Intensity Interval Training in Metabolic Diseases: Physiological Adaptations," *ACSM's Health & Fitness Journal* 25, no. 5 (2021): 54–59.
- 28. S. E. Keating, D. A. Hackett, H. M. Parker, et al., "Effect of Aerobic Exercise Training Dose on Liver Fat and Visceral Adiposity," *Journal of Hepatology* 63, no. 1 (2015): 174–182.
- 29. S. E. Keating, D. A. Hackett, H. M. Parker, et al., "Effect of Resistance Training on Liver Fat and Visceral Adiposity in Adults With Obesity: A Randomized Controlled Trial," *Hepatology Research* 47, no. 7 (2017): 622–631.

- 30. D. Vissers, W. Hens, J. Taeymans, J. P. Baeyens, J. Poortmans, and L. van Gaal, "The Effect of Exercise on Visceral Adipose Tissue in Overweight Adults: A Systematic Review and Meta-Analysis," *PLoS ONE* 8, no. 2 (2013): e56415.
- 31. I. Ismail, S. E. Keating, M. K. Baker, and N. A. Johnson, "A Systematic Review and Meta-Analysis of the Effect of aerobic vs. Resistance exercise training on Visceral Fat," *Obesity Reviews* 13, no. 1 (2012): 68–91.
- 32. Y. H. Chang, H. Y. Yang, and S. C. Shun, "Effect of Exercise Intervention Dosage on Reducing Visceral Adipose Tissue: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials," *International Journal of Obesity* 45, no. 5 (2021): 982–997.
- 33. H. C. Jung, S. Jeon, N. H. Lee, K. Kim, M. Kang, and S. Lee, "Effects of Exercise Intervention on Visceral Fat in Obese Children and Adolescents," *Journal of Sports Medicine and Physical Fitness* 59, no. 6 (2019): 1045–1057.
- 34. S. R. Colberg, R. J. Sigal, J. E. Yardley, et al., "Physical Activity/ Exercise and Diabetes: A Position Statement of the American Diabetes Association," *Diabetes Care* 39, no. 11 (2016): 2065–2079.
- 35. M. J. Page, J. E. McKenzie, P. M. Bossuyt, et al., "The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews," *BMJ (Clinical research ed.)* 372 (2021): n71.
- 36. J. Higgins, Cochrane Handbook for Systematic Reviews of Interventions (Cochrane Collaboration and John Wiley & Sons Ltd, 2008).
- 37. J. Cohen, "Weighted Kappa: Nominal Scale Agreement Provision for Scaled Disagreement or Partial Credit," *Psychological Bulletin* 70, no. 4 (1968): 213–220.
- 38. World Health Organization, "Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation," (2006).
- 39. M. R. Rooney, M. Fang, K. Ogurtsova, et al., "Global Prevalence of Prediabetes," *Diabetes Care* 46, no. 7 (2023): 1388–1394.
- 40. N. A. ElSayed, G. Aleppo, V. R. Aroda, et al., "2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023," *Diabetes Care* 46, no. Supplement_1 (2023): S19–S40.
- 41. F. Maillard, B. Pereira, and N. Boisseau, "Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis," *Sports Medicine* 48, no. 2 (2018): 269–288.
- 42. A. Shuster, M. Patlas, J. H. Pinthus, and M. Mourtzakis, "The Clinical Importance of Visceral Adiposity: A Critical Review of Methods for Visceral Adipose Tissue Analysis," *British Journal of Radiology* 85, no. 1009 (2012): 1–10.
- 43. L. M. Browning, O. Mugridge, A. K. Dixon, S. W. Aitken, A. M. Prentice, and S. A. Jebb, "Measuring Abdominal Adipose Tissue: Comparison of Simpler Methods With MRI," *Obesity Facts* 4, no. 1 (2011): 9–15.
- 44. X. Wan, W. Wang, J. Liu, and T. Tong, "Estimating the Sample Mean and Standard Deviation From the Sample Size, Median, Range and/or Interquartile Range," *BMC Medical Research Methodology* 14, no. 1 (2014): 135.
- 45. S. P. Hozo, B. Djulbegovic, and I. Hozo, "Estimating the Mean and Variance From the Median, Range, and the Size of a Sample," *BMC Medical Research Methodology* 5, no. 1 (2005): 13.
- 46. J. P. T. Higgins, J. Thomas, J. Chandler, et al., Cochrane Handbook for Systematic Reviews of Interventions (John Wiley & Sons, 2019).
- 47. N. A. De Morton, "The PEDro Scale Is a Valid Measure of the Methodological Quality of Clinical Trials: A Demographic Study," *Australian Journal of Physiotherapy* 55, no. 2 (2009): 129–133.
- 48. M. Egger, G. D. Smith, M. Schneider, and C. Minder, "Bias in Meta-Analysis Detected by a Simple, Graphical Test," *BMJ* 315, no. 7109 (1997): 629–634.

- 49. S. Dias, N. J. Welton, D. M. Caldwell, and A. E. Ades, "Checking Consistency in Mixed Treatment Comparison Meta-Analysis," *Statistics in Medicine* 29, no. 7–8 (2010): 932–944.
- 50. G. van Valkenhoef, S. Dias, A. E. Ades, and N. J. Welton, "Automated Generation of Node-Splitting Models for Assessment of Inconsistency in Network Meta-Analysis," *Research Synthesis Methods* 7, no. 1 (2016): 80–93.
- 51. M. P. Lyngbæk, M. P. P. Lyngbæk, G. E. Legaard, et al., "Effects of Caloric Restriction With Different Doses of Exercise on Fat Loss in People Living With Type 2 Diabetes: A Secondary Analysis of the DOSE-EX Randomized Clinical Trial," *Journal of Sport and Health Science* 14 (2025): 100999.
- 52. W. K. Abdelbasset, S. A. Tantawy, D. M. Kamel, et al., "Effects of High-Intensity Interval and Moderate-Intensity Continuous Aerobic Exercise on Diabetic Obese Patients With Nonalcoholic Fatty Liver Disease: A Comparative Randomized Controlled Trial," *Medicine* 99, no. 10 (2020): E19471.
- 53. T. Baasch-Skytte, C. T. Lemgart, M. H. Oehlenschläger, et al., "Efficacy of 10-20-30 Training Versus Moderate-Intensity Continuous Training on HbA1c, Body Composition and Maximum Oxygen Uptake in Male Patients With Type 2 Diabetes: A Randomized Controlled Trial," *Diabetes, Obesity and Metabolism* 22, no. 5 (2020): 767–778.
- 54. E. Bacchi, C. Negri, M. E. Zanolin, et al., "Metabolic Effects of Aerobic Training and Resistance Training in Type 2 Diabetic Subjects: A Randomized Controlled Trial (the RAED2 Study)," *Diabetes Care* 35, no. 4 (2012): 676–682.
- 55. C. E. Botton, D. Umpierre, A. Rech, et al., "Effects of Resistance Training on Neuromuscular Parameters in Elderly With Type 2 Diabetes Mellitus: A Randomized Clinical Trial," *Experimental Gerontology* 113 (2018): 141–149.
- 56. P. Boudou, E. Sobngwi, F. Mauvais-Jarvis, P. Vexiau, and J. F. Gautier, "Absence of Exercise-Induced Variations in Adiponectin Levels Despite Decreased Abdominal Adiposity and Improved Insulin Sensitivity in Type 2 Diabetic Men," *European Journal of Endocrinology* 149, no. 5 (2003): 421–424.
- 57. S. Cassidy, C. Thoma, K. Hallsworth, et al., "High Intensity Intermittent Exercise Improves Cardiac Structure and Function and Reduces Liver Fat in Patients With Type 2 Diabetes: A Randomised Controlled Trial," *Diabetologia* 59, no. 1 (2016): 56–66.
- 58. S. L. Cheng, S. Cheng, J. Ge, et al., "Effect of Aerobic Exercise and Diet on Liver Fat in Pre-Diabetic Patients With Non-Alcoholic-Fatty-Liver-Disease: A Randomized Controlled Trial," *Scientific Reports* 7 (2017): 15952.
- 59. K. M. Choi, K. A. Han, H. J. Ahn, et al., "Effects of Exercise on sRAGE Levels and Cardiometabolic Risk Factors in Patients With Type 2 Diabetes: A Randomized Controlled Trial," *Journal of Clinical Endocrinology and Metabolism* 97, no. 10 (2012): 3751–3758.
- 60. D. J. Cuff, G. S. Meneilly, A. Martin, A. Ignaszewski, H. D. Tildesley, and J. J. Frohlich, "Effective Exercise Modality to Reduce Insulin Resistance in Women With Type 2 Diabetes," *Diabetes Care* 26, no. 11 (2003): 2977–2982.
- 61. I. Giannopoulou, B. Fernhall, R. Carhart, et al., "Effects of Diet and/ or Exercise on the Adipocytokine and Inflammatory Cytokine Levels of Postmenopausal Women With Type 2 Diabetes," *Metabolism, Clinical and Experimental* 54, no. 7 (2005): 866–875.
- 62. B. B. Gibbs, B. Barone Gibbs, D. A. Dobrosielski, S. Bonekamp, K. J. Stewart, and J. M. Clark, "A Randomized Trial of Exercise for Blood Pressure Reduction in Type 2 Diabetes: Effect on Flow-Mediated Dilation and Circulating Biomarkers of Endothelial Function," *Atherosclerosis* 224, no. 2 (2012): 446–453.
- 63. K. Hallsworth, G. Fattakhova, K. G. Hollingsworth, et al., "Resistance Exercise Reduces Liver Fat and Its Mediators in

- Non-Alcoholic Fatty Liver Disease Independent of Weight Loss," *Gut* 60, no. 9 (2011): 1278–1283.
- 64. K. Hallsworth, C. Thoma, K. G. Hollingsworth, et al., "Modified High-Intensity Interval Training Reduces Liver Fat and Improves Cardiac Function in Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Trial," *Clinical Science* 129, no. 12 (2015): 1097–1105.
- 65. S. M. Honkala, K. K. Motiani, J. J. Eskelinen, et al., "Exercise Training Reduces Intrathoracic Fat Regardless of Defective Glucose Tolerance," *Medicine and Science in Sports and Exercise* 49, no. 7 (2017): 1313–1322.
- 66. D. Houghton, C. Thoma, K. Hallsworth, et al., "Exercise Reduces Liver Lipids and Visceral Adiposity in Patients With Nonalcoholic Steatohepatitis in a Randomized Controlled Trial," *Clinical Gastroenterology and Hepatology* 15, no. 1 (2017): 96–102.e3.
- 67. J. Y. Jung, K. A. Han, H. J. Ahn, et al., "Effects of Aerobic Exercise Intensity on Abdominal and Thigh Adipose Tissue and Skeletal Muscle Attenuation in Overweight Women With Type 2 Diabetes Mellitus," *Diabetes and Metabolism Journal* 36, no. 3 (2012): 211–221.
- 68. K. Karstoft, K. Winding, S. H. Knudsen, et al., "The Effects of Free-Living Interval Walking Training on Glycemic Control, Body Composition, and Physical Fitness in Type 2 Diabetic Patients A randomized, controlled trial," *Diabetes Care* 36, no. 2 (2013): 228–236.
- 69. S. E. Keating, I. Croci, M. P. Wallen, et al., "High-Intensity Interval Training Is Safe, Feasible and Efficacious in Nonalcoholic Steatohepatitis: A Randomized Controlled Trial," *Digestive Diseases and Sciences* 68, no. 5 (2023): 2123–2139.
- 70. H. C. E. Koh, N. Ørtenblad, K. M. Winding, Y. Hellsten, S. P. Mortensen, and J. Nielsen, "High-Intensity Interval, but Not Endurance, Training Induces Muscle Fiber Type-Specific Subsarcolemmal Lipid Droplet Size Reduction in Type 2 Diabetic Patients," *American Journal of Physiology Endocrinology and Metabolism* 315, no. 5 (2018): E872–E884.
- 71. B. K. Koo, K. A. Han, H. J. Ahn, J. Y. Jung, H. C. Kim, and K. W. Min, "The Effects of Total Energy Expenditure From All Levels of Physical Activity vs. Physical Activity Energy Expenditure From moderate-to-Vigorous Activity on Visceral Fat and Insulin Sensitivity in Obese Type 2 Diabetic Women," *Diabetic Medicine* 27, no. 9 (2010): 1088–1092.
- 72. Y. H. Ku, K. A. Han, H. Ahn, et al., "Resistance Exercise Did Not Alter Intramuscular Adipose Tissue but Reduced Retinol-Binding Protein-4 Concentration in Individuals With Type 2 Diabetes Mellitus," *Journal of International Medical Research* 38, no. 3 (2010): 782–791.
- 73. M. Li, Q. Zheng, J. D. Miller, et al., "Aerobic Training Reduces Pancreatic Fat Content and Improves β -Cell Function: A Randomized Controlled Trial Using IDEAL-IQ Magnetic Resonance Imaging," Diabetes/Metabolism Research and Reviews 38, no. 4 (2022): e3516.
- 74. F. Maillard, S. Rousset, B. Pereira, et al., "High-Intensity Interval Training Reduces Abdominal Fat Mass in Postmenopausal Women With Type 2 Diabetes," *Diabetes & Metabolism* 42, no. 6 (2016): 433–441.
- 75. Y. Mavros, S. Kay, K. A. Anderberg, et al., "Changes in Insulin Resistance and HbA1c Are Related to Exercise-Mediated Changes in Body Composition in Older Adults With Type 2 Diabetes," *Diabetes Care* 36, no. 8 (2013): 2372–2379.
- 76. J. S. Ramos, L. C. Dalleck, R. C. Stennett, et al., "Effect of Different Volumes of Interval Training and Continuous Exercise on Interleukin-22 in Adults With Metabolic Syndrome: A Randomized Trial," *Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy* 13 (2020): 2443–2453.
- 77. R. J. Sigal, G. P. Kenny, N. G. Boulé, et al., "Effects of Aerobic Training, Resistance Training, or Both on Glycemic Control in Type 2 Diabetes: A Randomized Trial," *Annals of Internal Medicine* 147, no. 6 (2007): 357–369.
- 78. J. G. Stine, I. R. Schreibman, A. J. Faust, et al., "NASHFit: A Randomized Controlled Trial of an Exercise Training Program to

Obesity Reviews, 2025 21 of 23

- Reduce Clotting Risk in Patients With NASH," *Hepatology* 76, no. 1 (2022): 172–185.
- 79. D. L. Waters, L. Aguirre, B. Gurney, et al., "Effect of Aerobic or Resistance Exercise, or Both, on Intermuscular and Visceral Fat and Physical and Metabolic Function in Older Adults With Obesity While Dieting," *Journals of Gerontology Series A, Biological Sciences and Medical Sciences* 77, no. 1 (2022): 131–139.
- 80. S. A. Willis, S. Malaikah, S. J. Bawden, et al., "Greater Hepatic Lipid Saturation Is Associated With Impaired Glycaemic Regulation in Men With Metabolic Dysfunction-Associated Steatotic Liver Disease but Is Not Altered by 6 Weeks of Exercise Training," *Diabetes, Obesity & Metabolism* 26 (2024): 4030–4042.
- 81. K. M. Winding, G. W. Munch, U. W. Iepsen, G. van Hall, B. K. Pedersen, and S. P. Mortensen, "The Effect on Glycaemic Control of Low-Volume high-Intensity Interval Training Versus Endurance Training in Individuals With Type 2 Diabetes," *Diabetes, Obesity and Metabolism* 20, no. 5 (2018): 1131–1139.
- 82. T. Yamaguchi, A. Saiki, K. Endo, Y. Miyashita, and K. Shirai, "Effect of Exercise Performed at Anaerobic Threshold on Serum Growth Hormone and Body Fat Distribution in Obese Patients With Type 2 Diabetes," *Obesity Research and Clinical Practice* 5, no. 1 (2011): e9.
- 83. R. Qi, L. Su, L. Zou, J. Yang, and S. Zheng, "Altered Gray Matter Volume and White Matter Integrity in Sensorineural Hearing Loss Patients: A VBM and TBSS Study," *Otology & Neurotology* 40, no. 6 (2019): e569–e574.
- 84. J. Yan, X. Dai, J. Feng, et al., "Effect of 12-Month Resistance Training on Changes in Abdominal Adipose Tissue and Metabolic Variables in Patients With Prediabetes: A Randomized Controlled Trial," *Journal of Diabetes Research* 2019 (2019): 1–10.
- 85. A. Batrakoulis, A. Z. Jamurtas, and I. G. Fatouros, "Exercise and Type II Diabetes Mellitus: A Brief Guide for Exercise Professionals," *Strength & Conditioning Journal* 44, no. 6 (2022): 64–72.
- 86. M. Nicze, A. Dec, M. Borówka, et al., "Molecular Mechanisms Behind Obesity and Their Potential Exploitation in Current and Future Therapy," *International Journal of Molecular Sciences* 25, no. 15 (2024): 8202
- 87. H. Momma, R. Kawakami, T. Honda, and S. S. Sawada, "Muscle-Strengthening Activities Are Associated With Lower Risk and Mortality in Major Non-Communicable Diseases: A Systematic Review and Meta-Analysis of Cohort Studies," *British Journal of Sports Medicine* 56, no. 13 (2022): 755–763.
- 88. T. Khawaja, M. Nied, A. Wilgor, and I. J. Neeland, "Impact of Visceral and Hepatic Fat on Cardiometabolic Health," *Current Cardiology Reports* 26, no. 11 (2024): 1297–1307.
- 89. S. B. Al-Mhanna, A. Batrakoulis, M. N. Norhayati, et al., "Combined Aerobic and Resistance Training Improves Body Composition, Alters Cardiometabolic Risk, and Ameliorates Cancer-Related Indicators in Breast Cancer Patients and Survivors With Overweight/Obesity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials," *Journal of Sports Science and Medicine* 23, no. 2 (2024): 366–395.
- 90. G. O'Donoghue, C. Blake, C. Cunningham, O. Lennon, and C. Perrotta, "What Exercise Prescription Is Optimal to Improve Body Composition and Cardiorespiratory Fitness in Adults Living With Obesity? A Network Meta-Analysis," *Obesity Reviews* 22, no. 2 (2021): e13137.
- 91. S. Wang, H. Zhou, C. Zhao, and H. He, "Effect of Exercise Training on Body Composition and Inflammatory Cytokine Levels in Overweight and Obese Individuals: A Systematic Review and Network Meta-Analysis," *Frontiers in Immunology* 13 (2022): 921085.
- 92. A. Garcia-Hermoso, R. Ramírez-Vélez, R. Ramírez-Campillo, M. D. Peterson, and V. Martínez-Vizcaíno, "Concurrent Aerobic Plus Resistance Exercise Versus Aerobic Exercise Alone to Improve Health Outcomes in Paediatric Obesity: A Systematic Review and

- Meta-Analysis," British Journal of Sports Medicine 52, no. 3 (2018): 161–166.
- 93. R. M. Campos, M. T. de Mello, L. Tock, et al., "Aerobic Plus Resistance Training Improves Bone Metabolism and Inflammation in Adolescents Who are Obese," *Journal of Strength and Conditioning Research* 28, no. 3 (2014): 758–766.
- 94. X. Chen, X. Sun, C. Wang, and H. He, "Effects of Exercise on Inflammatory Cytokines in Patients With Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials," *Oxidative Medicine and Cellular Longevity* 2020 (2020): 6660557.
- 95. A. Batrakoulis, A. Z. Jamurtas, K. Georgakouli, et al., "High Intensity, Circuit-Type Integrated Neuromuscular Training Alters Energy Balance and Reduces Body Mass and Fat in Obese Women: A 10-Month Training-Detraining Randomized Controlled Trial," *PLoS ONE* 13, no. 8 (2018): e0202390.
- 96. A. Batrakoulis, A. Z. Jamurtas, D. Draganidis, et al., "Hybrid Neuromuscular Training Improves Cardiometabolic Health and Alters Redox Status in Inactive Overweight and Obese Women: A Randomized Controlled Trial," *Antioxidants (Basel)* 10, no. 10 (2021): 1601.
- 97. S. Cassidy, C. Thoma, D. Houghton, and M. I. Trenell, "High-Intensity Interval Training: A Review of Its Impact on Glucose Control and Cardiometabolic Health," *Diabetologia* 60, no. 1 (2017): 7–23.
- 98. M. J. Gibala, J. P. Little, M. J. MacDonald, and J. A. Hawley, "Physiological Adaptations to Low-Volume, High-Intensity Interval Training in Health and Disease," *Journal of Physiology* 590, no. 5 (2012): 1077–1084
- 99. M. Khalafi, A. A. Ravasi, A. Malandish, and S. K. Rosenkranz, "The Impact of High-Intensity Interval Training on Postprandial Glucose and Insulin: A Systematic Review and Meta-Analysis," *Diabetes Research and Clinical Practice* 186 (2022): 109815.
- 100. M. Khalafi, M. H. Sakhaei, F. Kazeminasab, M. E. Symonds, and S. K. Rosenkranz, "The Impact of High-Intensity Interval Training on Vascular Function in Adults: A Systematic Review and Meta-Analysis," *Frontiers in Cardiovascular Medicine* 9 (2022): 1046560.
- 101. M. Khalafi and M. E. Symonds, "The Impact of High Intensity Interval Training on Liver Fat Content in Overweight or Obese Adults: A Meta-Analysis," *Physiology & Behavior* 236 (2021): 113416.
- 102. M. Khalafi, S. Mojtahedi, A. Ostovar, S. K. Rosenkranz, and M. Korivi, "High-Intensity Interval Exercise Versus Moderate-Intensity Continuous Exercise on Postprandial Glucose and Insulin Responses: A Systematic Review and Meta-Analysis," *Obesity Reviews* 23, no. 8 (2022): e13459.
- 103. A. S. Wedell-Neergaard, L. Lang Lehrskov, R. H. Christensen, et al., "Exercise-Induced Changes in Visceral Adipose Tissue Mass Are Regulated by IL-6 Signaling: A Randomized Controlled Trial," *Cell Metabolism* 29, no. 4 (2019): 844–855.e3.
- 104. T. Dunnwald, A. Melmer, H. Gatterer, et al., "Supervised Short-term High-Intensity Training on Plasma Irisin Concentrations in Type 2 Diabetic Patients," *International Journal of Sports Medicine* 40, no. 3 (2019): 158–164.
- 105. M. Khalafi and M. E. Symonds, "The Impact of High-Intensity Interval Training on Inflammatory Markers in Metabolic Disorders: A Meta-Analysis," *Scandinavian Journal of Medicine & Science in Sports* 30, no. 11 (2020): 2020–2036.
- 106. N. Chuensiri, D. Suksom, and H. Tanaka, "Effects of High-Intensity Intermittent Training on Vascular Function in Obese Preadolescent Boys," *Childhood Obesity* 14, no. 1 (2018): 41–49.
- 107. C. Meng, T. Yucheng, L. Shu, and Z. Yu, "Effects of School-Based High-Intensity Interval Training on Body Composition, Cardiorespiratory Fitness and Cardiometabolic Markers in Adolescent Boys With Obesity: A Randomized Controlled Trial," *BMC Pediatrics* 22, no. 1 (2022): 112.

108. H. Islam, L. K. Townsend, and T. J. Hazell, "Excess Postexercise Oxygen Consumption and Fat Utilization Following Submaximal Continuous and Supramaximal Interval Running," *Research Quarterly for Exercise and Sport* 89, no. 4 (2018): 450–456.

109. K. Ohkawara, S. Tanaka, M. Miyachi, K. Ishikawa-Takata, and I. Tabata, "A Dose-Response Relation Between Aerobic Exercise and Visceral Fat Reduction: Systematic Review of Clinical Trials," *International Journal of Obesity* 31, no. 12 (2007): 1786–1797.

110. A. Batrakoulis, I. G. Fatouros, A. Chatzinikolaou, et al., "Dose-Response Effects of High-Intensity Interval Neuromuscular Exercise Training on Weight Loss, Performance, Health and Quality of Life in Inactive Obese Adults: Study Rationale, Design and Methods of the DoIT Trial," *Contemporary Clinical Trials Communications* 15 (2019): 100386.

Supporting Information

Additional supporting information can be found online in the Supporting Information section. **Table S1:** Search strategy. **Table S2:** Quality assessment. **Table S3:** Summary of subgroup analyses. **Table S4:** League table reporting the comparative effects for all interventions for the visceral fat network. **Table S5:** Tests of heterogeneity (within designs) and inconsistency (between designs). **Table S6:** Node-splitting method in comparison between direct and indirect evidence of different specific intervention.

Obesity Reviews, 2025 23 of 23