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Abstract 1 

Background/Aim: The impact of excess energy intake on blood pressure(BP) and 2 

hypertension(HTN) has not been extensively studied. This study aimed to evaluate the causal 3 

link between energy intake and systolic and diastolic BP(SBP and DBP) and HTN, using a 4 

Mendelian randomization(MR) approach. 5 

Methods: We conducted an MR analysis using summary statistics from large-scale genome-6 

wide association studies(GWAS) datasets of European ancestry. Several MR methods were 7 

applied, including inverse-variance weighted(IVW), weighted median and mode, and MR-8 

Egger regression. Genetic variants associated with energy intake were obtained from a 9 

published GWAS of the UK Biobank(N=64,979). GWAS datasets for SBP, DBP, and HTN 10 

included 436,419; 436,424; and 361,194 individuals (1,237 cases and 359,957 controls), 11 

respectively, all from the UK Biobank. Effect estimates were reported as beta coefficients(β) 12 

with 95% confidence intervals(CIs) for continuous outcomes and odds ratios(ORs) with 95% 13 

CIs for binary outcomes.  14 

Results: The IVW analyses indicated that each SD increase in energy intake was causally 15 

associated with one SD increase in SBP(β=0.093,95%CI:0.027–0.160,P=0.006)  16 

and DBP(β=0.070,95%CI:0.014–0.126,P=0.014), based on 10 and 8 included SNPs, 17 

respectively. These significant associations were confirmed by the weighted median MR 18 

method for SBP(β=0.096,95%CI:0.032–0.169,P=0.012) and DBP(β=0.077,95%CI:0.006–19 

0.148,P=0.044). Furthermore, a causal relationship between energy intake and HTN was 20 

observed using the IVW(OR=1.004,95%CI:1.002–1.006,P=0.012) and the MR Egger 21 

method(OR=1.012,95%CI:1.004–1.020,P=0.045), based on 9 included SNPs. No evidence of 22 

weak instrument bias, heterogeneity, or horizontal pleiotropy was detected. The significant 23 

findings were consistent across most applied MR methods.  24 
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Conclusions: Our findings support a direct causal relationship between excess energy intake 25 

and both BP and HTN.   26 

Keywords: Energy intake, blood pressure, Hypertension, Mendelian randomization, Causal 27 

association 28 
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Introduction  29 

Hypertension (HTN), characterized by chronically elevated blood pressure (BP) levels, is a 30 

major public health issue that affects millions of people worldwide [1]. It poses a risk for 31 

cardiovascular diseases and other negative health consequences [2, 3]. The causes of high BP 32 

are multifaceted, with factors such as lifestyle choices, genetic predisposition, and dietary 33 

habits playing a role in its development [4]. Previous research highlights the role of dietary 34 

factors in the development and progression of HTN [5, 6]. Recently, caloric restriction has been 35 

under speculation as a promising nutritional strategy for the management of high systolic blood 36 

pressure (SBP), diastolic blood pressure (DBP), and HTN [7, 8]. Calorie intake is the most 37 

fundamental dietary factor and the primary source of the body’s energy. However,  most prior 38 

studies have focused on individual dietary components such as specific nutrients (e.g., 39 

carbohydrates [9], omega-3 fatty acids [10], sodium [11]) or dietary patterns rather than overall 40 

energy intake.  41 

The effects of excess energy consumption on chronic conditions such as high BP and HTN, 42 

independent of body weight and the energy-providing nutrients themselves, remain poorly 43 

understood. Although calorie-restricted diets have consistently been associated with 44 

improvements in metabolic profiles, reductions in oxidative stress, and lower levels of 45 

inflammation, several studies have also shown that excessive energy intake can independently 46 

elevate oxidative stress and inflammatory markers and increase the risk of metabolic disorders 47 

[12-15]. At least three observational studies have reported a positive association between 48 

higher energy intake and increased HTN risk [16-18]. While analyzing individual nutrients 49 

remains important, it is equally essential to consider the practical challenges of implementing 50 

dietary changes, especially given the cost and accessibility of certain nutrients. Therefore, 51 

examining the overall effect of total energy intake on HTN is critical to ensure its role is not 52 

overlooked amid the focus on specific nutrients [19]. 53 

Jo
urn

al 
Pre-

pro
of



5 

 

However, determining whether energy intake directly causes elevated BP has been challenging 54 

due to confounding variables and the potential for reverse causality in observational studies. 55 

To date, it remains unclear whether energy intake independently contributes to elevated BP or 56 

HTN risk. Given the limitations of observational research and the scarcity of causal evidence 57 

in the literature [20], this study aims to investigate the potential causal relationship between 58 

energy intake and HTN using a more robust analytical approach. 59 

Mendelian randomization (MR) is a novel epidemiological method that uses genetic variants, 60 

specifically single nucleotide polymorphisms (SNPs), as instrumental variables (IVs) to assess 61 

causal relationships between exposures and health outcomes [21]. Unlike traditional 62 

observational studies, MR reduces bias from confounding and reverse causality, offering more 63 

reliable causal inferences. The growing availability of biobank and genome-wide association 64 

study (GWAS) data has enabled broader applications of MR to explore genetic contributions 65 

to common diseases [22]. A recent extension of MR, known as two-sample Mendelian 66 

randomization (TSMR), enhances this approach by using summary statistics from two 67 

independent samples, further strengthening the validity of causal inference [23]. 68 

Therefore, the present study employed TSMR analysis to examine the causal relationship 69 

between energy intake and BP as well as HTN, using genetic summary data from two large-70 

scale GWASs. 71 

Methods 72 

Genome-wide association study (GWAS) statistics of exposure 73 

SNPs related to energy intake were extracted from the UK Biobank, a large cohort of 74 

approximately 500,000 individuals aged 40-69 years that collects extensive genotype and 75 

phenotypic data [24]. Dietary intake was assessed using a web-based 24-hour dietary recall 76 

tool, ‘Oxford WebQ’ [25, 26], which includes questions on the consumption of 206 food and 77 
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32 beverages over the previous 24 hours. To better estimate habitual intake, participants who 78 

provided an email address were invited to complete the 24-hour diet recall survey online on 79 

several occasions. Energy intake from dietary data was calculated based on the frequency, 80 

standard serving size, and nutritional composition of the reported foods. For this study, we used 81 

publicly available genome-wide association summary statistics for energy intake as a 82 

continuous variable from 64,979 participants of European ancestry of the UK biobank.  83 

GWAS summary statistics of the outcome 84 

In the present study, SBP, DBP, and HTN were used as outcome variables in the MR analysis. 85 

GWAS summary statistics for these outcomes were obtained from the UK Biobank [22]. In the 86 

UK Biobank, two BP measurements were taken after a 5-minute rest in a seated position, with 87 

at least a 1-minute interval between readings. Measurements were performed using an 88 

appropriately sized cuff and an Omron 705IT automatic digital BP monitor. The mean of the 89 

two readings was used to derive SBP and DBP values. For individuals with only one available 90 

reading, that single measurement was included in the analysis [27]. For HTN, we used GWAS 91 

results from the Neale Lab’s analysis of UK Biobank phenotypes (Round 2), available at 92 

[http://www.nealelab.is/uk-biobank/]. The HTN phenotype was defined using electronic health 93 

records (EHRs) to identify cases of essential hypertension, based on the International 94 

Classification of Diseases, 9th Revision (ICD-9). The GWAS included 436,419 individuals for 95 

SBP, 436,424 for DBP, and 361,194 for HTN (1,237 cases and 359,957 controls), all of 96 

European ancestry. 97 

Instrumental SNPs selection 98 

The MR assumptions were considered for selecting SNPs as instrumental variables (IVs) 99 

(Figure S1). For extracting significant related SNPs with energy intake, we used a relaxed 100 

GWAS threshold to p-value < 5 × 10−6 because we observed any SNPs with higher significance 101 
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[28]. In the final sets, we performed linkage disequilibrium (LD) clumping restricted to r2 < 102 

0.2 in a clumping distance = 1000 kb window to minimize correlations between the selected 103 

SNPs. The exposure and outcomes data were harmonized to ensure alleles were aligned, and 104 

the presence of ambiguous and/or palindromic variants was checked.  105 

The associations of selected SNPs with other traits at genome-wide significance levels were 106 

checked using the PhenoScanner database (http://www.phenoscanner.medschl.cam.ac.uk/). 107 

The F-statistics with the threshold of 10 (<10=weak IV, >10=strong IV ), was applied for 108 

assessing the selected SNPs in terms of being weak instruments using the F-statistics [29]. The 109 

relevant information was extracted, including SNP, effect allele, non-effect allele, effect allele 110 

frequency, effect sizes, standard error, sample size, and p-value.  111 

The core assumptions of Mendelian Randomization were carefully examined to ensure the 112 

validity of the selected instruments. In summary, MR depends on three main assumptions. First, 113 

the relevance assumption requires that the SNPs are strongly associated with the exposure, 114 

which we confirmed using F-statistics > 10. Second, the independence assumption indicates 115 

that the SNPs should not be associated with confounding variables, which we assessed using 116 

the PhenoScanner database and linkage disequilibrium clumping. Third, the exclusion 117 

restriction assumption states that the SNPs should influence the outcome only through energy 118 

intake and not through other pathways. We evaluated this assumption using the MR-Egger 119 

intercept, MR-PRESSO global test, RadialMR, and leave-one-out analysis, as illustrated in 120 

Supplementary Figure S1. 121 

Statistical analysis 122 

A two-sample MR analysis was conducted to evaluate the causal association of energy intake 123 

with SBP, DBP, and HTN. We considered the inverse variance weighted (IVW) method as the 124 

main analysis to estimate the associations of the IVs. Additionally, we conducted several 125 
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sensitivity analyses including MR-Egger, weighted median, and weighted mode estimators to 126 

address the validity and consistency of our results [30]. Moreover, several other MR methods, 127 

including the various IVW and median MR estimators, debiased inverse variance weighted, 128 

the Robust adjusted profile score (RAPS), the MR-Losso, and constrained maximum likelihood 129 

(MRcML) were performed to detect the robustness of our results [31]. 130 

The heterogeneity of IVs was assessed using Cochran’s Q statistic and the I2 index for MR-131 

inverse-variance weighted analyses, and Rucker’s Q statistic for MR-Egger [32]. To quantify 132 

horizontal pleiotropy, we used the MR-Egger method by intercept tests [33].  133 

Several assessments were applied to detect the outliers SNPs and influential points in driving 134 

the analysis such as Cook’s distance, MR-PRESSO, RadialMR (using Cochran's Q-statistic), 135 

Leverage test, Mendelian Randomization-Contour Enhanced Meta-Analysis (Mr-CML), and 136 

finally leave-one-out analysis as a sensitivity analysis to identify SNPs that significantly 137 

changes the estimated causal effect and have a large impact on the result. SNPs that were 138 

identified as outliers or influential points or had adverse effects in more methods were excluded 139 

from the analysis. 140 

We drew a forest plot of MR for the association of each energy intake-related SNPs with SBP, 141 

DBP, and HTN. The Leave-one-out analysis and its plot were also performed to assess the 142 

influence of each SNP on the pooled causal estimates by systematically removing one SNP at 143 

a time [34]. In addition, we depicted a funnel plot to identify if the presence of directional 144 

pleiotropy can be observed, indicating a tendency for causal estimates from weaker variants to 145 

be biased in a particular direction (36).  146 

All data analyses were carried out using the “TwoSampleMR”, “MendelianRandomization”, 147 

“MRPRESSO”, "RadialMR", and " mr. raps"   packages of the R4.3.1 software [20, 33, 35]. 148 

The measure of association was reported as a beta coefficient (β) 95% confidence interval (CI) 149 
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expressed as standard deviation (SD) change in SBP and DBP per one SD increment of the 150 

energy intake. For HTN, the results were expressed as odds ratios (ORs) with 95% CIs, 151 

reflecting the odds of HTN per one SD increase in energy intake. 152 

To account for multiple testing, the Bonferroni correction was performed on the energy intake 153 

association with three outcomes. So, a conservative corrected threshold was calculated (α = 154 

0.05/3 outcomes=0.016), and considered P-values < 0.016 as strongly associated, and P-values 155 

between 0.016 and 0.05 were regarded as suggestive evidence of associations.  156 

To account for multiple testing across the three outcomes (SBP, DBP, and HTN), we applied 157 

Bonferroni correction, resulting in a conservative adjusted threshold (α = 0.05/3 = 0.016). 158 

Although alternative approaches such as false discovery rate (FDR) may yield fewer 159 

conservative cutoffs, Bonferroni was retained to enhance stringency and reduce the likelihood 160 

of type I error. Accordingly, P-values < 0.016 were considered strongly associated, and those 161 

between 0.016 and 0.05 were regarded as suggestive. 162 

Results  163 

Instrumental variables selection 164 

We used a relaxed genome-wide significance threshold (P < 5×10⁻⁶) for SNP selection due to 165 

the absence of genome-wide significant variants (P < 5×10⁻⁸) for energy intake in the original 166 

GWAS. Similar thresholds have been used in prior MR studies involving complex traits such 167 

as dietary intake. Instrument strength was confirmed using F-statistics (all >10), and multiple 168 

sensitivity analyses (MR-Egger, MR-PRESSO, RadialMR) were conducted to assess potential 169 

bias and pleiotropy. From 9,851,867 SNPs of energy intake, we reached 41 SNPs after selection 170 

based on P< 5 × 10−6 and then 13 SNPs after LD clumping of r2<0.2. The range of the F 171 

statistic was from 20.8 to 27.1 (the median of 23.3) for these SNPs all was >10 as the 172 

conventional threshold, indicating that the instrument's bias could not have a significant effect 173 
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on estimating causal effects. All SNPs remained in the harmonizing step with outcomes. None 174 

of the SNPs were excluded due to being palindrome, and checks using the PhenoScanner 175 

database indicated that none were associated with BP or HTN, thereby minimizing concerns 176 

regarding pleiotropy. Moreover, no SNPs were located within the human leukocyte antigen 177 

(HLA) region. The Cochran heterogeneity test revealed significant heterogeneity for energy 178 

intake-SBP harmonized data (Q = 33.9, p=0.006) and energy intake-DBP (Q = 24.4, p=0.017), 179 

but not for energy intake-HTN (Q = 14.4, p=0.275). No evidence of directional pleiotropy was 180 

detected in any of the exposure–outcome associations (P>0.05). 181 

Based on the results of different analyses to detect SNPs with potential outlier, influential, or 182 

adverse effects in our MR analyses, we excluded three SNPs for SBP (rs11224098, 183 

rs35237101, and rs752690); five SNPs for DBP (rs11224098, rs35237101, rs752690, 184 

rs12528606, and rs7911565); and four SNPs for HTN (rs35237101, rs13048538, rs45322636, 185 

and rs62347998). Consequently, we obtained 10, 8, and 9 SNPs for SBP, DBP, and HTN, 186 

respectively. The characteristics of identified SNPs for SBP, DBP, and HTN were provided in 187 

Supplementary Excel Files 1, 2, and 3, respectively. After excluding the mentioned SNPs, we 188 

repeated the analyses. We observed no significant heterogeneity among the remaining SNPs 189 

for energy intake-SBP (Q=15.8, p=0.070), energy intake-DBP (Q=3.4, p=0.845), and energy 190 

intake-HTN (Q = 6.6, p=0. 576). No significant pleiotropy was observed in any of the 191 

exposure-outcome datasets (P>0.05).  192 

Mendelian Randomization and sensitivity analysis  193 

The results of the MR analysis are indicated in Table 1. The findings of IVW analyses indicated 194 

that genetically predicted each SD increment in energy intake was causally associated with 195 

increased one SD in SBP (β= 0.093, 95% CI = (0.027 – 0.160), P=0.006) and DBP (β= 0.070, 196 

95% CI = (0.014 – 0.126), P=0.014). These significant results were confirmed by the weighted 197 
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median method, which showed a positive association between energy intake and SBP (β = 198 

0.096, 95% CI= (0.032 – 0.169), P=0.012) and energy intake and DBP (β = 0.077, 95% CI= 199 

(0.006 – 0.148), P=0.044). However, the results of MR-Egger, simple, and weighted mode 200 

methods showed no significant causal relation between energy intake with SBP and DBP 201 

(P>0.05).   202 

Furthermore, we observed a causal relationship between the increment of one SD of energy 203 

intake with the odds of HTN by IVW (OR= 1.004, 95% CI = (1.002 – 1.006), P=0.012) and 204 

MR Egger method (OR= 1.012, 95% CI = (1.004 – 1.020), P=0.045). However, this significant 205 

association was not observed by the results of weighted median, simple mode, and weighted 206 

mode methods(P>0.05).   207 

A sensitivity analysis was performed on the relationship between energy intake and SBP using 208 

other MR methods (Figure 1 and Supplementary Figure S2, A). Except for MR Egger and 209 

model-based methods (with P-values>0.05), all applied methods showed a significant direct 210 

causal association between energy intake and SBP (P-values<0.016 as the corrected threshold). 211 

Moreover, a sensitivity analysis was conducted using other MR methods to assess the 212 

relationship between energy intake and DBP (Figure 2 and Supplementary Figure S3, A). Of 213 

the sixteen methods applied, only the MR Egger, Penalized MR-Egger, and mode-based 214 

methods did not confirm a causal relation between one SD increment of energy intake and one 215 

SD increase in DBP (most P-values were<0.016 as the corrected threshold).  216 

For the energy intake-HTN relationship, sensitivity analysis using other MR methods 217 

confirmed a direct causal association between one SD increment of energy intake and higher 218 

odds of HTN in most methods (the majority of significant P-values were <0.016 as the 219 

corrected threshold). However, the median-based methods, Robust IVWs, and Debised 220 
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Inverse-variance weighted did not show any significant causal association between energy 221 

intake and the odds of HTN (P-values > 0.05) (Figure 3 and Supplementary Figure S4, A). 222 

Leave-one-out analysis was used to analyze the results of the IVW method. After removing 223 

each SNP individually, the results were consistent with the IVW method in causal effect 224 

analysis for energy intake association with SBP and DBP (Supplementary Figure S2 and S3, 225 

C), indicating that no single SNP affected the causal estimation results. However, the results 226 

of the leave-one-out analysis on selected SNPs for the energy-HTN MR showed that excluding 227 

rs149006866 resulted in the IVW result being statistically non-significant (see Supplementary 228 

Figure S4, C). 229 

The funnel plot assessment of all outcomes showed no evident asymmetry in SNP distribution, 230 

indicating that directional and horizontal pleiotropy was not observed (see Supplementary 231 

Figures S2-S4, D). 232 

Discussion 233 

This study is the first to investigate the causal relationship between energy intake and BP 234 

using MR analyses with large GWAS summary statistics. Our findings suggest that genetically 235 

predicted higher energy intake is associated with elevated BP and an increased risk of HTN. 236 

Although there have been studies investigating the relationship between dietary components, 237 

nutrients, food groups, and dietary patterns with HTN [36-39], research specifically focusing 238 

on the influence of calorie consumption as a significant factor on BP or HTN is limited and 239 

outdated. Some observational studies have explored the association between energy intake and 240 

BP or HTN from various perspectives. In a case-control study, Kazemian et al. found that 241 

women with high energy intake during pregnancy (>3,000 kcal/day) had more than a ninefold 242 

increased risk of developing gestational hypertension [18]. Other studies have highlighted the 243 

timing of calorie consumption as a relevant factor [17, 40]. A cohort study in the UK reported 244 
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that higher calorie intake at breakfast was associated with a lower prevalence of HTN, while 245 

greater late evening calorie consumption correlated with increased BP and HTN risk [17]. 246 

Additionally, some investigations have examined how total energy intake may interact with 247 

key nutrients that affect BP. For example, one study found that sodium’s effect on BP was 248 

modified by total energy intake. Specifically, a sodium intake of 2,300 mg/day increased BP 249 

more in the context of a low-energy diet than in a high-energy one [41]. This suggests that total 250 

energy intake may amplify or attenuate the influence of nutrients such as sodium, magnesium, 251 

and potassium on BP regulation.  252 

Moreover, genetic variations influence metabolic pathways involved in BP regulation and may 253 

interact with energy intake. Certain genes associated with BP could increase the risk of 254 

hypertension when combined with a high-energy diet. For example, variations in the catechol-255 

O-methyltransferase (COMT) gene have been linked to altered catecholamine levels, which 256 

can affect sympathetic nervous system activity and, in turn, BP regulation. In a study by Htun 257 

Nc et al., the Met allele of the rs4680 variant in the COMT gene was associated with higher 258 

BP and a greater prevalence of hypertension. Notably, when individuals with this allele 259 

consumed higher amounts of calories, the risk of hypertension was further elevated [42]. This 260 

indicates that higher energy intake may increase HTN risk through interactions with 261 

hypertension-related genetic variants.  262 

Our MR study provides the first robust genetic evidence supporting a causal relationship 263 

between higher energy intake and elevated BP, demonstrating that genetically predicted 264 

increases in energy consumption significantly raise both SBP and DBP and also increasing 265 

hypertension risk. Notably, our MR approach overcomes key limitations of prior nutritional 266 

epidemiology by minimizing reverse causation and confounding—issues pervasive in 267 

traditional observational studies. Mechanistically, these results suggest that chronic positive 268 

energy balance may independently contribute to hypertension pathogenesis. Also, clinically, 269 
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these findings reinforce the importance of caloric restriction interventions for hypertension 270 

prevention, particularly in high-risk populations. Although, our MR study does not directly 271 

address biological pathways to illustrate potential links between energy intake and blood 272 

pressure, the finding that genetically predicted greater energy intake leads to higher BP aligns 273 

with established epidemiological evidence linking excess caloric consumption to HTN, likely 274 

mediated through mechanisms such as increased body weight, metabolic dysregulation, and 275 

vascular changes [43-46]. 276 

The link between obesity and the activation of the sympathetic nervous system and the renin-277 

angiotensin system, both of which contribute to the development of HTN, is well established 278 

[45]. Some studies suggest that the effects of energy intake on BP are mediated by factors such 279 

as visceral fat accumulation, obesity, and insulin resistance. For example, increased energy 280 

intake can elevate visceral fat and insulin resistance, leading to higher levels of catecholamines 281 

and enhanced sympathetic activity, which in turn may raise BP [47]. However, excess calorie 282 

intake may also affect BP through alternative mechanisms, including mitochondrial 283 

dysfunction and oxidative stress. Overeating disrupts energy balance, overwhelms 284 

mitochondria, and increases the production of reactive oxygen species, which causes cellular 285 

damage [46, 48-50]. Diets high in fat and sugar can trigger chronic low-grade inflammation 286 

[51, 52], which further intensifies oxidative stress by disrupting the body's antioxidant defenses 287 

[53]. The expansion of adipose tissue also promotes the release of pro-inflammatory cytokines, 288 

known as adipokines, which amplify both oxidative stress and inflammation [54]. Oxidative 289 

stress and inflammation can damage the vascular endothelium, impair nitric oxide production, 290 

and reduce the ability of blood vessels to relax, resulting in persistent vasoconstriction and 291 

increased vascular resistance [43, 44]. Additionally, high energy intake may enhance 292 

sympathetic nervous system activity and catecholamine secretion, leading to further 293 

vasoconstriction and elevated BP [55, 56]. Although our study does not directly examine these 294 
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mechanisms, the observed causal relationship between energy intake and BP highlights the 295 

importance of further mechanistic research. 296 

Strengths and Limitations  297 

A key strength of our study is the use of the TSMR approach to explore the causal relationship 298 

between calorie consumption and BP. To the best of our knowledge, this is the first study to 299 

employ this approach in examining the association between energy intake and BP, offering 300 

new perspectives on the potential impacts of energy consumption on BP regulation. 301 

Furthermore, the substantial sample size drawn from the UK Biobank database adds strength 302 

to our study. Compared to other dietary factors, energy intake tends to show relatively 303 

consistent variability, which improves the accuracy and reliability of our estimates. This 304 

stability contrasts with the greater fluctuations seen in other nutrient intakes, further 305 

strengthening the precision of our analysis. Another advantage of our study is the use of precise 306 

and reliable methods to measure BP. 307 

Some limitations of this study should be considered. First, energy intake was calculated based 308 

on data obtained from 24-hour dietary recalls, which may be subject to recall bias and may not 309 

accurately represent long-term dietary habits. However, several key methodological strengths 310 

help minimize these measurement errors. The energy intake data came from publicly available 311 

genome-wide association summary statistics based on a large sample of 64,979 European-312 

ancestry participants from the UK Biobank. The large sample size helps reduce recall bias by 313 

averaging out random errors, yielding more reliable population-level estimates than smaller 314 

studies prone to individual reporting inaccuracies. Moreover,  using a web-based 24-h dietary 315 

assessment (Oxford WebQ) [25, 26], is an automated self-administered tool, resulting in reduce 316 

social desirability bias by allowing unannounced recalls in neutral settings. This also 317 

incorporate portion-size images, improving estimation accuracy. As a fully automated 318 
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platform, Oxford WebQ has the potential to revolutionize dietary assessment by enhancing the 319 

feasibility and cost-effectiveness of collection of high-quality dietary data [57]. Furthermore, 320 

the Oxford WebQ as a 24-h dietary assessment has been administered multiple times to UK 321 

Biobank participants that included questions on the consumption of 206 different food items 322 

and 32 types of beverages and focused on intake during the previous 24 hours. This detailed 323 

and repeated approach allows for the estimation of individual consumption amounts for each 324 

item separately, using grams or various household portion sizes. As a result, the total energy 325 

intake calculated from these food components achieves acceptable accuracy.  Second, the 326 

relatively small number of HTN cases (1,237), identified based on ICD codes in electronic 327 

health records (EHRs), may underestimate the true prevalence of HTN. While this strict case 328 

definition improves diagnostic specificity, it may limit statistical power to detect small effect 329 

sizes. Nevertheless, the large control group and strict quality control measures mitigate this 330 

issue. Additionally, consistent results across multiple sensitivity analyses and the use of SBP 331 

and DBP as complementary outcomes strengthen the validity of our findings. Third, although 332 

Mendelian randomization can establish a causal relationship between energy intake and blood 333 

pressure, it cannot reveal the underlying biological mechanisms. Further experimental studies 334 

are needed to clarify how energy intake influences blood pressure regulation. 335 

Conclusions 336 

Our research provides evidence supporting a causal relationship between energy intake and 337 

BP. Although the observed effect sizes were modest at the individual level, they remain highly 338 

relevant from a public health perspective. Even a slight reduction in SBP at the population level 339 

has been associated with significant decreases in cardiovascular morbidity and mortality [58]. 340 

Therefore, controlling caloric intake, despite modest individual effects, represent an important 341 

public health strategy for BP control. However, these findings should be interpreted with 342 

caution due to the inherent limitations of Mendelian randomization studies and the complex 343 
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mechanisms underlying the relationship between energy intake and BP. Further research, 344 

including large prospective studies and well-designed RCTs, is necessary to validate the effects 345 

and clarify the mechanisms by which higher dietary energy intake increases HTN risk. 346 
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Legend 1 to Figure 1. The beta coefficient and 95%CI for the causal relationship of energy 387 

intake with systolic blood pressure calculated by different MR methods 388 

Legend 2 to Figure 2. The beta coefficient and 95%CI for the causal relationship of energy 389 

intake with diastolic blood pressure calculated by different MR methods. 390 

Legend 3 to Figure 3. The odds ratio and 95%CI for the causal relationship of energy intake 391 

with hypertension calculated by different MR methods.392 
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Table 1. Two-sample MR of energy intake relationship with systolic blood pressure, diastolic blood pressure, and hypertension  

Outcome Nsnp Methods Beta SE P-value OR 95%CI P-

value 

Horizontal pleiotropy Heterogeneity 

         Egger intercept SE P-value Q P-value 

SBP 10 
 

           

  MR Egger 0.04 0.09 0.657    0.001 0.003 0.572 15.1 0.055 

  Weighted median 0.09 0.03 0.012         

  IVW 0.09 0.03 0.006       15.8 0.070 

  Simple mode 0.10 0.06 0.177         

  Weighted mode 0.10 0.06 0.150         

DBP 8             

  MR Egger 0.11 0.07 0.176    -0.001 0.002 0.533 2.96 0.812 

  Weighted median 0.07 0.03 0.044         

  IVW 0.07 0.02 0.014       3.40 0.845 

  Simple mode 0.08 0.05 0.187         

  Weighted mode 0.08 0.06 0.218         

Hypertensio

n 

9             

  MR Egger 0.01 0.004  1.012 (1.004, 1.020) 0.045 -0.0002 0.000

1 

0.146 3.95 0.784 

  Weighted median 0.001 0.002  1.001 (0.998, 1.003) 0.685      

  IVW 0.004 0.001  1.004 (1.0007, 1.0073) 0.012    6.63 0.576 

  Simple mode 0.000 0.003  1.004 (0.996, 1.013) 0.924      

  Weighted mode 0.000 0.004  1.000 (0.992, 1.009) 0.927      

MR; Mendelian randomization, SBP; Systolic blood pressure, DBP; Diastolic blood pressure, IVW; Inverse variance weighted. 
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