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Abstract

Background/Aim: The impact of excess energy intake on blood pressure(BP) and
hypertension(HTN) has not been extensively studied. This study aimed to evaluate the causal
link between energy intake and systolic and diastolic BP(SBP and DBP) and HTN, using a

Mendelian randomization(MR) approach.

Methods: We conducted an MR analysis using summary statistics from large-scale genome-
wide association studies(GWAS) datasets of European ancestry. Several MR methods were
applied, including inverse-variance weighted(IVW), weighted median and mode, and MR-
Egger regression. Genetic variants associated with energy intake were obtained from a
published GWAS of the UK Biobank(N=64,979). GWAS datasets for SBP, DBP, and HTN
included 436,419; 436,424; and 361,194 individuals (1,237 cases and 359,957 controls),
respectively, all from the UK Biobank. Effect estimates were reported as beta coefficients()
with 95% confidence intervals(Cls) for continuous outcomes and odds ratios(ORs) with 95%

Cls for binary outcomes.

Results: The IVW analyses indicated that each SD increase in energy intake was causally
associated with one SD increase in SBP(=0.093,95%CI:0.027-0.160,P=0.006)
and DBP($=0.070,95%CI:0.014-0.126,P=0.014), based on 10 and 8 included SNPs,
respectively. These significant associations were confirmed by the weighted median MR
method for SBP(B=0.096,95%CI:0.032-0.169,P=0.012) and DBP(B=0.077,95%CI:0.006—
0.148,P=0.044). Furthermore, a causal relationship between energy intake and HTN was
observed using the IVW(OR=1.004,95%CI:1.002-1.006,P=0.012) and the MR Egger
method(OR=1.012,95%CI:1.004-1.020,P=0.045), based on 9 included SNPs. No evidence of
weak instrument bias, heterogeneity, or horizontal pleiotropy was detected. The significant

findings were consistent across most applied MR methods.
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Conclusions: Our findings support a direct causal relationship between excess energy intake

and both BP and HTN.

Keywords: Energy intake, blood pressure, Hypertension, Mendelian randomization, Causal

association
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Introduction

Hypertension (HTN), characterized by chronically elevated blood pressure (BP) levels, is a
major public health issue that affects millions of people worldwide [1]. It poses a risk for
cardiovascular diseases and other negative health consequences [2, 3]. The causes of high BP
are multifaceted, with factors such as lifestyle choices, genetic predisposition, and dietary
habits playing a role in its development [4]. Previous research highlights the role of dietary
factors in the development and progression of HTN [5, 6]. Recently, caloric restriction has been
under speculation as a promising nutritional strategy for the management of high systolic blood
pressure (SBP), diastolic blood pressure (DBP), and HTN [7, 8]. Calorie intake is the most
fundamental dietary factor and the primary source of the body’s energy. However, most prior
studies have focused on individual dietary components such as specific nutrients (e.g.,
carbohydrates [9], omega-3 fatty acids [10], sodium [11]) or dietary patterns rather than overall

energy intake.

The effects of excess energy consumption on chronic conditions such as high BP and HTN,
independent of body weight and the energy-providing nutrients themselves, remain poorly
understood. Although calorie-restricted diets have consistently been associated with
improvements in metabolic profiles, reductions in oxidative stress, and lower levels of
inflammation, several studies have also shown that excessive energy intake can independently
elevate oxidative stress and inflammatory markers and increase the risk of metabolic disorders
[12-15]. At least three observational studies have reported a positive association between
higher energy intake and increased HTN risk [16-18]. While analyzing individual nutrients
remains important, it is equally essential to consider the practical challenges of implementing
dietary changes, especially given the cost and accessibility of certain nutrients. Therefore,
examining the overall effect of total energy intake on HTN is critical to ensure its role is not
overlooked amid the focus on specific nutrients [19].
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However, determining whether energy intake directly causes elevated BP has been challenging
due to confounding variables and the potential for reverse causality in observational studies.
To date, it remains unclear whether energy intake independently contributes to elevated BP or
HTN risk. Given the limitations of observational research and the scarcity of causal evidence
in the literature [20], this study aims to investigate the potential causal relationship between

energy intake and HTN using a more robust analytical approach.

Mendelian randomization (MR) is a novel epidemiological method that uses genetic variants,
specifically single nucleotide polymorphisms (SNPs), as instrumental variables (1Vs) to assess
causal relationships between exposures and health outcomes [21]. Unlike traditional
observational studies, MR reduces bias from confounding and reverse causality, offering more
reliable causal inferences. The growing availability of biobank and genome-wide association
study (GWAS) data has enabled broader applications of MR to explore genetic contributions
to common diseases [22]. A recent extension of MR, known as two-sample Mendelian
randomization (TSMR), enhances this approach by using summary statistics from two

independent samples, further strengthening the validity of causal inference [23].

Therefore, the present study employed TSMR analysis to examine the causal relationship
between energy intake and BP as well as HTN, using genetic summary data from two large-

scale GWASs.

Methods

Genome-wide association study (GWAS) statistics of exposure

SNPs related to energy intake were extracted from the UK Biobank, a large cohort of
approximately 500,000 individuals aged 40-69 years that collects extensive genotype and
phenotypic data [24]. Dietary intake was assessed using a web-based 24-hour dietary recall

tool, ‘Oxford Web(Q’ [25, 26], which includes questions on the consumption of 206 food and
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32 beverages over the previous 24 hours. To better estimate habitual intake, participants who
provided an email address were invited to complete the 24-hour diet recall survey online on
several occasions. Energy intake from dietary data was calculated based on the frequency,
standard serving size, and nutritional composition of the reported foods. For this study, we used
publicly available genome-wide association summary statistics for energy intake as a

continuous variable from 64,979 participants of European ancestry of the UK biobank.
GWAS summary statistics of the outcome

In the present study, SBP, DBP, and HTN were used as outcome variables in the MR analysis.
GWAS summary statistics for these outcomes were obtained from the UK Biobank [22]. In the
UK Biobank, two BP measurements were taken after a 5-minute rest in a seated position, with
at least a 1-minute interval between readings. Measurements were performed using an
appropriately sized cuff and an Omron 705IT automatic digital BP monitor. The mean of the
two readings was used to derive SBP and DBP values. For individuals with only one available
reading, that single measurement was included in the analysis [27]. For HTN, we used GWAS
results from the Neale Lab’s analysis of UK Biobank phenotypes (Round 2), available at
[http://www.nealelab.is/uk-biobank/]. The HTN phenotype was defined using electronic health
records (EHRSs) to identify cases of essential hypertension, based on the International
Classification of Diseases, 9th Revision (ICD-9). The GWAS included 436,419 individuals for
SBP, 436,424 for DBP, and 361,194 for HTN (1,237 cases and 359,957 controls), all of

European ancestry.
Instrumental SNPs selection

The MR assumptions were considered for selecting SNPs as instrumental variables (IVs)
(Figure S1). For extracting significant related SNPs with energy intake, we used a relaxed

GWAS threshold to p-value < 5 x 107 because we observed any SNPs with higher significance
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[28]. In the final sets, we performed linkage disequilibrium (LD) clumping restricted to r? <
0.2 in a clumping distance = 1000 kb window to minimize correlations between the selected
SNPs. The exposure and outcomes data were harmonized to ensure alleles were aligned, and

the presence of ambiguous and/or palindromic variants was checked.

The associations of selected SNPs with other traits at genome-wide significance levels were
checked using the PhenoScanner database (http://www.phenoscanner.medschl.cam.ac.uk/).
The F-statistics with the threshold of 10 (<10=weak IV, >10=strong IV ), was applied for
assessing the selected SNPs in terms of being weak instruments using the F-statistics [29]. The
relevant information was extracted, including SNP, effect allele, non-effect allele, effect allele

frequency, effect sizes, standard error, sample size, and p-value.

The core assumptions of Mendelian Randomization were carefully examined to ensure the
validity of the selected instruments. In summary, MR depends on three main assumptions. First,
the relevance assumption requires that the SNPs are strongly associated with the exposure,
which we confirmed using F-statistics > 10. Second, the independence assumption indicates
that the SNPs should not be associated with confounding variables, which we assessed using
the PhenoScanner database and linkage disequilibrium clumping. Third, the exclusion
restriction assumption states that the SNPs should influence the outcome only through energy
intake and not through other pathways. We evaluated this assumption using the MR-Egger
intercept, MR-PRESSO global test, RadialMR, and leave-one-out analysis, as illustrated in

Supplementary Figure S1.
Statistical analysis

A two-sample MR analysis was conducted to evaluate the causal association of energy intake
with SBP, DBP, and HTN. We considered the inverse variance weighted (IVW) method as the

main analysis to estimate the associations of the 1Vs. Additionally, we conducted several
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sensitivity analyses including MR-Egger, weighted median, and weighted mode estimators to
address the validity and consistency of our results [30]. Moreover, several other MR methods,
including the various IVW and median MR estimators, debiased inverse variance weighted,
the Robust adjusted profile score (RAPS), the MR-Losso, and constrained maximum likelihood

(MRcML) were performed to detect the robustness of our results [31].

The heterogeneity of IVs was assessed using Cochran’s Q statistic and the 1? index for MR-
inverse-variance weighted analyses, and Rucker’s Q statistic for MR-Egger [32]. To quantify

horizontal pleiotropy, we used the MR-Egger method by intercept tests [33].

Several assessments were applied to detect the outliers SNPs and influential points in driving
the analysis such as Cook’s distance, MR-PRESSO, RadialMR (using Cochran's Q-statistic),
Leverage test, Mendelian Randomization-Contour Enhanced Meta-Analysis (Mr-CML), and
finally leave-one-out analysis as a sensitivity analysis to identify SNPs that significantly
changes the estimated causal effect and have a large impact on the result. SNPs that were
identified as outliers or influential points or had adverse effects in more methods were excluded

from the analysis.

We drew a forest plot of MR for the association of each energy intake-related SNPs with SBP,
DBP, and HTN. The Leave-one-out analysis and its plot were also performed to assess the
influence of each SNP on the pooled causal estimates by systematically removing one SNP at
a time [34]. In addition, we depicted a funnel plot to identify if the presence of directional
pleiotropy can be observed, indicating a tendency for causal estimates from weaker variants to

be biased in a particular direction (36).

All data analyses were carried out using the “TwoSampleMR”, “MendelianRandomization”,
“MRPRESSO”, "RadialMR", and " mr. raps" packages of the R4.3.1 software [20, 33, 35].

The measure of association was reported as a beta coefficient () 95% confidence interval (CI)
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expressed as standard deviation (SD) change in SBP and DBP per one SD increment of the
energy intake. For HTN, the results were expressed as odds ratios (ORs) with 95% Cls,

reflecting the odds of HTN per one SD increase in energy intake.

To account for multiple testing, the Bonferroni correction was performed on the energy intake
association with three outcomes. So, a conservative corrected threshold was calculated (a =
0.05/3 outcomes=0.016), and considered P-values < 0.016 as strongly associated, and P-values

between 0.016 and 0.05 were regarded as suggestive evidence of associations.

To account for multiple testing across the three outcomes (SBP, DBP, and HTN), we applied
Bonferroni correction, resulting in a conservative adjusted threshold (a = 0.05/3 = 0.016).
Although alternative approaches such as false discovery rate (FDR) may yield fewer
conservative cutoffs, Bonferroni was retained to enhance stringency and reduce the likelihood
of type I error. Accordingly, P-values < 0.016 were considered strongly associated, and those

between 0.016 and 0.05 were regarded as suggestive.

Results

Instrumental variables selection

We used a relaxed genome-wide significance threshold (P < 5x10°¢) for SNP selection due to
the absence of genome-wide significant variants (P < 5x107%) for energy intake in the original
GWAS. Similar thresholds have been used in prior MR studies involving complex traits such
as dietary intake. Instrument strength was confirmed using F-statistics (all >10), and multiple
sensitivity analyses (MR-Egger, MR-PRESSO, RadialMR) were conducted to assess potential
bias and pleiotropy. From 9,851,867 SNPs of energy intake, we reached 41 SNPs after selection
based on P<5 x 10—6 and then 13 SNPs after LD clumping of r2<0.2. The range of the F
statistic was from 20.8 to 27.1 (the median of 23.3) for these SNPs all was >10 as the

conventional threshold, indicating that the instrument's bias could not have a significant effect
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on estimating causal effects. All SNPs remained in the harmonizing step with outcomes. None
of the SNPs were excluded due to being palindrome, and checks using the PhenoScanner
database indicated that none were associated with BP or HTN, thereby minimizing concerns
regarding pleiotropy. Moreover, no SNPs were located within the human leukocyte antigen
(HLA) region. The Cochran heterogeneity test revealed significant heterogeneity for energy
intake-SBP harmonized data (Q = 33.9, p=0.006) and energy intake-DBP (Q =24.4, p=0.017),
but not for energy intake-HTN (Q = 14.4, p=0.275). No evidence of directional pleiotropy was

detected in any of the exposure—outcome associations (P>0.05).

Based on the results of different analyses to detect SNPs with potential outlier, influential, or
adverse effects in our MR analyses, we excluded three SNPs for SBP (rs11224098,
rs35237101, and rs752690); five SNPs for DBP (rs11224098, rs35237101, rs752690,
rs12528606, and rs7911565); and four SNPs for HTN (rs35237101, rs13048538, rs45322636,
and rs62347998). Consequently, we obtained 10, 8, and 9 SNPs for SBP, DBP, and HTN,
respectively. The characteristics of identified SNPs for SBP, DBP, and HTN were provided in
Supplementary Excel Files 1, 2, and 3, respectively. After excluding the mentioned SNPs, we
repeated the analyses. We observed no significant heterogeneity among the remaining SNPs
for energy intake-SBP (Q=15.8, p=0.070), energy intake-DBP (Q=3.4, p=0.845), and energy
intake-HTN (Q=6.6, p=0. 576). No significant pleiotropy was observed in any of the

exposure-outcome datasets (P>0.05).

Mendelian Randomization and sensitivity analysis

The results of the MR analysis are indicated in Table 1. The findings of VW analyses indicated
that genetically predicted each SD increment in energy intake was causally associated with
increased one SD in SBP (B= 0.093, 95% CI = (0.027 — 0.160), P=0.006) and DBP (= 0.070,

95% CI = (0.014 — 0.126), P=0.014). These significant results were confirmed by the weighted
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median method, which showed a positive association between energy intake and SBP (B =
0.096, 95% CI= (0.032 — 0.169), P=0.012) and energy intake and DBP (B = 0.077, 95% Cl=
(0.006 — 0.148), P=0.044). However, the results of MR-Egger, simple, and weighted mode
methods showed no significant causal relation between energy intake with SBP and DBP

(P>0.05).

Furthermore, we observed a causal relationship between the increment of one SD of energy
intake with the odds of HTN by IVW (OR= 1.004, 95% CI = (1.002 — 1.006), P=0.012) and
MR Egger method (OR=1.012, 95% CI = (1.004 — 1.020), P=0.045). However, this significant
association was not observed by the results of weighted median, simple mode, and weighted

mode methods(P>0.05).

A sensitivity analysis was performed on the relationship between energy intake and SBP using
other MR methods (Figure 1 and Supplementary Figure S2, A). Except for MR Egger and
model-based methods (with P-values>0.05), all applied methods showed a significant direct

causal association between energy intake and SBP (P-values<0.016 as the corrected threshold).

Moreover, a sensitivity analysis was conducted using other MR methods to assess the
relationship between energy intake and DBP (Figure 2 and Supplementary Figure S3, A). Of
the sixteen methods applied, only the MR Egger, Penalized MR-Egger, and mode-based
methods did not confirm a causal relation between one SD increment of energy intake and one

SD increase in DBP (most P-values were<0.016 as the corrected threshold).

For the energy intake-HTN relationship, sensitivity analysis using other MR methods
confirmed a direct causal association between one SD increment of energy intake and higher
odds of HTN in most methods (the majority of significant P-values were <0.016 as the

corrected threshold). However, the median-based methods, Robust 1IVWs, and Debised
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Inverse-variance weighted did not show any significant causal association between energy

intake and the odds of HTN (P-values > 0.05) (Figure 3 and Supplementary Figure S4, A).

Leave-one-out analysis was used to analyze the results of the VW method. After removing
each SNP individually, the results were consistent with the IVW method in causal effect
analysis for energy intake association with SBP and DBP (Supplementary Figure S2 and S3,
C), indicating that no single SNP affected the causal estimation results. However, the results
of the leave-one-out analysis on selected SNPs for the energy-HTN MR showed that excluding
rs149006866 resulted in the VW result being statistically non-significant (see Supplementary

Figure S4, C).

The funnel plot assessment of all outcomes showed no evident asymmetry in SNP distribution,
indicating that directional and horizontal pleiotropy was not observed (see Supplementary

Figures S2-S4, D).

Discussion

This study is the first to investigate the causal relationship between energy intake and BP
using MR analyses with large GWAS summary statistics. Our findings suggest that genetically

predicted higher energy intake is associated with elevated BP and an increased risk of HTN.

Although there have been studies investigating the relationship between dietary components,
nutrients, food groups, and dietary patterns with HTN [36-39], research specifically focusing
on the influence of calorie consumption as a significant factor on BP or HTN is limited and
outdated. Some observational studies have explored the association between energy intake and
BP or HTN from various perspectives. In a case-control study, Kazemian et al. found that
women with high energy intake during pregnancy (>3,000 kcal/day) had more than a ninefold
increased risk of developing gestational hypertension [18]. Other studies have highlighted the

timing of calorie consumption as a relevant factor [17, 40]. A cohort study in the UK reported

12



245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

that higher calorie intake at breakfast was associated with a lower prevalence of HTN, while
greater late evening calorie consumption correlated with increased BP and HTN risk [17].
Additionally, some investigations have examined how total energy intake may interact with
key nutrients that affect BP. For example, one study found that sodium’s effect on BP was
modified by total energy intake. Specifically, a sodium intake of 2,300 mg/day increased BP
more in the context of a low-energy diet than in a high-energy one [41]. This suggests that total
energy intake may amplify or attenuate the influence of nutrients such as sodium, magnesium,

and potassium on BP regulation.

Moreover, genetic variations influence metabolic pathways involved in BP regulation and may
interact with energy intake. Certain genes associated with BP could increase the risk of
hypertension when combined with a high-energy diet. For example, variations in the catechol-
O-methyltransferase (COMT) gene have been linked to altered catecholamine levels, which
can affect sympathetic nervous system activity and, in turn, BP regulation. In a study by Htun
Nc et al., the Met allele of the rs4680 variant in the COMT gene was associated with higher
BP and a greater prevalence of hypertension. Notably, when individuals with this allele
consumed higher amounts of calories, the risk of hypertension was further elevated [42]. This
indicates that higher energy intake may increase HTN risk through interactions with

hypertension-related genetic variants.

Our MR study provides the first robust genetic evidence supporting a causal relationship
between higher energy intake and elevated BP, demonstrating that genetically predicted
increases in energy consumption significantly raise both SBP and DBP and also increasing
hypertension risk. Notably, our MR approach overcomes key limitations of prior nutritional
epidemiology by minimizing reverse causation and confounding—issues pervasive in
traditional observational studies. Mechanistically, these results suggest that chronic positive
energy balance may independently contribute to hypertension pathogenesis. Also, clinically,
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these findings reinforce the importance of caloric restriction interventions for hypertension
prevention, particularly in high-risk populations. Although, our MR study does not directly
address biological pathways to illustrate potential links between energy intake and blood
pressure, the finding that genetically predicted greater energy intake leads to higher BP aligns
with established epidemiological evidence linking excess caloric consumption to HTN, likely
mediated through mechanisms such as increased body weight, metabolic dysregulation, and

vascular changes [43-46].

The link between obesity and the activation of the sympathetic nervous system and the renin-
angiotensin system, both of which contribute to the development of HTN, is well established
[45]. Some studies suggest that the effects of energy intake on BP are mediated by factors such
as visceral fat accumulation, obesity, and insulin resistance. For example, increased energy
intake can elevate visceral fat and insulin resistance, leading to higher levels of catecholamines
and enhanced sympathetic activity, which in turn may raise BP [47]. However, excess calorie
intake may also affect BP through alternative mechanisms, including mitochondrial
dysfunction and oxidative stress. Overeating disrupts energy balance, overwhelms
mitochondria, and increases the production of reactive oxygen species, which causes cellular
damage [46, 48-50]. Diets high in fat and sugar can trigger chronic low-grade inflammation
[51, 52], which further intensifies oxidative stress by disrupting the body's antioxidant defenses
[53]. The expansion of adipose tissue also promotes the release of pro-inflammatory cytokines,
known as adipokines, which amplify both oxidative stress and inflammation [54]. Oxidative
stress and inflammation can damage the vascular endothelium, impair nitric oxide production,
and reduce the ability of blood vessels to relax, resulting in persistent vasoconstriction and
increased vascular resistance [43, 44]. Additionally, high energy intake may enhance
sympathetic nervous system activity and catecholamine secretion, leading to further

vasoconstriction and elevated BP [55, 56]. Although our study does not directly examine these
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mechanisms, the observed causal relationship between energy intake and BP highlights the

importance of further mechanistic research.

Strengths and Limitations

A key strength of our study is the use of the TSMR approach to explore the causal relationship
between calorie consumption and BP. To the best of our knowledge, this is the first study to
employ this approach in examining the association between energy intake and BP, offering
new perspectives on the potential impacts of energy consumption on BP regulation.
Furthermore, the substantial sample size drawn from the UK Biobank database adds strength
to our study. Compared to other dietary factors, energy intake tends to show relatively
consistent variability, which improves the accuracy and reliability of our estimates. This
stability contrasts with the greater fluctuations seen in other nutrient intakes, further
strengthening the precision of our analysis. Another advantage of our study is the use of precise

and reliable methods to measure BP.

Some limitations of this study should be considered. First, energy intake was calculated based
on data obtained from 24-hour dietary recalls, which may be subject to recall bias and may not
accurately represent long-term dietary habits. However, several key methodological strengths
help minimize these measurement errors. The energy intake data came from publicly available
genome-wide association summary statistics based on a large sample of 64,979 European-
ancestry participants from the UK Biobank. The large sample size helps reduce recall bias by
averaging out random errors, yielding more reliable population-level estimates than smaller
studies prone to individual reporting inaccuracies. Moreover, using a web-based 24-h dietary
assessment (Oxford WebQ) [25, 26], is an automated self-administered tool, resulting in reduce
social desirability bias by allowing unannounced recalls in neutral settings. This also

incorporate portion-size images, improving estimation accuracy. As a fully automated
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platform, Oxford WebQ has the potential to revolutionize dietary assessment by enhancing the
feasibility and cost-effectiveness of collection of high-quality dietary data [57]. Furthermore,
the Oxford WebQ as a 24-h dietary assessment has been administered multiple times to UK
Biobank participants that included questions on the consumption of 206 different food items
and 32 types of beverages and focused on intake during the previous 24 hours. This detailed
and repeated approach allows for the estimation of individual consumption amounts for each
item separately, using grams or various household portion sizes. As a result, the total energy
intake calculated from these food components achieves acceptable accuracy. Second, the
relatively small number of HTN cases (1,237), identified based on ICD codes in electronic
health records (EHRs), may underestimate the true prevalence of HTN. While this strict case
definition improves diagnostic specificity, it may limit statistical power to detect small effect
sizes. Nevertheless, the large control group and strict quality control measures mitigate this
issue. Additionally, consistent results across multiple sensitivity analyses and the use of SBP
and DBP as complementary outcomes strengthen the validity of our findings. Third, although
Mendelian randomization can establish a causal relationship between energy intake and blood
pressure, it cannot reveal the underlying biological mechanisms. Further experimental studies

are needed to clarify how energy intake influences blood pressure regulation.

Conclusions

Our research provides evidence supporting a causal relationship between energy intake and
BP. Although the observed effect sizes were modest at the individual level, they remain highly
relevant from a public health perspective. Even a slight reduction in SBP at the population level
has been associated with significant decreases in cardiovascular morbidity and mortality [58].
Therefore, controlling caloric intake, despite modest individual effects, represent an important
public health strategy for BP control. However, these findings should be interpreted with
caution due to the inherent limitations of Mendelian randomization studies and the complex
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344  mechanisms underlying the relationship between energy intake and BP. Further research,
345 including large prospective studies and well-designed RCTSs, is necessary to validate the effects

346  and clarify the mechanisms by which higher dietary energy intake increases HTN risk.
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The current analysis used published or publicly available summary data. No original data were
collected for the present study. Ethical approval for each of the studies included in the present
analysis can be found in the original publications, including informed consent from each

participant. The study conforms to the ethical guidelines of the 1975 Declaration of Helsinki.
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Legend 1 to Figure 1. The beta coefficient and 95%CI for the causal relationship of energy

intake with systolic blood pressure calculated by different MR methods

Legend 2 to Figure 2. The beta coefficient and 95%CI for the causal relationship of energy

intake with diastolic blood pressure calculated by different MR methods.

Legend 3 to Figure 3. The odds ratio and 95%ClI for the causal relationship of energy intake

with hypertension calculated by different MR methods.
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Table 1. Two-sample MR of energy intake relationship with systolic blood pressure, diastolic blood pressure, and hypertension

Outcome Nsnp Methods Beta SE  P-value OR 95%CI P- Horizontal pleiotropy Heterogeneity
value

Egger intercept SE  P-value Q P-value

SBP 10
MR Egger 0.04 0.09 0.657 0.001 0.003  0.572 15.1 0.055
Weighted median 0.09 0.03 0.012
Ivw 0.09 0.03 0.006 15.8 0.070
Simple mode 0.10 0.06 0.177
Weighted mode 0.10 0.06 0.150
DBP 8
MR Egger 0.11 0.07 0.176 -0.001 0.002  0.533 2.96 0.812
Weighted median 0.07 0.03 0.044
Ivw 0.07 0.02 0.014 3.40 0.845
Simple mode 0.08 0.05 0.187

Weighted mode 0.08 0.06 0.218
Hypertensio 9
n

MR Egger 0.01 0.004 1.012  (1.004, 1.020) 0.045 -0.0002 0.000  0.146 3.95 0.784
1
Weighted median ~ 0.001  0.002 1.001  (0.998, 1.003) 0.685
VW 0.004  0.001 1.004 (1.0007,1.0073) 0.012 6.63 0.576
Simple mode 0.000  0.003 1.004  (0.996, 1.013) 0.924
Weighted mode 0.000  0.004 1.000  (0.992, 1.009) 0.927

MR; Mendelian randomization, SBP; Systolic blood pressure, DBP; Diastolic blood pressure, IVW; Inverse variance weighted.
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Figure 1
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Figure 2
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Figure 3
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