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Abstract
Premature ovarian insufficiency (POI) is a highly heterogeneous reproductive disorder in both its etiology and clinical presentation. The 
epidemiological characteristics of POI suggest that its occurrence likely involves a combination of genetic and environmental factors. 
Deciphering the pathogenic mechanisms of POI is crucial for improving reproductive outcomes as well as managing the long-term 
complications associated with ovarian dysfunction. Recent studies expand the list of POI causal genes and promote the viability of genetic 
diagnosis. However, whole exome sequencing studies in large-scale POI cohorts and genome-wide association studies on the age at natural 
menopause have uncovered a complex genetic architecture underlying POI that includes monogenic and oligogenic inheritance modes, 
emphasizing the difficulties in genetic diagnosis, especially for the isolated cases. Moreover, our understanding of the physiology of ovarian 
aging has greatly benefited from recent advances in multiomics analysis, expanding our perspective on the pathogenic mechanisms and 
potential targeted therapeutic strategies for POI. In this review, we summarize the epidemiological characteristics of POI, as well as progress 
in genetic and epigenetic etiologies, and discuss advances in pharmacology and material science that will likely contribute to new 
interventions for ovarian aging. Finally, this review offers new insights into prospects for early diagnosis and treatment of POI, while 
identifying persistent challenges and potential solutions to be addressed through future research.
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ESSENTIAL POINTS

• The global average prevalence of premature ovarian 
insufficiency (POI) is 3.5%, but varies among region
al populations potentially due to genetic and environ
mental differences associated with race, geographic 
location, socioeconomic status, and education level

• Although fertility is severely impaired in patients 
with POI due to accelerated follicular loss, early rec
ognition of POI risk and obtaining mature oocytes 
from the remaining follicles can improve reproduct
ive outcomes

• Whole exome sequencing has accelerated the identifi
cation of POI causal genes, especially in processes 
from primordial germ cell development to follicle 
maturation, although genetic diagnosis remains diffi
cult due to a lack of a definitive genotype–phenotype 
relationship

• Growing evidence from increasingly large cohort 
studies suggest that POI has characteristics of oligo
genic or polygenic architectures

• Epigenetic modifications are involved in both physio
logical and pathological ovarian aging and may serve 
as potential biomarkers or therapeutic targets for POI

• Recent advances in the genetic and epigenetic etiolo
gies of POI, combined with aging- and immunity- 
related biomarkers of the ovarian microenvironment,    

together enable construction of increasingly power
ful predictive models of POI

• Standard hormone replacement therapy, in vitro fol
licle activation, stem cell transplantation, ovarian 
microenvironment remodeling, as well as improved 
techniques in fertility preservation offer both oppor
tunities and challenges for treating POI

Premature ovarian insufficiency (POI), also referred to as pri
mary ovarian insufficiency, is a reproductive disorder arising 
from exhaustion of the ovarian follicles before age 40 (1). 
The diagnostic criteria for POI, according to the guidelines 
of European Society of Human Reproduction and 
Embryology (ESHRE) (2) and National Institute for Health 
and Care Excellence (NICE) (3), include menstrual disturb
ance (such as primary amenorrhea, oligomenorrhea, or sec
ondary amenorrhea (SA) for at least 4 months) and elevated 
follicle-stimulating hormone (FSH) levels exceeding 25 IU/L 
or 30 IU/L, respectively, measured on 2 different occasions 
at least 4 weeks apart (2, 3). Moreover, clinicians also recom
mend that POI should be considered when a woman presents 
with new-onset irregular menses or amenorrhea and possibly 
vasomotor symptoms, in order to prevent delayed diagnosis 
and treatment (1).

The POI prevalence ranges from 1% to 3.7% in different 
populations, and can be affected by race, geographic location, 
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socioeconomic status, and education level (4-7). POI not only 
poses challenges to fertility but can also increase the risk of 
age-related diseases. Comprehensive investigation into its eti
ology is therefore crucial for timely recognition, reproductive 
management, and treatment of POI, as well as to reduce risk of 
long-term complications. Despite its prevalence and broad im
pacts on affected individuals and families, the pathogenesis of 
POI remains poorly understood.

The etiologies of POI are complex, and include genetic, epi
genetic, immune, and iatrogenic factors. In the last 2 decades, 
advances in high-throughput sequencing, coupled with refine
ment of the human reference genome have significantly ad
vanced our understanding of the genetic etiology of POI. At 
present, more than 100 POI causal genes have been reported. 
However, despite guidelines and reviews about POI that em
phasize the importance of genetic diagnosis (1, 2), our per
spective of the genetic landscape of POI is still incomplete. 
Restricted by the technical limitations of whole exome se
quencing (WES) for identifying variants in noncoding regions, 
along with the inability to fully and accurately recapitulate the 
impact of pathogenic variants on the establishment and deple
tion of human ovarian reserves in vitro or in animal models, 
the genetic architecture of POI remains unclear. Factors like 
incomplete penetrance of heterozygous variants, oligogenic 
modes, and gene–environment interactions further complicate 
the picture, and require further research.

Moreover, clinical diagnosis of POI is often too late for ef
fective intervention, with hormone replacement therapy 
(HRT) and assisted reproductive technologies (ARTs) serving 
as the most common options among limited interventions (1). 
However, recent advances in machine learning and artificial 
intelligence have facilitated development of predictive models 
of age at menopause, based on genome-wide association study 
(GWAS) data (8), and evaluative models of ovarian reserve, 
based on clinical data (9). Given this confluence of factors, it 
is possible that increased identification of pathogenic genes 
or variants in POI, coupled with advanced algorithms, could 
enable the development of effective predictive or early 
diagnostic models of POI in the near future. Additionally, 
advanced multiomics analyses also help to expand our under
standing of the physiological mechanisms underlying ovarian 
aging (10-14), offering new perspectives for POI interven
tions. Furthermore, progress in material sciences and regen
erative medicine have led to other advances in treatment 
strategies, such as fertility preservation, in vitro activation 
(IVA) of early follicles, and remodeling of the ovarian micro
environment, presenting new avenues to potentially slow POI 
progression and improve pregnancy outcomes.

In this review, we update the epidemiological characteristics 
of POI and its influence on reproduction and long-term health 
consequences. Focusing on the processes involved in establish
ment or depletion of ovarian reserves, we also update the gen
etic etiologies of POI, delving into its complicated genetic 
architecture, and offering insights into current and future po
tential interventions.

The Lifelong Impacts of POI in Women
Prevalence of POI
POI reportedly affects almost 1% of women worldwide, with 
recent estimates ranging from 0.5% to 3.7% (4-7). The ob
served variation in POI prevalence is largely influenced by 
the differences in diagnostic criteria; for instance, some 

epidemiological studies have assessed POI prevalence based 
solely on menopausal age. A comprehensive meta-analysis 
of 13 cohort studies conducted from 2003 to 2021, and in
cluded 1 127 299 total participants, revealed a global aver
age POI prevalence of 3.5% according to ESHRE diagnosis 
standard (6).

However, significant heterogeneity was reported across dif
ferent ethnic and geographic populations. The incidence of 
premature menopause (before age 40) in East Asian countries, 
such as China (2.8%) (15), Korea (2.8%) (16), and India 
(5.5%) (17), is notably higher than that in Caucasian and 
Hispanic populations, where it is estimated to be around 
1% and 1.4%, respectively (18). Additionally, 1 trend indi
cates that average age at menopause is lower in African, 
Latin American, Asian, and Middle Eastern countries, with 
Europe and Australia recording the highest ages, followed 
by the United States (19). These disparities may be attributed 
to genetic differences among races, as well as the economic 
and educational status of women in different countries, with 
lower socioeconomic status and education levels correlating 
with earlier onset of natural menopause.

In line with these findings, the global incidence of POI is 
higher in developing nations (5.3%) than in developed coun
tries (3.1%) (6). Another meta-analysis has affirmed this pat
tern, showing that countries with high Human Development 
Index scores have a lower prevalence of premature menopause 
(3.6%), in contrast to nations with medium (4.9%) or low 
(23.8%) Human Development Index scores (5). Mendelian 
randomization (MR) analysis has also suggested that lower 
educational attainment could act as a potential risk factor 
for early menopause (before age 45) (20). This interplay be
tween ethnicity, geography, and living conditions in POI inci
dence underscores the complexity of this disease due to the 
influence of both genetic and environmental factors.

Reproductive Obstacles
Fertility is severely impaired in the patients with POI due to ac
celerated follicular loss. Although infertility may be the initial 
symptom of POI, the reproductive outcomes exhibit variabil
ity due to wide variation in the menstrual cycle profile, age of 
amenorrhea, and fertility history among individual patients 
(21, 22). Several retrospective studies and case reports have 
found that recovery of menstruation occurs in ∼25% of pa
tients after HRT treatment, with spontaneous pregnancy rates 
ranging from 3.6% to 4.2% (23-26). Higher pregnancy rates 
(5.8-6.3%) have been reported following ovulation induction 
therapy in the patients who retain spontaneous menstrual 
cycles, with increased live birth rates in those receiving treat
ment before age 35 (27, 28). Therefore, POI does not signify 
complete depletion of ovarian reserve. Exploring strategies 
to efficiently utilize the remaining follicles in patients to obtain 
mature oocytes and embryos is crucial for improving their re
productive outcomes.

Long-term Health Consequences
Ovarian aging is one of the earliest signs of organismal aging 
(29). Age-related changes in ovarian perfusion, interstitial 
fibrosis and immune cell infiltration may impact follicle devel
opment, leading to follicular atresia and ovarian dysfunction. 
Conversely, estrogen deficiency and elevated gonadotropin 
levels due to follicular exhaustion can induce metabolic dis
turbances, potentially promoting aging in other organs. As a 
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pathological condition, POI accelerates ovarian aging while 
also elevating the risk of other age-related diseases (30). 
Comprehensive health management for patients with POI 
thus depends on a firm grasp of correlations between POI 
and age-related diseases.

POI and common age-related diseases
Menopause is acknowledged as a risk factor for cardiovascu
lar diseases (CVDs). A large cohort study from UK Biobank 
(encompassing 144 260 postmenopausal women) reported 
premature menopause (both spontaneous and iatrogenic) 
was significantly associated with increased risks of CVD, in
cluding coronary artery disease, heart failure, aortic stenosis, 
mitral regurgitation, atrial fibrillation, ischemic stroke, per
ipheral artery disease, and venous thromboembolism, with a 
hazard ratio (HR) ranging from 1.21 to 4.13 compared with 
age at menopause of 50 or older (31). Similarly, pooled data 
including more than 30 000 women across 5 countries uncov
ered that women with premature menopause had a higher risk 
of first nonfatal CVD event (HR 1.88) or CVD (HR 1.55). 
Further analysis revealed an elevated risk for both coronary 
heart disease (HR 1.52) and stroke (HR 1.72) (32). A meta- 
analysis involving 190 588 women also revealed that premature 
menopause increased the risk of developing/dying from ischemic 
heart disease or CVD by 69% or 61%, respectively (33). A 
large-scale MR study reports a higher risk of stroke associated 
with premature menopause (HR 1.54), indicating a correlation, 
though not establishing a causal genetic relationship (34).

The impact of POI on serum lipids remains uncertain. 
Females with POI exhibited a higher susceptibility to type 2 
diabetes mellitus than those experiencing menopause after 
the age of 45 (OR 1.53) (35). A recent meta-analysis reported 
a potential impaired glucose tolerance and insulin resistance 
in patients with POI (36). Moreover, the cohort study from 
UK biobank reported a statistically strong association be
tween type 2 diabetes mellitus and both spontaneous and sur
gical premature menopause (31). MR study further revealed 
the causal relationship between early menopause and the 
higher homeostasis model of insulin resistance (37). These 
conditions may stem from the effects of elevated FSH on insu
lin secretion and glucose metabolism (38).

Additionally, observational studies have consistently dem
onstrated an association between POI and osteoporotic frac
tures (39-41), with approximately 58% to 67% of POI 
cases exhibiting decreased bone mineral density (42, 43). 
The risk of fracture incidence was reported to increase by 
5% for each year earlier in the onset of menopause (44). A 
meta-analysis involving 462 393 postmenopausal women re
vealed that early menopause increased the risk of fractures 
in all sites (OR 1.36) (45), and this causal relationship has 
been confirmed by MR analysis (8, 46, 47). Osteoporosis fol
lowing POI is thought to be caused by hypoestrogenism (48), 
which can be mitigated by treatment with HRT, as empha
sized in the POI management guidelines (3).

POI and neurodegenerative diseases and neuropsychiatry 
disorders
Estrogen has been found to have neuroprotective effect in 
some neurological disease models (49-51). The association be
tween decreased estrogen levels resulting from iatrogenic POI 
and the increased risk of neurodegenerative conditions, cogni
tive impairment, or dementia also has been established 

through epidemiological studies (52, 53). Compared with 
women who experience natural menopause at the typical 
age, those with premature menopause face a higher risk of all- 
cause dementia (54-57) or specific types of dementia, such as 
Alzheimer disease and vascular dementia. Additionally, POI 
has been linked to mental health disorders (58, 59). A recent 
meta-analysis indicated that individuals with POI are at a 
4.89-fold increased risk of anxiety and a 3.33-fold increased 
risk of depression compared with controls (60). Because 
both POI and psychiatric disorders have genetic susceptibility, 
further investigation is warranted to determine if they share 
some genetic pathogenic mechanisms.

Due to menstrual irregularity, patients with POI often 
manifest menopausal symptoms, including mood disorders 
and sleep disruption (61). Additionally, an unexpected diag
nosis of POI can profoundly affect patients’ mental health 
and self-esteem (59). Moreover, some of the patients experi
ence reduced satisfaction with their sex life due to vulvovagi
nal atrophy, low libido, and dyspareunia (62, 63), which in 
turn contributes to an overall decline in life satisfaction. 
Although current perceptions tend to prioritize physical symp
toms over psychological ones in women with POI, more atten
tion should be directed towards the mental health of those 
patients in the future.

POI and mortality
Although POI affects a small proportion of women, studies 
have reported a higher mortality rate among these patients. 
According to the data from National Health and Nutrition 
Examination Survey cohort, all-cause mortality for women 
with premature menopause was increased compared with 
those who had natural menopause (HR 1.53) (64). Another 
3-decade follow-up cohort of Chilean women found POI 
was one of the main factors associated with mortality (HR 
1.60), ranking closely behind diabetes and arterial hyperten
sion (65). Moreover, premature menopause has been linked 
to an increased risk of cancer-specific mortality (HR 1.38) 
(15). Interestingly, an observational study reported a de
creased incidence of breast cancer in the women with prema
ture menopause (OR 0.59) (15), whereas a recent study found 
increased risk of breast cancer (OR 2.20) and ovarian cancer 
(OR 3.67) in the patients with POI (defined as FSH > 20IU/L 
or anti-Müllerian hormone (AMH) <0.08 ng/mL) (66). These 
conflicting findings may be attributed to differences in hor
mone exposure durations and varying hormonal sensitivities 
of breast cancer subtypes. Genetic studies have revealed loss 
of function (LoF) variants in DNA damage repair genes 
were significantly enriched in the patients with POI (67-69). 
Given that aberrant DNA damage response is implicated in 
tumorigenesis, the patients carrying recessive variants in 
DNA damage response genes, such as MCM8 (70), MCM9 
(71), and BRCA2 (72), may present with early-onset cancers, 
although the penetrance can be highly variable. There are also 
early cancer syndromes associated with POI (73-75). 
Therefore, investigating the role of DNA damage repair genes 
in POI pathogenesis and conducting joint analyses with tumor 
risk could facilitate the discovery of shared genetic susceptibil
ity loci, holding promise for the prediction and treatment of 
tumors. Additionally, the influence of age at menopause in 
the patients with POI, as well as the dosage and duration of 
HRT treatment, on the burden of hormonally sensitive tumors 
should be further investigated.
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Genetic Etiology of POI
POI displays significant heterogeneity in phenotype and eti
ology. It can be classified into sporadic and syndromic types 
based on symptoms besides ovarian phenotypes, further cate
gorized as primary or secondary POI depending on the pres
ence or absence of menarche (76).

Extensive evidence has indicated familial aggregation char
acteristics of POI, with 10% to 30% of cases having family 
members affected by POI (77). A recent study reported an 
18-fold increased risk of POI (defined as FSH > 20 IU/L or 
AMH <0.08 ng/mL) in the first-degree relatives of patients 
with POI compared with the controls (78, 79), supporting 
the contribution of genetic factors to POI pathogenesis. 
Chromosomal abnormalities and gene mutations are the com
mon genetic causes of POI (80). Patients with primary amen
orrhea (PA) or SA exhibit distinct genetic features. In women 
with PA, around 20% to 30% exhibit chromosomal abnor
malities and 25.8% carry gene mutations, while lower fre
quency was observed in patients with SA (4.5-11.6% and 
17.8%, respectively) (67, 76, 81, 82). Moreover, patients 
with PA appear to carry multiple genetic variants more fre
quently than those with SA (83). Thus, genetic factors contrib
ute to the diverse clinical phenotypes of POI. However, a 

comprehensive understanding of the genotype–phenotype re
lationship is still lacking.

Here, we provide an overview regarding the POI causal 
genes involved in oogenesis and folliculogenesis (Fig. 1), and 
have summarized their molecular mechanisms related to 
insufficient establishment or accelerated depletion of ovarian 
reserve. Also discussed are the inheritance modes of patho
logical mutations, giving insight into the complex genetic 
architecture of POI.

Disrupted Primordial Germ Cell Development 
and POI
Primordial germ cell (PGC), the germline precursor that gives 
rise to oocyte and sperm, undergoes specification, migration, 
and proliferation, essential for forming the ovarian reserve 
(84). Any errors during PGC development could disrupt the 
establishment of ovarian reserve and impair fertility, which 
play a crucial role in the pathogenesis of POI. Research on 
PGCs has historically been hindered by challenges in sample 
acquisition and scarcity of available cells for testing, stemming 
from their emergence in early embryonic development. 
However, recent strides in micro-omics technologies have fa
cilitated a deeper exploration of the dynamic alterations 

Figure 1. Genetic etiologies of POI. POI causal genes are involved in the processes from primordial germ cell development to follicle maturation.
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within PGCs’ transcriptome, DNA methylome, histone mod
ifications, and chromatin accessibility (85-88). These ad
vancements have enhanced our understanding of gene 
expression profiles throughout human PGC (hPGCs) develop
ment, offering valuable insights into the genetic mechanisms 
underpinning the pathogenesis of POI.

Genes involved in PGC specification
Specification of hPGCs is triggered by BMP and WNT signal
ing via regulating gene expression, such as PRDM1, TFAP2C, 
and SOX17 (89). Among these genes, PRDM1 plays a signifi
cant role in initiating the germ cell program and repressing 
somatic genes (90, 91). Mechanistically, PRDM1 acts down
stream of SOX17 to initiate the transcriptional network of hu
man germ cells (92). It could selectively recruit HDAC3 to 
somatic genes, leading to the subsequent repression of somatic 
gene expression (93). In the embryos of Prdm1 knockout 
mice, only a few PGC-like cells formed and PGC development 
seemed to be blocked at an early stage, for these cells could not 
migrate or proliferate (94). In patients with idiopathic sporad
ic POI, LoF variants of PRDM1 were enriched, as revealed by 
case–control analysis of WES data. These variants resulted in 
truncated proteins or were verified to decrease the stability of 
PRDM1 (67). Additionally, another novel heterozygous mis
sense variant in PRDM1 was identified in Brazilian patients 
with POI (95). However, the pathogenetic mechanism and in
herited mode, such as dominant negative or haploinsufficiency 
effect, of the heterozygous PRDM1 variant in POI has not 
been clarified yet.

RNA transcription–translation regulators associated 
with PGC development
RNA-binding proteins represent intriguing candidate factors 
for POI, given that DAZL and NANOS3 play vital roles in 
germ cell development and maintenance. DAZL is not only es
sential for the onset of meiosis and oocyte maturation but also 
directly binds to pre-miRNAs, enhancing their processing into 
mature miRNAs and thereby influencing the proliferation of 
hPGCs (96-98). Moreover, a recent study found that DAZL 
regulates the expression of NANOS3 (99), which is required 
to prevent PGCs from undergoing apoptosis during migration 
(100, 101). Reduced expression of DAZL and NANOS3 re
sults in a decrease in the number of germ cells derived from hu
man embryonic stem cells and the expression of genes critical 
for pluripotency and meiosis (102). In patients with POI, 2 
cases with homozygous variants in DAZL and 2 sisters with 
homozygous variants in NANOS3 were identified, suggesting 
that biallelic defects in these genes could shorten the repro
ductive lifespan by increasing PGC apoptosis (99, 103, 104). 
Additionally, 3 individuals carrying missense heterozygous 
DAZL variants reported early menopause and having chil
dren (103), and 1 POI case carried a heterozygous variant of 
NANOS3, suggesting that variants on these genes might influ
ence the phenotype of ovarian reserve decline by a dosage- 
dependent effect (105).

Fanconi anemia genes related to PGC proliferation
Fanconi anemia (FA) typically manifests as a recessive genetic 
disorder attributed to mutations in genes within the FANC 
group. It is characterized by bone marrow failure, heightened 
susceptibility to cancer, and severe germline defects (106, 
107). The FA pathway consists of 22 FA proteins and 5 

FA-associated proteins. In the large-scale POI-WES study, 
LoF variants in the FA gene were significantly enriched in pa
tients with POI, suggesting a potential role of FA gene variants 
in POI pathogenesis (67). The complex influence of FA genes 
on ovarian reserve includes their involvement in PGC prolifer
ation and oocyte meiosis. In this section we focus on the func
tion of FA genes in PGC proliferation; later we will discuss 
their roles in oocyte meiosis.

To data, FANCA, FANCL, FANCM, and FANCI have 
found to be POI causal genes. FANCA, FANCL, and 
FANCM are components of the FA core complex, FANCI is 
a binding partner and essential for ubiquitination of 
FANCD2. They are crucial for repairing DNA interstrand 
crosslinks and protecting replication forks (108), thereby re
solving transcription–replication conflicts and maintaining 
genomic stability during PGC proliferation (109, 110). 
Monoallelic variants of FANCA (111) and FANCL (112), as 
well as biallelic variants of FANCM (113) and FANCI (114), 
have been reported to be causative for POI. As all the variant 
carriers exhibit PA or early SA (around 20 years old), the geno
type–phenotype relationship among those genes and POI have 
not been illustrated clearly yet. Because heterozygous deletion 
of Fanca in mice showed decreased follicle number and impaired 
fertility, as well as in vitro experiments revealed the activity of 
those genes were dosage-sensitive to interstrand crosslinks 
(111, 115), the effect of above gene variants on PGC prolifer
ation and ovarian function may be dosage dependent.

Meiosis Defects and POI
Along with specification and proliferation, hPGCs migrate 
into the genital ridge (116). For the hPGCs determined to be 
oocytes, meiosis is initiated by a group of proteins at around 
11 to 12 weeks of gestation (116). Meiotic prophase I is a 
specialized stage to ensure the completion of numerous 
meiosis-specific chromosome events predominately through 
programmed double-strand breaks (DSBs) formation and 
homologous recombination (117), determining the genomic 
stability and diversity of oocyte (118). Any abnormalities of 
the processes will result in meiotic arrest and subsequent 
apoptosis of the oocytes (119). Meiotic genes constitute a sub
stantial portion of known POI causal genes. They can be clas
sified into the following categories.

Meiotic initiation
Mammalian meiotic initiation is synergistically regulated by 
DAZL, BMP, and retinoic acid signaling pathways (117). 
DAZL, which functions as both translational repressor and 
activator, is required for PGC formation, meiotic initiation, 
and maturation (97). Biallelic variant in DAZL has been 
found to induce POI by insufficient PGC formation as de
scribed before. However, whether there is a dosage-dependent 
effect of DAZL variants on meiotic initiation or maturation 
has not been well explored. The BMP pathway involve in mei
otic initiation by activating the expression of STRA8 and 
MEIOSIN, which are essential retinoic acid–dependent tran
scriptional factors for meiotic initiation (120). Other factors, 
such as DMRT1 and MSX, have been suggested to negatively 
regulate meiotic entry (121). In mouse models, defects in these 
meiotic initiation genes lead to excessive apoptosis of oocytes 
before birth, resulting in female infertility (117, 122-126).

Recently, homozygous variants of the retinoic acid–dependent 
proteins STRA8 and MEIOSIN have been found in the patients 
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with POI (67, 126). Under physiological conditions, STRA8 
and MEIOSIN form a complex to facilitate nuclear entry of 
proteins and regulate the transcription of meiosis-related 
genes. The variants of STRA8 and MEIOSIN carried by 
POI cases resulted in meiotic arrest and oocyte apoptosis 
due to impaired protein nuclear entry and suppression of 
meiosis-related gene expression in a recessive mode (67, 
126). The carrier of STRA8 variant exhibited PA, while the 
MEIOSIN variant carrier presented with SA at the age of 
26. These results suggested that biallelic variants in meiotic 
initiation genes often lead to early-onset POI. Therefore, time
ly identification of those patients at early stage by genetic test
ing might improve their pregnancy outcome through fertility 
preservation and ART.

Meiotic DSB formation
After meiosis initiation in the oocytes, the next hallmark event 
is programmed DSB formation and homologous recombin
ation, which preferentially occurs in specialized sites called 
meiotic recombination hotspots. PRDM9 is a meiosis-specific 
histone H3 methyltransferase and a major determinate of 
the sites of meiotic recombination hotspots (86, 127). 
Subsequently, the topoisomerase SPO11 cleaves at hotspots 
to generate DSBs with the assistance of TOPOVIBL, MEI1, 
MEI4, ANKRD31, and REC114 (128). Afterward, DSBs are 
repaired by homologous recombination, ensuring the equal 
exchanges between maternal and paternal chromosomes, 
which are essential for fertility and genome evolution (129).

The knockout mouse models of the aforementioned genes 
involved in DSB formation all demonstrated defective meiotic 
homologous recombination and ovarian dysfunction (130). 
Recently, Wang et al identified heterozygous variants of 
PRDM9 and ANKRD31 in patients with sporadic POI, 
with the age of amenorrhea ranging from 23 to 37 years 
(131). Functional studies found that Prdm+/− primordial fol
licles exhibited increased sensitivity to exogenous stress, indi
cating that the heterogenous clinical presentation of PRDM9 
variant carriers might be influenced by environmental expo
sures. In addition, defective DSB formation could affect the 
position of recombination hotspots, thereby impacting the re
combination and segregation of homologous chromosomes, 
potentially leading to aneuploid oocytes (132). It has been re
ported that biallelic variants of TOROVIBL, MEI1, and 
REC114 lead to androgenetic hydatidiform moles (133). 
Furthermore, female carriers of biallelic variants of MEI4 
and REC114 have been reported to have embryonic arrest 
and infertility (134, 135). These findings indicate that biallelic 
variants of meiotic DSB formation genes have pleiotropic ef
fects on reproductive phenotypes. Patients with POI carrying 
those variants may have an increased risk of embryonic arrest 
or implantation failure even when they still have follicles for 
spontaneous pregnancy or ART treatment.

Homologous recombination repair for meiotic DSB
The meiotic DSBs are repaired through homologous recom
bination pathway, a series of orchestrated events that encom
pass DSB end procession, DNA single-strand invasion, 
intermediate formation and homologous recombination 
(130). To date, approximately 60 meiotic genes have been 
found to be involved in homologous recombination process, 
with over 27 genes implicated in the pathogenesis of POI.

Homologous recombination repair operates in both germ 
cells and somatic cells, albeit with distinct features (136). A 
subset of homologous recombination genes is specifically ex
pressed during meiosis, and individuals harboring variants 
in these meiosis-specific homologous recombination genes 
often manifest isolated POI. These includes genes involved 
in strand invasion such as PSMC3IP (137), SPATA22 (138), 
MEIOB (139, 140), DMC1 (141, 142), and ZSWIM7 (143, 
144), as well as those that promote the formation and stability 
of recombination intermediate, including MSH4, MSH5 
(145), MCMDC2 (67), and HFM1 (146-148). Moreover, 
most of these genes induced POI by recessive mode. And the 
carriers of biallelic LoF variants presented with PA or onset 
of SA before 30 years old.

Furthermore, another subset of homologous recombination 
genes is implicated in DSB repair during both meiosis and 
mitosis, including DSB terminal processing genes, such 
as EXO1, NBN, single-strand invasion genes HSF2BP, 
RAD51, and recombinant intermediate formation and stabil
ization genes RECQL4, BLM, HROB, MCM8, and MCM9 
(130). Patients with POI with biallelic variants in these genes 
more likely present with PA or SA onset before the age of 25. 
This may be related to the cumulative effects of gene variants 
on PGCs proliferation, oocyte meiosis and granulosa cell (GC) 
survival. While, the carriers of monoallelic variant presented 
with a milder ovarian phenotype, such as POI with SA onset 
after 30 years old or early menopause, indicating those genes 
may have a dosage-dependent effect on ovarian function. 
Notably, the variants in the aforementioned genes are also as
sociated with syndromic POI, with the main symptom being 
tumor development. Therefore, although some patients with 
POI carrying those gene mutations do not have tumors or oth
er diseases at the time of diagnosing isolated POI, long-term 
follow-up is still necessary.

In the above section of PGC proliferation, we mentioned 
that some FA genes are also involved in oocyte meiosis. 
FANCD1 (BRCA2), FANCJ, and FANCU (XRCC2) have 
been known to participate in homologous recombination for 
DSBs initiated by the processing of interstrand crosslinks. 
They also participate in homologous recombination for the 
programed meiotic DSBs, as shown in knockout mice by the 
accumulation of DSBs and meiotic arrest in the oocytes 
(149-152). Carriers of homozygous variants in XRCC2 exhib
ited SA 1 year after menarche (153). Meanwhile, carriers of 
biallelic variants in BRCA2 from the United States, Italy, 
China, and Turkey all exhibited PA (72, 154, 155), indicating 
a potential correlation between biallelic variants of XRCC2 
and BRCA2 and severe ovarian dysgenesis. In contrast, mono
allelic variant carriers present with a milder ovarian pheno
type. For instance, a recent study found that the carriers of 
heterozygous FANCJ variant experienced amenorrhea at 29 
and 39 years of age, respectively (152). Moreover, the data 
from GWASs on the age at natural menopause (ANM) 
revealed an association between BRCA2 variants and 
early menopause (8). These findings indicate the genotype– 
phenotype relationship between FANCJ and BRCA2 variants 
and ovarian function might depend on the residual dosage of 
functional protein.

Additionally, different biallelic BRCA2 variants have vary
ing effects on systemic symptoms. For instance, BRCA2 vari
ant carriers from the United States developed acute myelocytic 
leukemia at 5 years of age (154), while those from Italy pre
sented with multiple adult cancers (72). However, Chinese 
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and Turkish patients did not have a history of tumors at the 
time of consultation (72, 155). Variations in residual 
BRCA2 function due to different mutations likely explain 
the differing speeds of ovarian function decline and occur
rence of tumorigenesis. Due to the technical limitations of 
WES, oligogenic effects, and gene–environment interactions 
cannot be ruled out either (156). Furthermore, the increased 
risk of tumors in carriers with FA gene variants suggests 
that young women with POI should have genetic analysis 
and increased cancer surveillance when FA gene mutation 
were identified (157).

Meiotic chromosome movement and synapsis
At the beginning of meiosis homologous recombination, the 
LINC complex, composed of KASH5 and SUN1, connects te
lomeres to the inner nuclear membrane with the facilitation of 
the TERB1-TERB2-MAJIN complex, promoting telomere-led 
rapid prophase movements, followed by chromosome pairing 
and synapsis. Studies have shown that knockout mice of the 
above genes exhibit infertility due to abnormalities in homolo
gous chromosome pairing and meiotic arrest (158, 159). 
Biallelic variants in KASH5 have been found in several fam
ilies with POI (158, 160). Moreover, a recent study reported 
a KASH5 homozygous variant carrier exhibited diminished 
ovarian reserve (DOR) and recurrent miscarriages (161), 
further expanding the pleiotropic function of KASH5 on re
productive phenotypes. Other proteins, such as TERB1, 
TERB2, and MAJIN, have been found to participate in the 
pathogenesis of nonobstructive azoospermia. Although no 
mutation in these genes has been detected in patients with 
POI, they are potential candidate genes for the disease.

The formation of a synaptonemal complex (SC) between 
homologous chromosomes provides a platform for precise re
combination and crossover formation of gametes. The SC is 
consisted of the lateral elements (SYCP1), axial elements 
(SYCP2, SYCP3), central elements (C14ORF39, SYCE1-3, 
TEX12), and the protein SPO16, which contributes to the 
structural stability of the SC (162, 163). Currently, biallelic 
variants in the central elements SYCE1 and C14ORF39, the 
lateral element SYCP2L and SC stabilizer SPO16 have been 
identified in patients with POI (164-166). All these patients 
with POI presented with relatively late-onset SA, except car
riers of SYCE1 mutations who exhibited PA or SA before 
25 years old. Moreover, there has been report of an associ
ation between heterozygous mutations in SYCP3 and recur
rent spontaneous abortion (164). These findings suggest that 
mutations in SC genes contribute to the development of POI 
through the recessive mode. While, the participation of these 
genes in recurrent spontaneous abortion by a monogenic or 
oligogenic pattern require further verification.

During oocyte meiosis, sister chromatids are tethered to
gether by the ring-shaped cohesion complex from DNA repli
cation to the beginning of chromosome segregation (167). The 
cohesion complex consists of STAG3, RAD21L, SMC1B, 
SMC3, and REC8. Among them, STAG3 interacts with 
REC8 to stabilize the cohesion complex (168), and biallelic 
variants of them have been reported in the patients with 
POI. Sixteen cases with STAG3 variants consistently pre
sented with PA (137), while 1 carrier of REC8 variants expe
riences SA before the age of 20 (169), indicating that STAG3 
and REC8 are the core components of the cohesion complex 
involved in maintaining oocytes’ genomic stability and ovar
ian reserve.

Folliculogenesis Abnormalities and POI
Follicle development is a complex process including stages like 
construction of the primordial follicle pool, follicle activation, 
gonadotropin-independent/dependent follicle development, 
follicle maturation, and ovulation. This process is governed 
by a finely regulated network involving oocyte-specific regula
tory factors, somatic–germ cell communication, hormone syn
thesis, and cell death regulation. Any malfunction in these 
components can lead to depletion of primordial follicle pool 
and eventually ovarian failure. Genetic abnormalities in folli
culogenesis have long been noticed as an important part for 
POI pathogenesis; exploration of that will also have insight 
into intervention of the disease. In this section, we will sum
marize these genes following the folliculogenesis stages.

Primordial follicle assembly
At the 15th week of gestation, oocytes are arrested at the 
diplotene stage of meiosis prophase I. Then, pregranulosa cells 
encapsulate the oocytes via signaling originating from oocytes 
or other pregranulosa cells to construct the primordial fol
licles, which stay dormancy until activation at puberty in re
sponse to gonadotropins. A transcription factor network 
and NOTCH signaling pathway regulates primordial follicle 
formation through oocyte growth and bilateral communica
tions between oocytes and pregranulosa cells, disruption of 
which leads to insufficient establishment of ovarian reserve, 
as evidenced by knockout mouse models and genetic identifi
cations in human POI.

NOBOX, FIGLA, SOHLH1, and SOHLH2 encode 
oocyte-specific transcription factors that regulate the expres
sion of oocyte-specific genes, ensuring the generation of prim
ordial follicles (170-173). Although there is no doubt about 
the contribution of these genes in POI pathogenesis, the 
increasing evidence has progressively expanded our under
standing of their inheritance mode in POI and the genotype– 
phenotype relationships. Heterozygous variants in these 
genes were primarily reported when the predominant method 
of genetic screening was Sanger sequencing (174-176). 
Functional assays have demonstrated that these variants 
lead to impaired protein function through dominant negative 
or haploinsufficiency effects. However, as the use of WES be
came more widespread, several pedigree studies identified that 
homozygous deleterious variants in these genes were causative 
for POI (177-180). Notably, biallelic carriers exhibited PA, 
whereas most patients with POI carrying monoallelic variants 
exhibited SA, suggesting a dosage-dependent effect of these 
gene variants on ovarian function. Meanwhile, in the POI ped
igrees, the mothers who carried heterozygous variants did not 
affected by POI, indicating that the dominant negative or 
haploinsufficiency effect of heterozygous variants found in 
sporadic POI was not prevalent in familial cases (177). 
Therefore, for the heterozygous variants, more evidence 
from functional experiments is needed. Additionally, we can
not rule out the possibility of a second variant in the regula
tory region, a variant in an exon not well covered by WES, 
or the effects of polygenic and environmental factors contrib
uting to the occurrence of POI.

The NOTCH pathway–mediated communication between 
oocytes and pregranulosa cells also plays a crucial role in 
primordial follicle formation. Conditional knockout of 
Notch2 in pregranulosa cell led to a failure of oocyte cysts 
breakdown, resulting in follicles with enlarged oocytes but 
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lacking somatic cell growth (181). A study in a Caucasian co
hort of POI found the involvement of NOTCH2 variants in 
the pathogenesis of POI (182). Additionally, in a Chinese fam
ily (183), where the mother and daughter experienced SA at 
the age of 35 and 20, respectively, familial segregation ana
lysis and functional experiments indicated a NOTCH2 het
erozygous variant was associated with POI occurrence. The 
dominant inheritance mode of NOTCH2 in the POI pedigree, 
which contrasts with the recessive pattern observed in 
oocyte-specific genes, could potentially be attributed to its 
ubiquitous expression in both oocytes and GCs. The possibil
ity of a second hit from unidentified loci cannot be excluded as 
well. Further genetic evidence from larger-scale studies and in 
vivo experiments will be advantageous in unveiling the under
lying mechanism.

Primordial follicle activation
The ovarian reserve gradually diminishes with aging as or
dered activation of primordial follicles. Therefore, the speed 
of primordial activation is crucial for maintaining ovarian 
reserve and the length of female reproductive lifespan. 
Primordial follicle activation is regulated by the mTORC1, 
PI3K-AKT-FOXO3, and HIPPO-YAP signaling pathways 
(184, 185). TSC2 binds with TSC1 and exerts a negative regu
latory effect on mTORC1 (186). Deletion of Tsc2 in either oo
cytes or pregranulosa cells led to excessive activation of 
primordial follicles and premature depletion of the primordial 
follicle pool (187, 188). A recent study reported 5 heterozy
gous variants of TSC2 in isolated POI (189). However, 
TSC2 is ubiquitously expressed in somatic cells, and the het
erozygous variants have been found to be responsible for 
dominant genetic disorders (190, 191). Therefore, the pleio
tropic effect of TSC2 variants on reproductive and somatic 
diseases requires further exploration in larger populations 
and extended follow-up.

Previous studies also reported 7 heterozygous mutations of 
FOXO3 in patients with POI (192, 193). In mice models, de
letion in Foxo3 lead to overactivation of primordial follicles 
and accelerated follicle loss, indicating FOXO3 mutation 
could induce POI by premature exhaustion of ovarian reserve 
(194). Moreover, there is different expression pattern of 
FOXO3 in mouse and human follicles. In the mouse ovary, 
Foxo3 is primarily expressed in the oocytes from primordial 
follicles, which is localized in the nuclei and translocated to 
the cytoplasm when primary follicles are activated. 
Whereas, in the human ovary, FOXO3 is expressed not 
only in oocytes but also in some GCs of certain follicles 
(195, 196). Furthermore, overexpression of FOXO3 can in
duce apoptosis of human GC line (197). These findings sug
gest that FOXO3 is involved in the maintenance of human 
follicle pool by a stabilized expression both in oocytes and 
GCs.

AMH, which has been widely used as a biomarker of ovar
ian reserve in ART (198), is expressed in the GCs surrounding 
the growing follicles (199-201). It plays a pivotal role in inhib
iting primordial follicle activation through interaction with 
the AMH receptor 2 (AMHR2) (202, 203). Association stud
ies have shown that single nucleotide polymorphism (SNP) of 
AMH and AMHR2 were related to POI (204, 205). 
Moreover, Li et al verified the variant p.I209N in AMHR2 
identified in patients with POI adversely affected AMH path
way (206). However, the frequency of SNPs in AMH and 

AMHR2 was not significantly different between POI and con
trols in Korean and Chinese population (205, 207), suggesting 
the existence of ethnic disparities in the distribution of AMH 
SNPs and their contribution in POI pathogenesis.

Follicle development
The development of follicles occurs in 2 stages. The first stage 
is independent of gonadotropins and is primarily regulated by 
autocrine or paracrine factors, such as GDF9 and BMP15. 
Both of them are secreted from oocytes, and form a dimer to 
promote follicular development by stimulating GC prolifer
ation (208, 209). Gdf9-null mice exhibited arrested follicular 
development at the primary follicle stage (210), while 
Bmp15-null mice experienced abnormal ovulation and de
creased oocyte quality (211). To date, many researches have 
confirmed the causative role of BMP15 and GDF9 variants 
in human POI (212).

The second stage of follicle development relies on gonado
tropins. The FSH receptor (FSHR) begins to be expressed in 
the GCs of primary follicles (213). The activity of FSHR con
trols follicle development by responding to FSH and thereby 
regulating steroid hormone synthesis. Aittomaki et al first 
identified a homozygous FSHR variant in patients with POI 
in the Finnish population, with ovarian biopsies revealing a 
lack of mature antral follicles in most patients (214). 
Interestingly, the mice model with FSHR haploinsufficiency 
presented with altered ovarian steroidogenesis, leading to ac
celerated follicle loss and subfertility (215). In the meantime, 
1 study has reported that FSHR rs6166 polymorphism is sig
nificantly associated with POI in Asian populations (216), and 
2 heterozygous FSHR variants have been identified to induce 
the disease through haploinsufficiency effect (217). Recently, 
the WES data from a Chinese cohort of POI further support 
the relationship between FSHR LoF variants and POI, espe
cially for those patients with PA (67). Therefore, FSHR var
iants might induce POI through both dominant and 
recessive modes (95, 217-219). Notably, the possibility of a 
second variant synergizing with FSHR variants to cause POI 
cannot be ruled out. Notably, because several cases had 
age-appropriate AMH levels and antral follicle counts (217, 
219), they are more likely to have undiagnosed resistant ovary 
syndrome rather than ovarian failure.

Steroid hormone synthesis and metabolism are crucial for 
the second stage of follicle development. The genes involved 
in the process have been well-known in POI, such as STAR, 
HSD17B1, HSD17B4, and HSD17B12. In a Chinese POI 
pedigree, compound heterozygous variants in HSD17B12 
were identified in the 2 daughters with POI, and confirmed 
that HSD17B12 deficiency contributed to POI through a 
dosage-dependent effect as observed in the Hsd17b12+/− 

mice (220). Moreover, monoallelic LoF variants in 
HSD17B1 were found to be enriched in patients with POI 
(67). The biallelic variants of STAR and HSD17B4 have 
been reported respectively in lipoid congenital adrenal hyper
plasia and Perrault syndrome, both of which are syndromes 
with ovarian failure as 1 symptom (221, 222). WT1 encodes 
a transcriptional factor that regulates the proliferation and 
hormone synthesis of GCs. The heterozygous variants of 
WT1 have been found in sporadic and familial POI (223, 
224). Notably, the WT1 variant carriers have history of full- 
term pregnancies, suggesting that monoallelic variants did 
not affect the quality of oocytes. Early identification of the 
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variants and giving reproductive counseling could improve 
their pregnancy outcomes. Considering that WT1 variants in
crease the risk of Wilms tumor (225, 226), preimplantation 
genetic testing should be recommended to the carriers of 
WT1 pathogenic variant.

During follicle development, there is a gradual increase in 
protein synthesis in the oocyte, suggesting that dysfunctional 
translation may disrupt follicle development. Both the var
iants in translation regulator EIF4ENIF1 and EIF2B have 
been found to induce POI. However, their inheritance modes 
are different. EIF4ENIF1 binds to eIF4E, which is crucial for 
the initiation of cap-dependent translation. The EIF4ENIF1 
variant caused POI in a dominant pattern, as verified by family 
cosegregation analysis and Eif4enif1+/− mice demonstrating 
an accelerated follicle atresia with aging (227, 228). EIF2B 
controls eIF2 activity making it vital for cellular adaptation 
to various stresses (229). Biallelic variants in subunits of 
EIF2B, including EIF2B2, EIF2B4, and EIF2B5 cause 
adult-onset leukoencephalopathy combined with ovarian dys
genesis (230-233). Among them, the homozygous variant 
EIF2B2 p.Val85Glu was the most prevalent biallelic variant 
in sporadic POI, accounting for nearly 1% of the patients. 
Previous study demonstrated that EIF2B2 p.Val85Glu led to de
creased GDP/GTP exchange activity of the EIF2B protein (231). 
However, the mechanisms by which EIF2B2 p.Val85Gl lead to 
ovarian dysgenesis have not been clearly investigated.

Follicle atresia
The length of reproductive lifespan is also influenced by the 
rate of follicular atresia. Recent studies have shown that gen
etic defects can accelerate follicle atresia through various cell 
death pathways, such as apoptosis, autophagy, and ferropto
sis. TAp63α, a member of the p53 gene family, is specifically 
expressed in the oocytes of primordial follicles and acts as a 
quality control factor for oocytes (234-236). Recent study re
ported 6 gain of function variants in the C-terminal of TAp63, 
accounting for 0.78% of the POI cohort, constitutively acti
vate oocyte apoptosis by upregulating the transcription of 
PUMA, NOXA, and BAX (237). Moreover, 2 variants of 
the autophagy-related gene ATG7 induce POI by reducing au
tophagosome formation, leading to an unbalanced degrad
ation and recycling of the long-lived proteins and cellular 
organelles in oocytes and GCs (238). Ferroptosis is a form 
of cell death resulting from disruptions in iron-dependent lipid 
oxidation metabolism. The variant BNC1 p.Arg356Valfs*6, 
which was carried by 6 cases in a POI pedigree, was verified 
to induce oocyte ferroptosis by interfering with the 
NF2-Hippo pathway (239, 240). Interestingly, all the variants 
above accelerated oocyte death by dominant pattern.

Follicle maturation and ovulation
Previous studies rarely found genes related to follicle matur
ation and ovulation involved in the pathogenesis of POI, as 
these gene defects predominantly lead to disorders of ovula
tion, oocyte maturation and embryo developmental. In recent 
studies, the LoF variants in those genes, such as ZAR1, ZP3, 
H1-8, PPM1B, ALOX12, and MST1R, have been found to be 
enriched in the patients with POI, suggesting their pleiotropic 
effects on ovarian function (67). For instance, ZP3, a crucial 
component of the zona pellucida starting to be consisted 
from primordial follicle, linked to both oocyte maturation de
fects and POI. Zp3-null mice exhibited a reduction in the 

number of preovulatory follicles, zona pellucida deficiency, 
and infertility, supporting its multifaceted role in follicle de
velopment (241). Intriguingly, only missense variants or in- 
frame deletions of ZP3 have been reported in patients with 
empty follicle syndrome (242), whereas POI cases carried 
LoF mutations. Biallelic variant carriers showed the earliest 
onset of amenorrhea, underscoring the dosage effect of ZP3 
variants on ovarian dysfunction.

Mitochondrial Dysfunction and POI
The metabolism of glucose and lipids is crucial for ovarian 
function. In the oocytes, ATP is generated through mitochon
drial oxidative phosphorylation (OXPHOS) to meet the en
ergy demands of oocyte development, as well as subsequent 
fertilization and early embryo development (243). Under 
physiological conditions, a small amount of ROS is produced 
as a byproduct during oxidative phosphorylation. However, 
cells possess antioxidant mechanisms that can prevent the ac
cumulation of ROS, maintaining their levels in a balanced 
state (244). During age-related ovarian dysfunction or patho
logical conditions, such as mutation induced mitochondrial 
dysfunction or DNA damage accumulation, there is an in
crease in ROS production and a deactivation of antioxidant 
pathways in oocytes, leading to ROS accumulation (245). 
Excessive ROS can damage multiple cellular organelles, indu
cing oxidative stress and accelerating follicle loss (246). 
Around the oocytes, mitochondrial function of GCs is also es
sential for follicle development since the pyruvate necessary 
for oocyte OXPHOS is generated from glycolysis of cumulus 
GCs and the steroid hormone necessary for oocyte growth is 
synthesized in the mitochondria of mural GCs (246, 247). 
Therefore, mitochondrial dysfunction within GCs may im
pede their proliferation and steroidogenesis, as well as impair 
the metabolic crosstalk between GCs and oocytes, comprom
ising oocyte quality and precipitating ovarian aging (248).

POI is a pathological condition characterized by accelerated 
ovarian aging, exhibiting similar histopathological features to 
those observed in natural ovarian aging, including follicular 
atresia and interstitial fibrosis. Understanding of the mecha
nisms that drive physiological ovarian aging can give insights 
into the pathogenesis of POI. A recent single-cell transcrip
tomic landscape of ovaries from aged nonhuman primates 
found decreased expression of mitochondrial genes in early- 
stage oocytes and GCs. Additionally, inactivated antioxida
tive pathways, increased ROS, and apoptosis were observed 
in the GCs from aged women, indicating insufficient mito
chondrial function contribute to ovarian aging (249). In the 
WES data of POI cohorts, the LoF variations in mitochondrial 
genes are significantly enriched (67), suggesting mitochondrial 
dysfunction also participate in the pathogenesis of POI. The 
proposed mechanisms of mitochondrial dysfunction driving 
ovarian aging include quantitative and qualitative dysfunction 
of mitochondrial DNA (mtDNA), impaired mtDNA transla
tion, and unbalanced protein homeostasis (250).

Quantity and quality of mtDNA
In mammals, mtDNA encodes 37 genes, including 13 proteins 
for OXPHOS, 22 tRNAs, and 2 rRNAs (251). The copy num
ber of mtDNA is increasing along with the generation of mito
chondria during oogenesis, which is significantly higher in the 
mature oocytes compared to somatic cells, with a range of 
100 000 to 600 000 copies (252). The quantity and quality 
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of mtDNA is essential for reproductive lifespan and preg
nancy outcome. Quantitative mtDNA dysfunctions along 
with ovarian aging include decreased mtDNA copy number 
and mtDNA deletions in the oocytes. The lower mtDNA con
tent has been observed in the women with POI, DOR, or 
physiological ovarian aging (253-257). Moreover, the de
creased mtDNA contents affect the oocyte fertilization and 
embryo developmental competence, thus is an outcome indi
cator and treatment target of IVF. Therefore, elucidating the 
genetic factor influencing mtDNA contents is important for 
reproductive health studies. Interestingly, mtDNA is regulated 
by many genes that are not on mtDNA itself, such as auto
somal gene TWNK and TFAM. TWNK is one of the core 
mtDNA helicase required for mtDNA replication (258). To 
date, there are 13 cases with POI were reported to carry bial
lelic TWNK variants, with the majority of carriers exhibiting 
Perrault syndrome (259). A recent study with WES data of 
over 100 000 women from the UK Biobank database found 
that the carriers of TWNK variants experienced menopause 
approximately 1.54 years earlier than the non-carriers (77). 
In addition, 2 cases with heterozygous deleterious variants 
of TWNK presented with isolated POI, further suggesting 
that monoallelic variants of TWNK also contribute to acceler
ate ovarian aging by haploinsufficiency effect (67). TFAM 
encodes a component of the mitochondrial replisome machin
ery that regulates mtDNA transcription and replication. One 
homozygous variant in TFAM has been identified in 4 patients 
with syndromic POI who presented with POI and somatic 
symptoms, such as seizures, intellectual disability, and hearing 
loss. Functional studies in the primary fibroblasts found 
TFAM mutation resulted in decreased mtDNA copy number, 
altered mitochondrial morphology and impaired oxygen con
sumption. The tfam mutant zebrafish exhibited decreased oo
cyte number and aberrant gonad morphology, supporting its 
pathogenicity in POI (260, 261).

The qualitative mtDNA dysfunctions include strand breaks 
and mutations. Unlike nuclear DNA, mtDNA lacks histone 
protection, which makes the mitochondrial genome more sus
ceptible to the changes of metabolism and environment, lead
ing to a mutation rate 25 times higher than nuclear DNA 
(262). Both the maternally inherited and acquired mtDNA 
mutations in humans are related to DOR (263, 264). The 
mechanism of acquired mtDNA mutations has not been eluci
dated clearly, but may result either from oxidative damage, or 
from the defective mtDNA polymerase gamma (POLG) 
(264). In the GWAS studies of ANM, more than 15 POLG 
variants were linked to POI (265). Furthermore, heterozygous 
LoF variants of POLG have been identified in 0.7% (7/1030) 
of the cases with isolated POI, among whom nearly half cases 
carried additional LoF variants in other POI causal genes (67). 
The presence of multiple heterozygous variants indicates a 
complex genetic mode of POI, and the variants in mitochon
drial genes that induce overwhelmed mitochondrial capacity 
might act as a catalyst for mutation burden, potentially accel
erating follicle loss (266).

Translation of mtDNA
Abnormalities in mitochondrial translation system can impair 
the synthesis of mtDNA-coded ETC components, thus affect
ing OXPHOS and ROS production. The translation of mito
chondrial RNA relies on nuclear DNA encoded specialized 
protein translation machinery, including mitochondrial 

ribosomes, various aminoacyl-tRNA synthetases (mt-aaRS), 
and translation elongation factors (267). Of particular note 
are the mitochondrial ribosomal proteins MRPS7 and 
MRPS22, involved in the assembly of the 28S small subunit, 
and MRPL50, contributing to the formation of the 39S large 
subunit. Variants in MRPS7 and MRPL50 have been linked 
to Perrault syndrome with POI as 1 symptom. Additionally, var
iants in MRPS22 have been associated with isolated POI, with 
carriers of biallelic variants presenting with PA and monoallelic 
variants carriers had SA (67, 268, 269). These findings indicate 
that MRPS22 deficiency-induced mitochondrial dysfunction 
may affect ovarian function by a dosage-dependent mode.

The mt-aaRS attaches specific amino acids to their corre
sponding tRNA molecules, forming mt-aaRS complexes, 
which further participate in protein synthesis in mitochondria 
(270). Mutations in genes encoding mt-aaRS, such as alanyl- 
tRNA synthetase 2 (AARS2), leucyl-tRNA synthetase 2 
(LARS2), and histidyl-tRNA synthetase 2 (HARS2), have 
been associated with central nervous system and reproduct
ive system abnormalities following an autosomal recessive 
inheritance pattern (271). Although a carrier of biallelic 
variant in LARS2, which often cause Perrault syndrome, ex
perienced isolated POI, the possibility of a syndromic 
phenotype remains due to the complexity of Perrault syn
drome and variable ages of onset.

Novel Tu translation elongation factor, mitochondrial 
(TUFM) is a nuclear-encoded mitochondrial protein transla
tion elongation factor. Previous studies have reported a close 
relationship between TUFM variants and syndromic mito
chondrial diseases such as encephalopathy (272, 273). 
Carriers of TUFM variants often exhibit severe mitochondrial 
dysfunction and early mortality, thus its role in the reproduct
ive system has been overlooked. Recently, Zhang et al re
ported a case with isolated POI carried biallelic TUFM 
variant in a consanguineous family (274). The mice model 
with the homologous variant exhibited decreased ovarian re
serve and severely impaired fertility, hinting at TUFM’s poten
tial role as a causative gene for POI. Nevertheless, the lack of 
reproductive phenotype descriptions in cases with TUFM 
variant-induced syndromic mitochondrial diseases leaves 
open the possibility that TUFM variants might contribute to 
syndromic POI.

In addition to the mitochondrial translation machinery 
mentioned above, the leucine-rich pentatricopeptide repeat 
containing protein (LRPPRC) can also bind to mitochondrial 
mRNA to promote high-fidelity translation and protein syn
thesis efficiency (275, 276). LRPPRC is encoded by nuclear 
DNA and plays multifunctional roles in vesicular transport, 
cytoskeletal composition, and regulation of mtDNA and nu
clear DNA transcription and translation (277). Mutations in 
LRPPRC lead to the occurrence of recessive inherited Leigh 
syndrome, which has a high mortality rate. Female patients 
who survival to adulthood exhibit features of POI character
ized by PA or delayed secondary sex characteristics, with 
ultrasound showing small ovaries and absence of follicles 
(278). Due to the pleiotropic effects of LRPPRC protein, the 
pathogenicity of LRPPRC variants identified in patients 
with POI should be interpreted cautiously.

Mitochondrial protein homeostasis
Human mitochondria contain 1000 to 1500 proteins (279). The 
protein homeostasis is collectively regulated by mitochondrial 
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chaperones, proteases, and the ubiquitin–proteasome system. 
They assist in protein folding and degrade damaged or mislocal
ized proteins by upregulating caseinolytic peptidase P (CLPP) 
and caseinolytic peptidase B (CLPB) (280). Disruption of mito
chondrial proteostasis often results in a syndromic phenotype, 
including ovarian dysfunction. To date, 5 biallelic variants in 
CLPP have been reported in the patients with Perrault syn
drome, who developed POI after puberty (261, 281-284). 
CLPB variants might induce POI in recessive and dominant 
modes, which also cause syndromes with metabolism abnor
malities, impaired nervous system, and hematopoietic system 
symptoms (285). Functional studies have found that these 
variants affect mitochondrial function through both “gain 
of function” and “loss of function” effects, suggesting that 
mitochondrial proteostasis must be balanced to regulate 
cell survival, including oocytes (286).

Beside genetic defects, lifestyle and environmental factors, 
such as smoking, alcohol, and exposure to chemicals or 
bisphenol A, have been associated with oxidative stress, 
which in turn is linked to accelerated ovarian aging and 
POI (287-290). Advanced glycation end-products, which 
are increased in the patients with diabetes, also promote 
chronic oxidative stress. Therefore, the endogenous mito
chondrial dysfunction induced by genetic defects or pri
mary disease and exogenous environmental factors might 
cumulatively affect ovarian function and contribute to 
POI pathogenesis.

Monogenic and Polygenic Inheritance Patterns 
of POI
POI is characterized by remarkably high heterogeneity, both 
in clinical manifestations and genetic etiology, with corres
pondingly variable and complicated modes of inheritance, 
our understanding of which continues to expand (1). 
Furthermore, growing evidence from WES studies in POI co
horts from around the world (291, 292), as well as GWAS 
studies on ANM in the general population (8), together sug
gest that the pathogenicity of monogenic variants in POI is 
more complex than we thought. Importantly, POI also exhib
its characteristics of oligogenic or polygenic inheritance, 
where common variants cumulatively influence the age of 
menopause, especially for ANM down to age 34 years, con
tributing to the overall genetic landscape of POI (8).

Most of the POI causal genes were identified by WES in POI 
pedigrees, and the majority of these genes have a recessive 
mode of inheritance. However, several WES studies on large- 
scale cohorts of sporadic POI have found that deleterious 
biallelic variants were carried by less than 6% of unrelated pa
tients (292-294). Most of the variants identified in sporadic 
POI cases are heterozygous. Some of them cause POI through 
a dominant mode, which has been confirmed by family cose
gregation analysis or the diminished ovarian function ob
served in the heterozygous mouse models. However, the 
pathogenicity of those heterozygous variants in traditionally 
recessive POI genes remains controversial.

Taking together the amenorrhea types of the heterozygous 
variant carriers and the ovarian phenotypes of the respective 
mouse models, it seems like that monoallelic variants may 
have a dosage-dependent effect on ovarian function. This hy
pothesis could be raised from 2 phenomenon: (1) certain genes 
responsible for syndromic POI in the biallelic state could in
duce isolated POI by monoallelic defects (eg, FANCA (115) 

and FANCL (112)); and (2) the monoallelic variants in reces
sive POI genes were associated with a milder phenotype, such 
as DOR or poor ovarian response. For instance, although bial
lelic variants of BRCA2 have been reported in POI cases, some 
previous, well-designed prospective cohort studies have con
firmed that carriers of BRCA2 heterozygous variants exhibit 
decreased levels of AMH (295), lower primordial follicle 
densities (296), and early menopause (8). Therefore, these 
studies thus suggest the possibility that monoallelic variants 
in recessive genes could be responsible for a potentially meas
urable contribution to POI incidence.

Furthermore, because stringent criteria in the American 
College of Medical Genetics and Genomics (ACMG) guide
lines may result in exclusion of a proportion of variants that 
were predicted to be potentially deleterious in silico but lack 
experimental validation, as well as the technical limitations 
in identifying noncoding variants and structural variants 
may lead to omission of deleterious variants that cannot be de
tected by WES (220); those monoallelic variants in recessive 
genes may contribute to POI by combining with another un
recognized variants in recessive mode. These limitations indi
cate that monoallelic variants in recessive POI genes identified 
by WES deserve further investigation to avoid overlooking po
tentially pathogenic variants.

Despite the high heritability estimates of menopausal 
age, multiple studies over a decade of extensive research 
found that monogenic inheritance only accounted for a low 
proportion of POI cases, indicating the involvement of 
non-Mendelian inheritance in POI (297, 298). Indeed, many 
diseases originally thought to be caused by highly penetrant 
Mendelian alleles actually comprise a spectrum from 
Mendelian to complex (299, 300). In fact, previous WES stud
ies of POI have suggested the oligogenic or polygenic inherit
ance (269). Moreover, the recent population-based study 
involving 104 733 women from the UK Biobank found that 
the heterozygous high-confidence protein-truncating variants 
have limited penetrance for POI (77). Although there were 
limitations, such as only 113 women were clinically defined 
as patients with POI, homozygous or compound heterozygous 
variants or cytogenetic abnormalities have not been assessed, 
as well as the splice site and stop gain variants near the end of 
proteins had not been analyzed for true loss of function ef
fects, those findings suggested monogenic variants could not 
explain the majority of the cases. Future studies should ad
dress on the genetically complex trait of POI.

Recently, some oligogenic models have been reported in 
other diseases. For instance, Gifford et al described an oligo
genic combination of MRTFB, MYH7, and NKX2-5 in the 
pathogenesis of congenital heart disease (301). In this case, a 
rare missense NKX2-5 variant acts as a genetic modifier, 
together with missense mutations in myocardin-related 
transcription factor MKL2 and sarcomeric protein MYH7, 
contributing to the left ventricular non-compaction. 
Additionally, Wang et al reported the cases with Müllerian 
duct anomalies carrying dual deleterious mutations, whose 
synergistic effect had been verified by animal models, reveal
ing the digenic inheritance of Müllerian duct anomalies 
(302). Although the oligogenic or polygenetic mode in POI re
mains theoretically speculative, this is a pivotal direction for 
future research. Considering the technical limitations of 
WES in recognizing novel POI causal genes and detecting 
pathogenic variants in known POI genes, as described above, 
future studies with WGS and advanced pathogenicity 
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evaluation system for variants, will facilitate establishing a 
comprehensive genetic architecture of POI.

Epigenetic Etiology of POI
During folliculogenesis, the orderly activation and inhibition 
of mass genes are under the synergistic control of diverse 
modifiers through genetic and epigenetic events (21). 
Epigenetic modification, such as noncoding RNA expression, 
DNA methylation, and histone modification, may change 
chromatin structure without affecting the DNA sequence to 
regulate gene expression and functions, and is considered as 
a hallmark of aging. Over the past few decades, substantial 
progress has been made in studies of epigenetic alterations 
during germ cell development. There is increasing evidence 
that epigenetic modifications are involved in the occurrence 
and progression of POI (303). Here, we introduced these alter
ations through noncoding RNA, DNA methylation, and his
tone modifications perspectives (Fig. 2).

Noncoding RNAs
Noncoding RNAs (ncRNAs) are not capable of protein trans
lation, yet they regulate gene expression by interacting with 
nucleotide sequences or proteins, and participate in follicle 
development (304, 305). Recent studies have demonstrated 
that microRNAs (miRNAs) and their target genes play an 

important role in the pathogenesis of POI by inhibiting GCs 
proliferation, promoting apoptosis, and impairing genomic 
integrity. Dang et al identified miR-22-3p was significantly 
downregulated in the plasma of patients with POI compared 
to age-matched controls and was negatively associated with 
serum FSH levels (272). Chen et al reported the upregulation 
of miR-146a in the plasma and GCs from patients with POI, 
which contributed to GCs apoptosis by targeting IRAK1 
and TRAF6 via the caspase cascade pathway (274). Elevated 
serum levels of miR-23a and miR-27a in the patients with 
POI also have been found to promote GCs apoptosis via the 
FasL-Fas pathway (306). Conversely, another upregulated 
miRNA, miR-181a, found in the blood of POI cases, has been 
shown to inhibit GCs proliferation by suppressing the expression 
of activin receptor ACVR2A (307). Moreover, miR-379-5p 
(308) and miR-127-5p (309) were identified to be upregulated 
in the GCs from patients with biochemical POI (bPOI, defined 
as serum FSH between 10 and 25 IU/L). These miRNAs may 
promote the progression of POI by inhibiting the proliferation 
and DNA repair capacity of GCs through targeting PARP1and 
XRCC6, and HMGB2, respectively.

In addition to miRNAs, long ncRNAs (lncRNAs) are also reg
ulators of the specification and proliferation of GCs and con
tribute to the pathogenesis of POI. Fragile X-associated POI 
(FXPOI) is 1 type of POI induced by FMR1 premutation (an ex
pansion of CGG repeats within the 5′ UTR of the FMR1 gene). 
Recent study found that lncRNA-FMR6, an antisense lncRNA 

Figure 2. Epigenetic factors involved in ovarian aging and POI. Through epigenomic profiling of peripheral blood, follicular fluid, oocytes, and granulosa 
cells (GCs) from patients with POI or females of advanced age, numerous epigenetic markers associated with ovarian function have been identified. 
Multiple noncoding RNA (ncRNA), such as microRNA (miRNA) and long ncRNA (lncRNA), primarily regulate the expression of genes essential for ovarian 
function, inducing POI through GC apoptosis and follicular atresia. Downregulation of DNA methylation is a feature of germ cell aging. Ovarian function 
decline is correlated with high densities of hypomethylated CpG-rich regions in GCs, and the expression of DNA methyltransferase (DNMT) in MII 
oocytes is decreased as ovarian aging. Histone modifications play a critical role in follicle development. The histone 3 lysine 4 (H3K4) methylation is 
involved in primordial follicle formation, follicle atresia, and germinal vesicle breakdown. Disruption of H3K4me2 demethylase LSD1 in oocytes or 
H3K4me3 regulator CXXC1 in GCs leads to increased follicle atresia. Moreover, deletion of H3K27me3 demethylase KDM6B and JMJD3 in GCs affects 
the nuclear–mitochondrial genomes and leads to subfertility, indicating their potential role in POI occurrence.
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produced by the 3′ UTR of FMR1, in the cumulus GCs was 
negatively related to the number of oocytes (310). In vitro ex
periments found overexpression of lncRNA-FMR6 inhibited 
the proliferation of GC cells, impairing follicle development 
(311), confirming the FMR1 RNA toxicity is a potential mech
anism of FXPOI. Moreover, lncRNA HCP5 (312), lncRNA 
PVT1 (313), lncRNA LINC02690 or GCAT1 (314), 
lncRNA ZNF674-AS1 (315), lncRNA HOTAIR (316), 
lncRNA DANCR, and lncRNA NEAT1 were identified to be 
downregulated in the GCs of patients with POI, which contrib
ute to follicle atresia by GCs apoptosis (317, 318).

Moreover, Zhou and colleagues investigated the expres
sion profiles of circular RNAs (circRNAs) in the GCs from 
patients with bPOI. They demonstrated that upregulated hsa_ 
circ_003785 and hsa_circ_103903 were positively correlated 
with serum FSH, while the downregulated hsa_circ_008389 
was positively correlated with AMH level and antral follicle 
counts (AFCs). They further constructed a circRNA-miRNA 
network and found the miRNA-targeted genes predominantly 
enriched in the FOXO signaling and cellular senescence path
way, suggesting that circRNAs may be involved in the patho
genesis of POI via circRNA–miRNA-targeted gene regulation 
(319). In addition, a recent study found circBRCA1 was de
creased in the serum and GCs of patients with POI. Further 
study found circBRCA1 upregulated FOXO1 expression by 
sponging miR-642a-5p. CircBRCA1 insufficiency could ag
gravate mitochondrial dysfunction and induce GCs senes
cence through miR-642a-5p/FOXO1 axis, confirming the 
role of circRNAs involving in the pathogenesis of POI (320).

Notably, multiple studies have revealed that ncRNAs are 
also involved in the occurrence of drug-induced POI. 
Cisplatin and tripterygium glycosides promote cytotoxicity, 
senescence and apoptosis of GCs by upregulation of 
miR-125a-5p and miR-15a, respectively (321, 322). 
Cyclophosphamide upregulates the expression of miR-15b, 
leading to the reduced ability of mouse GCs to induce autoph
agy and ROS scavenging (323). Meanwhile, cyclophospha
mide defers GCs proliferation and promotes POI by 
inducing lncRNA-Meg3 expression (324). Understanding 
the molecular mechanism underlying drug-induced POI is of 
great significance for protecting ovarian function prior to 
medication administration.

Recently, some ncRNAs have been investigated as potential 
biomarkers and pharmaceutical targets for ovarian reserve de
cline. For instance, miR-22-3p in exosomes derived from umbil
ical cord stromal cell (325), miR-369-3p in exosomes derived 
from human amniotic fluid stem cell (326), miR-644-5p 
(327), and miR-144-5p (328) in exosomes derived from bone 
mesenchymal stem cell (MSC) have been found to attenuate 
the apoptosis of GCs. lncRNA nuclear enriched abundant tran
script 1 (NEAT1) and melatonin could block GCs autophagy 
by inhibiting the expression of miR-654 and miR-15a-5p, re
spectively (329, 330). Moreover, miR-126-3p and miR-21 
could downregulate LATS1 to reduce the phosphorylated 
LOXL2 and YAP levels and ultimately promote estrogen secre
tion in GCs (331, 332). However, most of the studies were per
formed in the mice models, their application in clinical practice 
still needs more evidence.

DNA Methylation
DNA methylation patterns of germ cell change mainly along 
fetal age and abnormal DNA methylation is a feature of 

germ cell aging (85, 87, 333). A genome-wide DNA methyla
tion study was conducted in human ovarian GCs and found 
the ovarian function decline correlated with high densities of 
hypomethylated CpG-rich regions (334). That might result 
in the decreased expression of genes essential for the mainten
ance of ovarian function, such as AMH, result in DOR and re
sponse to gonadotropins (334). Recently, Lu and colleagues 
integrate the DNA methylation profile of human GCs and 
the transcriptomic data from patients with POI, and found 
that majority of the 240 differentially expressed and methy
lated genes were enriched in oxidative stress pathways 
(335). They also found the top hub genes hypomethylated in 
in exon regions and the 3′ UTRs correlated with abnormal me
tabolism, providing insights into the pathological mechanism 
of POI and potential therapeutic targets. Studies from murine 
models found deficiency of Tet methylcytosine dioxygenase 1 
increases the DNA methylation levels of a subset of meiotic 
genes in the oocytes, subsequently decreases their expression, 
leading to abnormal synapsis induced oocyte apoptosis and 
ovarian reserve decline (336, 337). Additionally, the expres
sion levels of DNA methyltransferase (DNMT) 1/3a/3b/3L 
and DNA methylation levels in MII oocytes were decreased 
significantly as aging (338). Upregulating the expression of 
DNMTs by drugs or allografting brown adipose tissue could 
improve the DNA methylation status of ovarian tissue, there
by enhancing the quantity and quality of oocytes (339, 340). 
However, how to use the methylation data for ovarian func
tion assessment or how to develop the treatment strategies 
of POI still face many challenges.

Histone Modifications
Although there is currently little direct evidence addressing the 
association between histone modifications and POI, histone 
modifications have been indicated to play a critical role in fol
licle development (341). The histone 3 lysine 4 (H3K4) methy
lation (H3K4me1/2/3) is mainly related to gene transcriptional 
activation and is involved in primordial follicle formation, fol
licle atresia, and germinal vesicle breakdown. Disruption of 
H3K4me2 demethylase LSD1 in the oocytes (342, 343) or 
H3K4me3 regulator CXXC1 in GCs (344-346) lead to in
creased follicle atresia, indicating a potential role of them in 
ovarian aging and POI.

The H3K9 methylation modification (H3K9me1/2/3) pri
marily represses gene transcription, playing an important role 
in epigenetic reprogramming of PGCs (88) In females, it mainly 
affects the number of germ cells after birth and their potential of 
differentiating into growing oocytes (347). Lysine demethylase 
6B (KDM6B) specifically catalyzes the demethylation of 
H3K27me3, playing a crucial role in coordinating the nu
clear–mitochondrial genomes, which is essential for maintain
ing ovarian function and female fertility. Conditional deletion 
of Jmjd3, another H3K27me3 demethylase, in GCs leads to a 
significant reduction in mtDNA content, a decrease in the total 
number of healthy follicles, disruption in the estrous cycle, and 
increased follicular atresia, ultimately leading to subfertility and 
premature ovarian failure (348).

Other histone modifications also have different degrees of 
influence on follicle development. Histone deacetylases 
(HDACs) participate in maintaining primordial follicles in a 
dormant state by regulating the mTOR-KITL signaling path
way (349). Overexpression of HDAC6 in mice increased the 
number of follicles, especially secondary and antral follicles, 
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reduced H3K9me3 levels, and prolonged the reproductive life
span (350). In addition, the histone ubiquitination/deubiquiti
nation system plays a vital role in meiotic and mitotic 
processes (351). DCAF13 is a part of the Cul4-RING E3 ubi
quitin ligase complex, which participates in the processing of 
18S rRNA in growing oocytes (352). Deficiency of DCAF13 in 
oocytes inhibits follicle development, resulting in defective 
chromatin condensation, premature ovarian failure, and fe
male sterility (353, 354).

These studies suggest that dysregulation of histone modifi
cation may be a cause of insufficient establishment of the 
primordial follicle pool and accelerated follicle loss, providing 
new insights into the epigenetic etiology of POI. Notably, or
dered histone modification also is essential for oocyte matur
ation, fertilization, and early embryo development through 
maternal-zygotic transcription and zygotic genome activation 
(355). Therefore, defects in histone modification could result 
in other reproductive disorders besides POI, such as oocyte 
maturation defects, embryonic developmental arrest, and re
current implantation failure.

Intervention of POI
Because ovarian reserve decline is irreversible, there is current
ly no effective method to restore the ovarian function of pa
tients with POI. Therefore, early detection, early diagnosis, 
and early intervention during the development of the disease 
are prioritized. Elucidating the pathogenic mechanisms of 
POI could facilitate timely identification of the females with 
high-risk of POI. With the early reproductive counseling and 
comprehensive health management, they may have improved 

pregnancy outcome and life quality in the future. In this sec
tion, we will introduce the potential prediction and treatment 
strategies to improve the long-term health and reproductive 
outcomes of the patients with POI (Fig. 3).

Prediction and Early Warning of POI
Recent clinicians recommended that POI should be considered 
when women present with new-onset irregular menses or 
amenorrhea and possibly vasomotor, depressive, or anxiety 
symptoms (1). Women with elevated FSH and low estradiol 
levels measured on 2 occasions 1 month apart should be diag
nosed with POI. Moreover, declining serum AMH, inhibin B, 
and AFC are also used to evaluate ovarian function. However, 
diagnosing POI still faces many challenges, including hetero
geneous phenotypes, diverse diagnostic criteria, and the limi
tations of laboratory tests, resulting in prolonged time to 
diagnosis and treatment. Most patients when diagnosed 
with POI would face a low chance of spontaneous pregnancy 
due to significantly reduced ovarian reserve. Therefore, there 
is an urgent need for the development of a tool to predict 
POI at an earlier stage.

The understanding of genetic factors associated with nat
ural and pathological menopause has been expanded through 
large-scale GWAS and WES studies, enabling genetic predic
tion of POI. Perry and colleagues calculated a polygenic score 
(PGS) for ANM using GWAS data from 108 840 women of 
European ancestry and found that the PGS performed well 
in predicting the risk of POI. Women at the top 1% of the 
PGS had equivalent POI risk to those with FMR1 premutation 
(8, 356). Notably, the common variants associated with ANM 

Figure 3. Early prediction and treatment of POI. Since ovarian reserve decline is irreversible, early prediction and intervention of POI are prioritized. The 
ovarian reserve assessment model has been developed using clinical measures such as age, AMH, FSH, and antral follicle counts (AFCs). With advances 
in the genetic and epigenetic etiologies of POI, combined with ovarian aging-related biomarkers in inflammatory response and lipid metabolism, a 
multidimensional prediction model for POI will be generated. Moreover, besides individual treatments with HRT and antioxidants, advances in 
bioengineering promote the development of promising strategies, such as fertility preservation, ovarian microenvironment remodeling, and stem cell 
transplantation, in the treatment of POI.
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may vary due to ethnic and regional differences, and the pre
dictive efficiency of the PGS for women with menopause onset 
before age 34 remains unclear. For these women, genetic pre
diction of POI may be facilitated by WES to identify pathogen
ic variants in POI causal genes, and the accuracy is expected to 
be improved with advances in WGS.

In addition, an increasing number of studies have endea
vored to develop models capable of predicting ovarian reserve 
by integrating multidimensional clinical, biochemical, and im
aging metrics. As early as 2010, Younis et al employed logistic 
regression analysis to identify 8 independent factors associ
ated with low ovarian reserve, defined as 3 or fewer retrieved 
oocytes, in the women undergoing IVF treatment. They subse
quently developed a multivariate scoring system and found 
that a cumulative score greater than 14 was more accurate 
than independent variables, such as age, basal FSH, and 
AFC, in predicting low ovarian reserve, with a sensitivity of 
88% and a specificity of 69% (357). However, the use of 
this score to predict POI is inappropriate because the study 
was conducted with infertile women without diagnosed 
POI. Venturella et al generated a generalized linear model in
corporating factors, such as AMH, basal FSH, E2, AFC, ovar
ian volume, vascular index, and flow index of ovary, to predict 
the ovarian age (named OvAge model) in 652 healthy fertile 
women and 29 patients with POI (358). The results showed 
that the predicted ovarian age of patients with POI (mean 
50.63 ± 3.80 years) was significantly higher than their 
chronological age (mean 37.90 ± 3.31 years), suggesting that 
the model could identify depleted ovarian reserve in patients 
with POI, analogous to that observed in women ANM onset. 
Furthermore, machine learning methods have advanced the 
development of predictive models for ovarian reserve. 
Through retrospective cohort studies, Qiao and colleagues 
generated 3 mathematical models, including AA (AMH and 
Age), AFA (AMH, FSH and Age), and AAFA (AMH, AFC, 
FSH, and age), to predict ovarian reserve using the number 
of retrieved oocytes as outcome variables (359, 360). Based 
on the 3 models, they established an ovarian aging curve to 
predict the time to menopause (OvaRePred) (9). While, the 
viability of above models in predicting the risk of POI still 
needs to be validated by prospective cohort studies.

Moreover, the effects of iatrogenic and environmental fac
tors also should be considered when predicting POI. Using 
training data from 7891 females in the Childhood Cancer 
Survivor Study and validation data from 1349 females in the 
St Jude Lifetime Cohort, Im et al developed age-specific risk 
prediction models for POI (failure to enter puberty or meno
pause before 40 years old) in childhood cancer survivors 
(361). Factors such as increased pelvic radiation, use of alky
lators, hematopoietic stem cell transplantation, and younger 
age at cancer diagnosis are predictors of POI. They developed 
a risk prediction model for POI with the area under the re
ceiver operating characteristic curve at 0.88 to 0.95. In add
ition, the polygenic risk predictor enhanced the average 
positive predictive value of the model from 0.76 to 0.87, sug
gesting that a comprehensive tool incorporating clinical and 
genetic data could improve the accuracy and generalizability 
of POI prediction models in clinical practice.

With the application of multiomics techniques in the study 
of reproductive aging, increasing potential biomarkers for 
POI would enhance the viability of POI prediction models. 
The combined analysis of single-cell RNA sequencing and spa
tial transcriptomics in human ovaries identified FOXP1 as a 

protective factor for ovarian aging (362). Silencing FOXP1 in 
GCs results in POI-like phenotype in mice, indicating its poten
tial role in predicting POI. Pei et al also found the activation of 
the AP1 pathway within the ovarian microenvironment of hu
mans and nonhuman primates is a feature of the premenopausal 
to postmenopausal transition (363). Furthermore, single-cell 
transcriptomic studies of nonhuman primates ovaries revealed 
various genes associated with ovarian senescence, including 
antioxidant genes that are specifically downregulated in oocytes 
and GCs during the early stages of ovarian senescence, 
such as GPX1, GSR, GPX4, and PON1 (249). In addition, 
Harasimov et al analyzed proteostasis in mice ovaries and found 
352 extremely long-lived protein in the oocytes and surrounding 
somatic cells, which functioned in mitochondria, cytoskeleton, 
chromatin, and proteostasis. Among them, those proteins 
sharply decreased with aging, which involved in DSBs repair, 
telomere function and zona pellucida pathway, as well as those 
increased proteins involved in inflammatory response, retinoic 
acid synthesis, and oxygen-related pathway, are likely to partici
pate in ovarian aging (364). These increasing data enhances our 
understanding of the molecular mechanisms underlying both 
physical and pathogenic ovarian aging. The mechanisms by 
which these ovarian aging–related proteins influence ovarian 
function and their potential role in POI prediction are still 
needed to be investigated. Clinical studies are also needed to 
clarify the predictive accuracy and reliability of these markers 
in different populations, as well as the applicability of incorpor
ating these markers into the predicative models of POI.

Hormone Replacement Therapy
Although the decline in ovarian reserve is irreversible, appro
priate HRT is crucial for alleviating vasomotor and vulvova
ginal atrophy symptoms and for optimizing long-term 
cardiovascular and bone health (365-367). HRT should be in
dividualized based on age, clinical characteristics, and patient 
needs. In the absence of contraindications, patients with pri
mary amenorrhea at puberty should be treated with low-dose 
estradiol (0.05-0.07 μg/kg/day transdermally or 0.3-0.5 mg/day 
orally) to mimic the physical tempo of puberty, with gradual 
dose escalation to adult levels over 2 to 3 years to induce pu
berty with optimal breast development. When adequate endo
metrial development is observed by ultrasound or vaginal 
bleeding occurs, or after 2 years of estrogen treatment, proges
terone should be added cyclically, using micronized progester
one 200 mg or medroxyprogesterone 5 mg daily for 14 days, 
to protect the endometrium (368). For adult women with POI, 
physiological HRT to replace premenopausal levels of ovarian 
hormones until natural menopause is recommended. This in
cludes oral estradiol (1-2 mg/day) or transdermal estradiol 
(50-100 μg/day), followed by progesterone (200 mg/day) or 
norethisterone (1-5 mg/day orally or 0.25 mg/day transder
mally) for 10 to 14 days cyclically (369). Compared with com
bined oral contraceptive pills, physiological HRT is reported 
to be more effective in maintaining bone and cardiovascular 
health in young women with POI (367, 369-371). 
Furthermore, the transdermal or transvaginal routes for estra
diol are preferred because they reduce the first-pass effect on 
the liver and the risk of venous thromboembolism (372-374).

Furthermore, concerns have been raised about the increased 
risk of hormone-sensitive cancers, such as breast and ovarian 
cancer, associated with HRT use. The clinical evidence of 
HRT not increasing the risk of those cancers before the age 
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of natural menopause remains insufficient. Notably, due to 
the high risk of ovarian and breast cancer in carriers of FA 
and BRCA mutations (375-377), HRT should be carefully 
considered for POI cases with these mutations. To date, 11 
clinical studies have evaluated the effect of HRT on breast 
cancer risk in BRCA mutation carriers. Most studies found 
that short-term HRT use did not increase the risk of breast 
cancer after risk-reducing salpingo-oophorectomy (RRSO) 
(378-382). However, some studies have indicated that differ
ent agents and timing of hormone exposure may alter the risk. 
In a prospective cohort study with a 10-year follow-up, 
Kotsopoulos et al observed that the cumulative incidence of 
breast cancer was significantly lower in patients treated with 
estrogen-alone HRT than in those treated with estrogen plus 
progesterone HRT. This suggests a potentially detrimental 
effect of HRT regimens that include progestins on breast 
cancer (383). Furthermore, Michaelson-Cohen et al found 
that short-term post-RRSO HRT use was associated with 
a threefold increased risk of breast cancer in BRCA muta
tion carriers who received HRT after age 45, indicating 
that the effect of HRT on breast cancer risk is age-related 
(384). The Clinical Practice Guidelines in Oncology 
(Version 2.2021) recommend prophylactic RRSO after the 
completion of childbearing and the use of HRT for less 
than 5 years based on postmenopausal symptoms, which 
does not appear to increase cancer risk in gene mutation car
riers (385). Due to varying criteria for subject inclusion, lim
ited sample sizes, unclear routes and dosages of HRT drugs, 
and recall bias in retrospective studies, future prospective 
studies are needed to refine personalized treatment for pa
tients with specific genetic characteristics.

Besides estrogen and progesterone, the inclusion of dehy
droepiandrosterone (DHEA) in the HRT regimen has shown 
potential in enhancing ovarian function with limited data. 
DHEA is an endogenous steroid secreted by the female ad
renal cortex and ovarian theca cells, involved in estrogen syn
thesis and folliculogenesis. Because testosterone supplement 
has potential risks of excess hair, acne, weight gain, even deep
ened voice and clitoral enlargement in high dosage, the routine 
use is not recommended in the guidelines. Since 2005, several 
observational studies have showed that supplementation with 
DHEA could improve ovarian response and pregnancy out
comes in patients with POI or DOR (386-391). However, a 
randomized controlled trial found that women with POI re
ceiving 25 mg of DHEA 3 times a day for 16 weeks did not 
show significant changes in serum AMH and FSH levels, al
though higher AFC and ovarian volume were observed in 
the DHEA group at 12 and 20 weeks, respectively (392). 
Therefore, more clinical trials with larger sample-size are 
needed to verify the effect of DHEA in the treatment of POI, 
especially focus on the dosage, duration, and safety.

Prolong Reproductive Lifespan by Remodeling 
Ovarian Microenvironment
The development, atresia, and ovulation of follicles are influ
enced by the dynamic mechanical forces surrounding them, 
interactions between oocytes and somatic cells, as well as 
angiogenesis and immune cell infiltration within the ovarian 
microenvironment (14, 249, 393). Studies on reproductive 
senescence suggest improving ovarian microenvironment is a 
promising strategy to prolong reproductive lifespan, provid
ing potential targets for POI intervention (249, 362-364).

Multiomics studies in murine models (11, 12) suggest that 
alterations in the extracellular matrix and vasculature regulate 
ovarian aging. Transplantation of stromal cells from young 
mice or inhibiting neovascularization can prolong the repro
ductive lifespan of aged mice (394, 395), potentially by decel
erating primordial follicle activation due to altered 
mechanotransduction signals and nutrient transfer. Recent 
spatial transcriptomics studies in human ovaries identified 3 
GC subtypes and 5 subtypes of theca and stromal cells in
volved in ovarian aging (362). Additionally, long-lived pro
teins related to ovarian aging were found to be expressed in 
oocyte, ovarian stromal cells, GCs, and theca cells, confirming 
that ovarian senescence was driven by both oocytes and sur
rounding somatic cells (364). Therefore, treatments targeting 
at these stromal cell components and proteins hold promise 
for extending ovarian function in patients with POI.

Moreover, inflammatory factors (eg, TNF-α, IL-1, NLRP3 in
flammatory vesicles, etc.) and immune cell differentiation (eg, 
macrophages, T-cells, B-cells, etc.) contribute to ovarian 
aging by disrupting the immune balance within the ovarian 
microenvironment (10, 396-400). Zhou et al observed that 
macrophages activated through the pyroptosis pathway re
molded the ovarian immuno-microenvironment, promoted 
stromal cell senescence, and accelerated ovarian function de
cline. In contrast, inhibition of the pyroptosis pathway via 
knockout of GSDMD (a key executor of pyroptosis) or 
through the use of disulfiram (a known pyroptosis inhibitor) 
could partially increase the number of retrieved oocytes from 
aged ovaries, suggesting the potential role of these strategies 
in treating ovarian aging (10). Another study confirms that in 
the aged ovaries, inflammation-induced upregulation of 
NADase CD38 significantly reduced NAD+ levels, accelerat
ing ovarian aging. In that study, a small molecule CD38 in
hibitor enhanced oocyte quality and fertility by countering 
age-related gene expression changes and intercellular com
munication alterations (396). These studies provide novel in
sights into intervention strategies aimed at delaying POI 
progression.

Fertility Treatments
The spontaneous pregnancy rate in patients with POI is below 
5%. Most patients achieve their fertility goals through the use 
of donor oocytes and IVF treatment. However, the clinical 
pregnancy rate among patients with POI undergoing ART re
mains below 10% (401). Recent studies have indicated that 
antioxidants, stem cells, and IVA may improve the reproduct
ive outcomes of the patients.

Antioxidants
Oxidative stress induced by various factors can lead to ele
vated ROS level and inflammatory factors in the ovaries, re
sulting in reduced ovarian function (249). Antioxidants and 
molecules that affect antioxidant signaling pathways have 
the potential to improve follicle quality by modulating these 
mechanisms. Coenzyme Q10 (CoQ10) has been reported to 
positively impact ovarian function due to its antioxidant 
properties that enhance mitochondrial function. In primate 
oocytes, the expression of enzymes responsible for CoQ10 
production, such as PDSS2 and COQ6, declines with aging. 
However, the age-related ovarian reserve decline could be 
mitigated by CoQ10 administration (402). Furthermore, in 
mice models of POI or POF (FSH > 40 IU/L) induced by 
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VCD or cyclophosphamide, oral administration of CoQ10 at 
150 mg/kg/day for 14 days or 22 mg/kg/48 hours for 21 days 
reduced serum ROS levels and partially reversed ovarian fail
ure (403, 404). Another well-known antioxidant, melatonin, 
has been demonstrated to protect the ovary from chemother
apy by preventing primordial follicle activation through the 
PTEN/AKT/FOXO3a pathway (405-409). Additionally, anti
oxidants such as resveratrol (410) and N-acetyl-L-cysteine 
(411) have also been found to alleviate GC injury by enhan
cing autophagy or inhibiting apoptosis.

Based on foundational studies, antioxidants have been em
ployed in managing ovarian aging, including in women with 
DOR or advanced age. A meta-analysis encompassing 
20 randomized clinical trials involving 2617 participants 
found that the addition of antioxidants, such as CoQ10, mela
tonin, inositol, vitamins, resveratrol, acetyl L-carnitine, 
N-acetyl-L-cysteine, and  a-lipoic acid, could increase the 
number of retrieved oocytes and clinical pregnancy rates dur
ing IVF treatment (412). CoQ10 is more effective than other 
antioxidants, with a dosage of 30 mg/day for 3 months prior 
to controlled ovarian stimulation proving optimal for improv
ing pregnancy rates, particularly in those under 35 years of age 
with DOR (412). However, the effects of these antioxidants 
on reproductive outcomes in women with POI remain un
clear. Furthermore, the recently identified antioxidant spermi
dine, which may improve the quality of aged oocytes, could 
also represent a potential therapeutic strategy for enhancing 
reproductive outcomes in POI cases (11). Therefore, the clin
ical application of these antioxidants in the reproductive man
agement of POI, particularly biochemical POI, requires 
further high-quality clinical trials to determine optimal dos
ages and assess potential adverse effects.

Stem cell therapy
Transplantation of MSCs and their exosomes has been shown 
to be a promising strategy to improve follicular development 
and reproductive outcome in the murine models of POI 
(413-419). The MSCs used in treatment include human um
bilical cord–derived MSCs (hUC-MSCs) (414-416), human 
adipose–derived MSCs (418), and bone marrow–derived 
MSCs (419). These treatments exhibit anti-inflammatory 
and antioxidant effects, remodel the immune microenviron
ment around follicles, and promote GC proliferation, thereby 
reduce the speed of ovarian reserve decline and activate prim
ordial follicles (420). However, clinical trials are limited. 
Aghdami and colleagues conducted a nonrandomized clinical 
trial of transplanting autologous human adipose–derived 
MSCs into the ovaries of 9 patients with POI. They observed 
resumption of menstruation and decreased serum FSH level 
in 4 cases, while the pregnancy outcome had not been followed 
(421). Wang’s team conducted a clinical trial of hUC-MSCs in 
61 patients with POI. Among them, 15 patients received oo
cytes retrieval for in vitro fertilization and 4 patients delivered 
normally developed babies. Moreover, they found that patients 
with POI with shorter durations of amenorrhea (<1 year) or 
better ovarian conditions appeared to achieve better outcomes 
after stem cell therapy (422). Sun’s team found that transplant
ation of hUC-MSCs on a collagen scaffold into the ovaries of 
patients with POF (FSH > 40 IU/L) could promote follicle acti
vation compared to transplantation with isolated hUC-MSCs. 
Two cases conceived naturally in the study, but 1 case induced 
labor at 24 weeks due to fetal trisomy 21 syndrome (420). 

Although microsatellite loci analysis showed that the fetus 
was genetically related to the mother but not to the donor 
hUC-MSCs, the safety of stem cell transfer still should be con
sidered. Recently, utilization of MSC-derived exosomes offers a 
cell-free option that retains the reparative properties of MSCs 
while overcomes tumorigenesis and immunogenicity of stem 
cells (423-425). Furthermore, MSCs and MSC-derived exo
somes improve ovarian function via paracrine of cytokines 
and ncRNAs. These paracrine factors are promising targets 
for the treatment of POI as well.

Previous studies have demonstrated that human amniotic 
epithelial cells (hAECs) can restore ovarian function in the 
POI mouse model by inhibiting GC apoptosis and promoting 
angiogenesis (426-428). Recently, Lai and colleagues con
ducted a single-arm, phase 1 clinical trial to assess the safety 
and efficacy of allogenic hAECs in treating POF (FSH >  
40 IU/L) (429). The researchers transplanted hAECs via the 
ovarian artery in 35 cases, finding that endometrial thickness, 
ovarian size, sex hormone levels, and menopausal symptoms 
were temporarily improved without serious adverse events 
during the 5-month follow-up period. Despite the clinical trial 
demonstrated positive short-term outcomes, long-term 
follow-up data on ovarian function and offspring remain un
available. Therefore, the safety of clinical treatments involving 
stem cells must be thoroughly assessed, and randomized con
trolled trials with extended follow-up periods and larger sam
ple sizes are necessary.

In vitro activation of early follicles
In recent years, IVA of early follicles has emerged as a prom
ising fertility treatment for patients with POI. It is initially 
used to stimulate the residual primordial follicles in women 
with DOR through interruption of Hippo signaling pathway 
and stimulation of PI3K/AKT pathway (184, 430). Clinical 
studies found 40%–60% of the patients with POI with re
sidual follicles showed follicle growth after treatment, result
ing in 6 birth of healthy infants, even for those retransplanted 
with cryopreserved ovarian tissues (184, 431-433). Moreover, 
because some drugs such as AKT stimulating drugs or PTEN 
inhibitors could induce morphological abnormalities and 
DNA repair defects of oocytes (434, 435), IVA has been 
evolved into a medication-free process that is adequate to 
stimulate the growth and maturation of follicles (436, 437). 
In addition, there exist several issues with IVA that demand at
tention, such as lacking imaging techniques to localize re
sidual follicles, low success rate of developing primordial 
follicle into growing follicles, and limited developmental po
tential of the obtained oocytes. Therefore, ongoing modifica
tions is needed to enhance the safety and efficacy of IVA, 
thereby accelerating the clinical translation of this technology.

Fertility Preservation
The options for fertility preservation depend on the women’s 
ovarian condition and pubertal status. Postpubertal patients 
with POI with visible antral follicles can undergo standard as
sisted reproductive technologies, including controlled ovarian 
stimulation and oocyte cryopreservation or embryo cryo
preservation. For prepubertal girls at high risk of POI, such 
as those who will receive chemotherapy, pelvic radiotherapy 
or ovarian surgery for malignant disease, as well as those 
with Turner syndrome, ovarian tissue cryopreservation 
(OTC) is recommended (438, 439). For adolescents and 
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women with sex hormone–sensitive cancer or the treatment 
cannot be postponed, OTC is also optimal (440-442).

Ovarian tissue cryopreservation and transplantation
Transplantation of cryopreserved ovarian tissue has been 
shown to restore physiological sex hormone cycles and fulfill 
patients’ fertility desires. Approximately 95% of the patients 
receiving ovarian tissue transplantation (OTT) have spontan
eous menstruation, but the duration of ovarian function main
tenance is approximately 2 to 5 years. To date, over 360 cases 
of OTT have been reported, with more than 140 live births re
sulting from these procedures. The use of OTC and OTT in 
clinical practice remains limited due to significant follicle 
loss (443, 444).

After OTT, functional vasculature is reestablished around 
10 days and aerobic metabolism appears to be stabilized 
around 18 days (445). During that time, nearly 50% to 
90% of the follicles in the grafted tissue are lost (443). This 
burn-out phenomenon is induced in 2 ways: (1) hypoxia oc
curring before revascularization and excessive ROS induced 
by reperfusion promote apoptosis of oocytes and somatic cells 
in growing follicles (446); and (2) a large number of primor
dial follicles are activated by hypoxia-related signaling such 
as VEGF and the PI3K/AKT pathways, leading to a more rap
id depletion of ovarian reserve in grafted tissue (447).

To mitigate follicle loss after OTT, investigations focus on 
enhancing revascularization to minimize grafted tissue injury. 
Several strategies have been explored in murine models with 
encouraging results, including growth factors and antioxi
dants such as superoxide dismutase (448), N-acetylcysteine 
(449), and melatonin (450). However, data on their effective
ness in human OTT are lacking. Administration of stem cells 
has achieved promising results due to their roles in revascula
rization and follicle survival. Adipose-derived-MSCs have 
been shown to enhance neovascularization by secreting VEGF 
and differentiating into endothelial-like lineages. Treatment in
volving the encapsulation of hAD-MSCs in a fibrin scaffold and 
grafted 2 weeks prior to OTT into the peritoneal transplant
ation site increased oxygenation and vascularization rates, as 
well as follicle survival rates of the grafted ovarian tissue 
(451). Techniques combining stem cells and biomaterials are 
promising for preserving follicles after OTT.

Bioengineered artificial ovary
In patients with hematological malignancies, such as leuke
mia, lymphoma, and myeloproliferative or myelodysplastic 
diseases, OTC and OTT increase the risk of reimplanting ma
lignant cells (443, 444). To mitigate this risk, researchers have 
investigated alternative approaches, including dissociating 
follicles from ovarian tissues and generating a 3D matrix to 
encapsulate the isolated follicles for transplantation, which 
is called an artificial ovary. The key factors influencing the sur
vival rate of artificial ovary transplantation include the quality 
of isolated follicles and the characteristics of biomaterials that 
support follicle development and hormone secretion. The fol
licle isolation process prioritizes maintaining the integrity of 
the follicle basal membrane (452) and washing follicles to re
move malignant cells (453). To enhance the 3D matrix, inves
tigations have been conducted into the integration of ovarian 
stromal cells (454) and endothelial cells (455) into the artifi
cial ovary, which can reestablish communication between 
follicles and surrounding stromal cells and promote 

vascularization post-transplantation. Additionally, both nat
ural biomaterials, like decellularized ovarian tissue and fibrin, 
and synthetic materials, like hydrogel, offer promising strategies 
to address critical issues of stem cell homing, grafting efficiency, 
and histocompatibility during implantation (456-459). The bio
material suitable for encapsulating isolated human follicles and 
cells has been explored based on its characteristics, such as stiff
ness, elasticity, biosafety, biodegradability, and biocompatibil
ity. For instance, although alginate hydrogels have been used 
for in vitro maturation of follicles, due to its high rigidity and 
limited plasticity, it is not easily remodeled by ovarian cells 
and does not support vascular penetration, rendering it unsuit
able for creating an artificial ovary (460). In contrast, fibrin ma
trix is an elective choice for construction of an artificial ovary, 
because it is more readily degraded by ovarian somatic cells, re
sembling physiological ovarian rigidity at certain concentration 
and maintaining follicular development through adaptive struc
tural changes (461-463).

Future Perspectives for POI Diagnosis 
and Treatment
It should also be acknowledged that clinical diagnostics of 
POI may not immediately benefit from the identification of 
those pathogenic genetic and epigenetic factors, and that fur
ther studies are needed to rigorously and definitively establish 
a causal relationship between genotype and phenotype. At the 
same time, it is clear that criteria for defining causal genetic 
variations should also evolve to accommodate a broader 
scope of inheritance modes and phenotypic manifestations, 
which requires medical geneticists, clinical reproductive endo
crinologists, and epidemiologists working in concert to avoid 
overlooking genetic factors that may be clinically relevant but 
do not meet classical diagnostic criteria.

Moreover, with the discovery of a growing number of ovar
ian aging biomarkers, it is possible to establish multimodal 
predictive models for POI. However, validation through clin
ical studies is essential. Further exploration of the mechanisms 
through which microenvironmental can alter ovarian func
tion, along with ongoing refinement of therapeutic safety 
and effectiveness of the established strategies (eg, MSC trans
plantation and fertility preservation) through prospective clin
ical trials, will collectively facilitate the development of 
comprehensive intervention strategies for POI.
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