REVIEW

Headline: Fracture Risk in Type 2 Diabetes: Systematic Review of Cardiovascular Outcome Trials with Glucagon Like Peptide Receptor **Agonists**

Aksayan Arunanthy Mahalingasivam Down Nicklas Højgaard-Hessellund Rasmussen 1,2

Received: 1 May 2025 / Accepted: 10 September 2025 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract

Purpose of Review This systematic review examined the available evidence on fracture risk in people with type 2 diabetes (T2D) using cardiovascular outcome trials with glucagon-like peptide-1 receptor agonist (GLP-1RA).

Recent Findings A systematic Literature search identified 797 records, of which 643 remained after duplicate removal. Following screening, 20 studies met the criteria for inclusion.

Summary Although GLP-1 RAs have demonstrated well-established benefits in glycaemic control, weight reduction, and cardiovascular protection, their impact on bone health remains incompletely understood. Preclinical studies suggest potential bone-protective effects, including increased bone mass, improved microarchitecture, and reduced bone resorption. However, evidence from human studies has been inconsistent. While some findings indicate a possible reduction in fracture risk with long-term GLP-1 RA therapy, further research is needed to clarify their role in bone metabolism and fracture prevention among people with T2D, particularly within the context of cardiovascular outcome trials.

Keywords Diabetes mellitus type 2 · Cardiovascular disease · Fracture · BMD · GLP1-RA

Abbreviatio	ns	HDAC1	Histone deacetylase 1
AGE	Advanced glycation end-product	IL-6	Interleukin-6
ABMD	Areal bone mineral density	MACE	Major adverse cardiovascula
BMD	Bone mass density	MOF	Major osteoporotic fracture
CTX	C-terminal telopeptide of type I collagen	NOS	Newcastle-ottawa scale
CVD	Cardiovascular disease	OPG	Osteoprotegerin
DPP-4i	Dipeptidyl peptidase-4 inhibitors	P1NP	Procollagen type 1 N-termin
GLP-1	Glucagon-like peptide-1	RAGE	Receptor for advanced glyca
GLP-1RA	Glucagon like peptide-1 receptor agonists	RANK	Receptor activator of nuclea
GRADE	Grades of recommendation, assessment,	RANKL	Receptor activator of nuclea
	development, and evaluation	RCT	Randomized controlled trial
HbA1c	Hemoglobin A1c	REMS	Risk evaluation and mitigat
		ROS	Reactive oxygen species
		SGLT-2i	Sodium-glucose cotranspor
	A 4 361 1' '	T2D	Type 2 diabetes
•	Arunanthy Mahalingasivam nahalingasiyam@rn.dk	Wnt	Wingless-type MMTV integ

aksayan.mahalingasivam@rn.dk

Published online: 30 September 2025

Nicklas Højgaard-Hessellund Rasmussen nicklas.rasmussen@rn.dk

lar events inal propeptide cation end-products ear factor kB ear factor kB ligand tion strategy rter 2 inhibitors gration site

Steno Diabetes Centre North Denmark, Aalborg University Hospital, Aalborg, Denmark

Department of Clinical Medicine, Aalborg University, Aalborg, Denmark

38 Page 2 of 16 Current Osteoporosis Reports (2025) 23:38

Introduction

Understanding Fracture Risk in Diabetes

Type 2 diabetes (T2D) represents a growing global health concern, with prevalence projected to exceed 783 million individuals by 2045. The condition is linked to a higher risk of both microvascular and macrovascular complications, an increased burden of comorbidities, elevated mortality rates, and a marked decline in health-related quality of life [1].

Among various comorbidities associated with T2D, an elevated risk of fractures has been consistently observed compared to individuals without diabetes [2, 3]. This phenomenon is often referred to as the 'diabetic bone paradox,' wherein people with T2D typically present with normal or even elevated areal bone mineral density (aBMD) yet exhibit impaired bone quality. This impairment is not fully understood but is thought to involve a range of pathophysiological changes, including the accumulation of advanced glycation end-products (AGEs), reduced bone turnover particularly diminished resorption - osteocyte dysfunction, increased bone marrow adiposity, and chronic low-grade inflammation [4]. Collectively, these alterations compromise the biomechanical integrity of bone, and may increase susceptibility to fragility fractures [5].

Fall Risk in T2D and Coexisting CVD

Another important comorbidity in T2D is an elevated risk of falls - a multifactorial condition influenced by factors such as deteriorated blood pressure regulation, physical inactivity, impaired postural control, neuropathy, and cardiovascular disease (CVD) [6–8]. People with T2D have approximately a 1.5-fold higher risk of falling compared to those without diabetes, a risk further associated with an increased incidence of fracture-related hospitalizations [3]. Consequently, fall risk represents a key factor in understanding fracture susceptibility in people with T2D, particularly in the context of coexisting conditions.

The association between falls and CVD reflects a complex interplay of shared risk factors and overlapping pathophysiological mechanisms, posing significant clinical challenges. CVD may therefore contribute to an elevated risk of falls. It encompasses a broad range of conditions, including major adverse cardiovascular events (MACE), hypo- and hypertension, heart failure, arrhythmias, myocardial infarction, stroke, and atherosclerosis. The coexistence of T2D and CVD is driven by shared risk factors and contributes to their rising prevalence. Current estimates indicate that over 30% of people with T2D have established CVD.

As a result, treatment strategies must extend beyond glycaemic control and adopt a multifaceted pharmacological approach aimed at improving cardiovascular outcomes. Among these, glucagon-like peptide-1 receptor agonists (GLP-1RAs) have demonstrated class-wide efficacy in reducing diabetic complications and managing comorbid CVD. In addition, their potential impact on bone health is promising, despite their known role in promoting fat loss [9]. The multifaceted relationship among T2D, CVD, falls, and bone fragility is illustrated in Fig. 1.

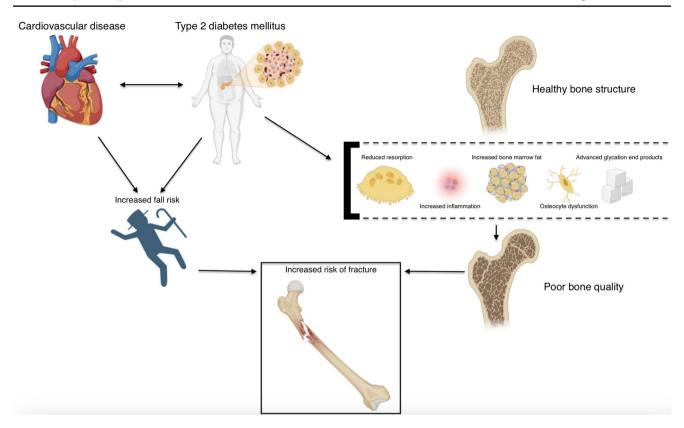
Glucagon-Like Peptide-1 Receptor Agonists

GLP-1s are incretin-based therapies [10] that exert a dual effect on the endocrine pancreas by stimulating insulin secretion from beta cells and inhibiting glucagon secretion from alpha cells—both in a glucose-dependent manner. As a result, the risk of hypoglycaemia is minimal [11]. This class of treatment not only limits hypoglycaemic events and supports weight loss but also achieves similar or superior control of HbA1c compared to older antidiabetic agents [12, 13]. In people with T2D, weight reduction and improved HbA1c levels have demonstrated significant clinical benefits for glycaemic control [13–15]. Recent studies highlight the cardiovascular benefits of GLP-1RAs, showing significant reductions in overall cardiovascular events (by 14%), cardiovascular mortality (13%), nonfatal stroke (16%), and hospitalizations for heart failure (10%) [16, 17]. Collectively, these findings underscore the role of GLP-1RAs in addressing both glycaemic and cardiovascular risk profiles in people with T2D.

However, the lack of skeletal health assessments in cardiovascular outcomes trials involving people with T2D using GLP-1RAs may hinder optimal treatment decisionmaking and limit opportunities for targeted fall-prevention strategies, such as exercise and rehabilitation.

This systematic review aimed to summarize the current evidence on fracture risk in people with T2D, based on data from GLP-1RA trials that were primarily designed to evaluate cardiovascular outcomes.

Method


Literature Survey

This study was registered in the PROSPERO database (Registration ID: CRD420251003233). A comprehensive Literature search was conducted on March 6, 2025, with a backward cut-off date of January 1, 2020. The search was carried out in collaboration with experienced medical librarians at the Aalborg University Hospital Library.

The primary search was conducted in PubMed using a combination of predefined MeSH terms ("Glucagon-Like

Current Osteoporosis Reports (2025) 23:38 Page 3 of 16 38

Fig. 1 The interplay between type 2 diabetes, fractures, and cardiovascular disease. Illustration of the multifactorial mechanisms by which type 2 diabetes (T2D) and cardiovascular disease (CVD) contribute to increased fracture risk. T2D is associated with impaired bone quality resulting from reduced bone resorption, increased bone marrow

adiposity, chronic inflammation, osteocyte dysfunction, and accumulation of advanced glycation end-products (AGEs). In parallel, both T2D and CVD elevate fall risk, further amplifying fracture susceptibility. Together, these mechanisms establish a pathophysiological link between metabolic disease, skeletal fragility, and fracture outcomes

Peptide-1 Receptor Agonists", "Incretins", "Cardiovascular Diseases", "Fractures, Bone", and "Diabetes Mellitus, Type 2") along with relevant free-text terms. Due to limited retrieval of eligible studies focusing on cardiovascular outcomes, the search was subsequently expanded to include Embase and the Cochrane Library.

Key search concepts included GLP-1RA, fracture, bone turnover, bone mineral density (BMD), T2D, and CVD. These terms were systematically combined using the boolean operators such as AND and OR. Only studies published in English or Danish were eligible for inclusion. The screening process was independently performed by both authors (AAM and NHR).

Search Strategy

Specific search strings were constructed, yielding a total of 797 potential hits from PubMed (n=406), Embase (n=234), and the Cochrane Library (n=157). The full search strategies are provided in the supplementary materials.

Inclusion and Exclusion

Systematic reviews and meta-analyses were prioritized. Original studies not incorporated into meta-analyses—either due to omission or later publication—were included where relevant. Older meta-analyses were cited alongside newer ones in cases of conflicting findings; otherwise, they were excluded if their conclusions were concordant.

Reference lists of included articles were systematically screened to identify additional eligible studies. Priority was given to studies involving people with T2D; however, studies involving non-T2D populations were also considered to ensure a comprehensive evaluation.

For cardiovascular disease, the focus was on MACE, blood pressure regulation, cardiac electrophysiology, and cardiovascular autonomic neuropathy. Both human and animal studies involving GLP-1RAs were eligible for inclusion. Among all eligible studies, randomized controlled trials were prioritized over observational study designs.

38 Page 4 of 16 Current Osteoporosis Reports (2025) 23:38

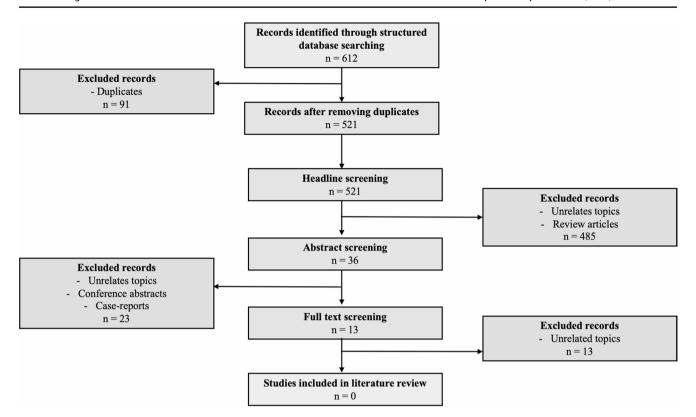


Fig. 2 PRISMA flow diagram. PRISMA flow diagram of the Literature search process related to diabetes, falls, balance, and cardiovascular disease. A total of 797 records were identified across PubMed, Embase,

and the Cochrane Library. After removing duplicates, 643 unique records remained. Following title, abstract, and full-text screening, 20 studies met the eligibility criteria for inclusion in the systematic review

In total, 20 studies met the eligibility criteria; however, none addressed cardiovascular outcomes as a primary endpoint in relation to fracture risk among people with T2D (see Fig. 2).

Quality Assessment

Study quality was assessed using validated tools: the Jadad score [18] (Oxford quality scoring system) for randomized controlled trials (RCTs), the Newcastle-Ottawa scale (NOS) [19] for observational studies, and the grades of recommendation, assessment, development, and evaluation (GRADE) [20] for overall evidence assessment. All evaluations were performed using standardized data extraction forms.

Each study was assessed for methodological rigor, including risk of bias, sample size, study design, and population characteristics. For RCTs, specific criteria included randomization methods, blinding, and allocation concealment. For observational studies, cohort selection and comparability were examined, along with the reliability of outcome measures.

Additional factors such as confounding variables, dropout rates, and follow-up duration were analysed to evaluate the robustness of the findings. Studies identified as having a high risk of bias or insufficient control for confounding were interpreted with caution. Discrepancies in quality assessments between reviewers were resolved through discussion and consensus (see Table 1 for quality assessment).

Results

Animal Studies

Liraglutide

Chen et al. reported significantly lower bone mineral density (BMD) in controls compared to all intervention groups (p<0.05), with the liraglutide plus insulin group exhibiting higher BMD than liraglutide alone. Inflammatory markers—tumor necrosis factor-alpha (TNF- α), interleukin-6 (IL-6), and interleukin-1 beta—were elevated in controls and negatively correlated with BMD in the combination group [21].

Moreover, Wang et al. found that liraglutide improved callus formation, osseous union, and bone strength in ovariectomized rats, while reducing osteoclast numbers and enhancing trabecular architecture and femoral BMD [22]. Additionally, Cheng et al. observed that Liraglutide preserved trabecular microarchitecture and increased levels

Table 1 Quality assessment	ity asses	sment							
Articles	Year	Study design/animal model	Population and country	Age (Years)	Aim	Outcome	JADAD	NOS GRADE	DE
Effects of GLI	P-1 on sk	Effects of GLP-1 on skeletal health in T2D - Anima	– Animal studies						
Experimental									
Chen	2021	Diabetes induced osteoporosis via bilateral ovariectomy and streptozotocin injection	40 Sprague-Dawley rats China	6 months	To compare the therapeutic efficacy of liraglutide alone versus liraglutide combined with insulin on osteoporosis in diabetic rats, focusing on their effects on BMD	Liraglutide combined with insulin significantly improved BMD, reduced inflammatory markers $(p < 0.05)$ compared to liraglutide alone			
Abo-Elenin	2024	Ovariectomy to induce postmenopausal osteoporosis	30 adult female Sprague— Dawley rats Egypt	6 weeks	To investigate the osteoprotective effects of semaglutide, focusing on its impact on BMD, bone microarchitecture, and the Wnt/β-catenin signaling pathway	Improved BMD in the spine, femur, and tibia. Enhanced bone microarchitecture and trabecular bone structure. Increased expression of β-catenin and BMP-2, promoting osteoblast differentiation. Decreased levels of RANKL, IL-6, and bone resorption markers		1	
Lv	2024	T2D induced by high-fat diet and streptozotocin injections	38 female C57BL/6J mice USA	8 weeks	To evaluate the effects of semaglutide and tirzepatide on bone metabolism in a T2D mouse model, focusing on bone mass, microarchitecture, turnover biomarkers, and gene expression related to bone health	Semaglutide had a neutral effect on bone mass and microarchitecture in T2D mice after 4 weeks ($p > 0.05$). However, semaglutide increased the OPG/RANKL ratio and Runx2 expression, suggesting a potential inhibitory effect on bone resorption ($p > 0.05$).	1	1	
Wang	2023	Osteoporosis induced via bilateral ovariectomy, followed by a fracture model via femoral osteotomy	36 Female Sprague Dawley rats China	5 months	To evaluate the effects of GLP-1RA liraglutide on fracture healing and bone regeneration	Liraglutide enhanced callus formation, increased BMD, improved bone strength, and reduced osteoclast numbers, suggesting it promotes bone regeneration and inhibits bone resorption in osteoporotic fracture rats			
Cheng	2022	28 obese rats and 7 lean control rats, divided in (1) control group, saline injected, (2) Insulin treated, (3) Saxagliptin treated, (4) Liraglutide treated	35 Male Zucker Diabetic Fatty rats China	8 weeks	To evaluate whether liraglutide can mitigate diabetes-associated osteoporosis in rats, potentially through the AGEs-RAGE-ROS pathway	Liraglutide improved bone micro- architecture and strength, enhanced osteoblast proliferation and differ- entiation, and reduced bone resorp- tion markers. It also downregulated RAGE expression and oxidative stress (p < 0.05), indicating its bone- protective role is mediated via the AGEs-RAGE-ROS pathway			

Table 1 (continued)	(;							
Articles Year	r Study design/animal model	Population and country	Age (Years)	Aim	Outcome	JADAD	NOS	GRADE
Effects of GLP-1 on	Effects of GLP-1 on skeletal health in T2D – Animal studies	nal studies						
Deng 2021	1 T2D induced by a high- fat/high-sucrose diet fol- lowed by streptozotocin injections	50 male ICR mice China	12 weeks	To investigate how exendin-4, affects bone formation in diabetic mice, and to explore the underlying mechanisms via the HDAC1-Wnt/β-catenin signaling pathway	Exendin-4 significantly improved BMD, bone strength, and microarchitecture ($\rho < 0.05$) in T2D mice. It enhanced osteogenic differentiation, downregulated HDAC1 ($\rho < 0.05$), and activated the Wnt/ β -catenin pathway, suggesting it improves diabetic bone loss by targeting this axis	1		
Mieczkowska 2020	Diabetes induced via high-fat diet+streptozotocin	32 Male Swiss mice UK	8-10 weeks	To compare the effects of dapagliflozin and liraglutide on bone strength, material properties, and matrix biomechanics in a T2D mouse model	Both drugs improved bone material properties and matrix biomechanics at the bone formation site but did not significantly restore bone strength or microarchitecture in the short term $(p > 0.05)$. Liraglutide particularly enhanced collagen maturity and reduced collagen particularly suggesting additional effects beyond glucose control	1		
Li 2020	Divided in two groups (1) chow diet, (2) highfat diet and treated with streptozotocin to induce diabetes	32 Male C57BL/6J mice China	8 weeks	To evaluate whether liraglutide improves osteogenic differentiation in diabetic mice and human ADSCs, and to explore the role of the Wnt/GSK-3β/β-catenin signaling pathway	Liraglutide improved glucose metabolism and promoted osteogenic differentiation while reducing adipogenic markers in diabetic mice and hADSCs (<i>p</i> <0.05). These effects were mediated via the Wnt/GSK-3β/β-catenin signaling pathway, highlighting GLP-1's role in bone formation under diabetic conditions	1		
Effects of GLP-1 on skeletal health	Effects of GLP-1 on skeletal health in T2D – Human studies Randomized controlled trial (RCT)	nan studies						
Jensen 2024	4 RCT	195 participants (124 women, 71 men), (BMI 32-43) Denmark	42.84±11.87	To assess the effects of The exercise, liraglutide, and their tid combination on BMD after arraweight loss in adults with los obesity.	The combination of exercise and liraglutide preserved BMD at hip, spine, forearm while achieving the greatest weight loss. Liraglutide alone reduced BMD; exercise alone preserved it $(p=0.03)$.	4	1	High

Table 1 (continued)	ntinued)								
Articles	Year	Study design/animal model	Population and country	Age (Years)	Aim	Outcome	JADAD	NOS	GRADE
Effects of GI	P-1 on sk	Effects of GLP-1 on skeletal health in T2D - Animal studies	nal studies						
Cai	2021	RCT	65 patients with T2D China	Exenatide: 62.95 ± 1.70 Dulaglutide: 57.42 ± 1.81 Insuline glargine: 64.36 ± 2.93 Placebo: 62.00 ± 1.21	To evaluate the effects of exenatide, dulaglutide and insulin on BMD in patients with T2D over 52 weeks.	Exenatide increased BMD at the hip; dulaglutide showed slight femoral neck BMD loss but less than placebo $(p=0.131)$; overall, GLP-1RAs were beneficial or neutral for BMD compared to placebo.	·ro	1	Moderate
Hansen	2024	RCT	64 adults (86% post- menopausal women) with increased fracture risk but without diabetes Denmark	Semaglutide: 62.7±5.6 Placebo: 63.6±5.4	To assess whether once weekly semaglutide increases bone formation and improves bone health in adults at increased fracture risk.	Semaglutide did not increase bone formation ($p=0.42$), instead, it increased bone resorption ($p=0.021$) and caused reductions in BMD ($p<0.01$) at the lumbar spine and total hip. These effects were likely due to weight loss.	v		Moderate
Akyay	2023	RCT	30 postmenopausal women with T2D Turkey	Exenatide: 52.73±4.68 Glargine: 53.00±4.07	To compare the effects of exenatide and insulin glargine on bone turnover markers and BMD in postmenopausal women with T2D over 24 weeks.	Exenatide led to significant weight loss and improved bone metabolism markers († OPG, \downarrow RANK and RANKL), with no loss of BMD (p <0.05). Glargine showed no significant effect on bone markers or BMD (p >0.05).	7	1	Low- Moderate
Hygum	2019	RCT	60 adults with T2D Denmark	Liraglu- tide: 62.00 [59.00–65.00] Placebo: 64.00 [61.00–67.00]	To evaluate the effect of liraglutide on bone turnover markers and BMD in patients with T2D over 26 weeks.	Liraglutide did not change bone resorption (p =0.16) but preserved hip BMD (p =0.01) despite weight loss, suggesting a possible antiresorptive effect.	ν,		Moder- ate-High

Table 1 (continued)	ulliuvuj								
Articles	Year	Study design/animal model	Population and country	Age (Years)	Aim	Outcome	JADAD	SON	GRADE
Effects of GI	P-1 on sl	Effects of GLP-1 on skeletal health in T2D - Animal studies	mal studies						
Observation Xiao Xiao	2024 2024	Observational (Case-control, longitudinal, cohort and cross-sectional) Xiao 2024 Case-control 490,107 adverse ev reports for patients diabetes Groups: (1) Insulin 202,755 reports, (2) GLP-IRA users: 98 reports, (3) Non-GI IRA (excluding ins 211,734 reports North america	t and cross-sectional) 490,107 adverse event reports for patients with diabetes Groups: (1) Insulin users: 202,755 reports, (2) GLP-1RA users: 98,625 reports, (3) Non-GLP- 1RA (excluding insulin): 211,734 reports North america	GLP-1RA: 61 [58.00–66.00] Insulin: 64.00 [58.00–69.00] Non-GLP- IRA: 63 [58.00-70.88]	To assess the risk of fracture events associated with GLP-IRAs using the FDA Adverse Event Reporting System, comparing it to other glucoselowering drugs.	GLP-1RAs were associated with a significantly lower risk of fracture-related adverse events in diabetic patients compared to other glucose-lowering drugs. This protective effect remained consistent for overall, osteoporotic, and hip fractures, even after adjusting for confounders and excluding insulin users. Any fractures related to adverse events, aROR = 0.45 (0.40–0.50) Osteoporotic fracture, aROR = 0.44 (0.37–0.52) Hip fracture, aROR = 0.44 (0.37–0.52) Abbiglutide and fracture, aROR = 0.11		_	Moderate
Huang	2023	Cohort	265 diabetic patients with osteoporosis or osteopenia Taiwan	Study: 61.9 ± 6.7 Control: 63.4 ± 5.9	To evaluate the effect on BMD when switching from DPP-4i to GLP-IRA in diabetic patients.	(0.05–0.21) Switching from DPP-4i to GLP-1RA in diabetic patients led to decrease in lumbar spine bone mineral density $(p=0.04)$. There was no significant difference in femoral neck BMD $(p>0.05)$. This suggests that while GLP-1RAs are effective for blood sugar management, they may negatively impact spinal bone health compared to continued use of		∞	Low- moderate
Al-Mashhadi	2022	Cohort	32,266 Danish patients with T2D Denmark	GLP-1RA: 56.6±12.0 DPP-4i: 63.6±12.4	To compare the risk of major osteoporotic fractures (MOF) between GLP-1RA and DPP-4i as add-on therapies to metformin in patients with T2D	DPP-4i. The risk of MOF was slightly lower in the GLP-1RA group but not statistically significant. However, GLP-1RAs significantly reduced the risk of hip fractures. Other fracture types showed neutral effects. Subgroup and sensitivity analyses consistently supported these findings. MOF with GLP-1RA compared to DPP-4i, HR=0.89 [0.76–1.05], aHR=0.86 [0.73–1.03] Hip fracture, HR=0.68 [0.49–0.96]		∞	Moderate

continued)	
_ _	
ap	

Articles	Year	Study design/animal	Population and country	Age	Aim	Outcome	JADAD	NOS	GRADE
Effects of GI	2.1 on eke	model Effects of GI D-1 on skeletal health in T2D _ Anii	- Animal etudies	(Years)					
Refaic	2024		65 patients with type 2 diabetes mellitus Italy	66.4±8.45	To evaluate the effects of 12 months of GLP-1RA therapy on bone turnover, BMD, and bone quality in T2D patients.	GLP-1RA therapy increased bone turn- over markers and adiponectin ($p < 0.05$), while reducing myostatin ($p = 0.05$). Femoral BMD showed a modest but significant reduction by both DXA and REMS ($p < 0.05$). Lumbar spine BMD decreased significantly by DXA but not by REMS. Trabecular Bone Score slightly increased, indicating preserved bone microarchitecture. These findings suggest that despite some BMD loss likely related to weight reduction, GLP- 1RAs may preserve or improve aspects of bone quality.		ν	Low
Deng	2025	Cross-sectional	GWAS data from up to 462,933 individuals of European ancestry Europe	₹ Z	To assess the causal effects of five antidiabetic drugs (Metformin, GLP-1RAs, SGLT-2i, Insulin, and Gliclazide) on osteoporosis and its subtypes, including pathological fractures, using Mendelian Randomization.	Found that metformin has a strong protective effect against osteoporosis, while gliclazide significantly increases the risk of pathological fractures. GLP-1RA were associated with a modest but significant increase in osteoporosis with pathological fractures. SGLT-2i showed a weak, non-robust protective effect, and insulin showed no significant impact on bone health. GLP-1RA and osteoporotic fractures, OR [95% CI]: 1.1247 [1.0043–1.2594], p=0.0420	1	1	Low-moderate
Effects of GLI	P-1 on BN (<i>Case-co</i> 2024	Effects of GLP-1 on BMD and body composition Observational (Case-control, longitudinal, cohort and cross-sectional) Nelson 2024 Cohort 241 adult patients (women, 90 men) USA	r and cross-sectional) 241 adult patients (151 women, 90 men) USA	60.4±12.4	To assess changes in body composition (fat, muscle, liver, bone) using Al-based CT analysis before and after semaglutide initiation.	Patients with weight loss after starting semaglutide showed significant reductions in visceral fat, subcutaneous fat, muscle area, and liver volume, along with improved liver attenuation—indicating decreased fat content (p <0.05). In contrast, those with weight gain exhibited increases in fat depots and a significant decline in muscle quality (p <0.05) (lower attenuation), indicating possible myosteatosis. Across the full sample, there was a statistically significant decrease in BMD (p <0.05).		'n	Low

38 Page 10 of 16 Current Osteoporosis Reports (2025) 23:38

7	
ă	
=	
Ξ.	
π	
ō	
્ပ	
_	
_	
<u>•</u>	
虿	
<u>a</u>	

idale i (commuca)	unuca)								
Articles	Year	Year Study design/animal model	Population and country	Age (Years)	Aim	Outcome	JADAD NOS GRADE	NOS	GRADE
Effects of GL	P-1 on sk	Effects of GLP-1 on skeletal health in T2D - Animal studies	mal studies						
Chen	2024	2024 Cross-sectional	70 overweight Chinese patients with T2D China	44.19±10.57	44.19±10.57 To assess changes in body composition and their relationship with glucose control after 3 months of dulaglutide treatment in overweight T2D patients.	Dulaglutide treatment significantly improved glucose control, reduced body weight, visceral fat area, and total body fat (p <0.05). While lean body mass and skeletal muscle mass slightly decreased in absolute terms, their percentages increased, suggesting preserved muscle quality (p <0.05). Importantly, bone mineral quality did not change, indicating no bone loss (p =0.30). The percentage change in body fat was independently associated with the improvement in HbA1c.	ı	v	Low

Effects of GLP-1 on CVD outcome trials on fracture risk

Vone

Quality grading of included studies based on study design and characteristics of the study populations

Abbreviations: ADSC Adipose-Derived Stem Cell, AGE Advanced Glycation End-products, BMD Bone Mass Density, BMP-2 Bone Morphogenetic Protein 2, CVD Cardiovascular Diseases, DPP-4i Dipeptidyl Peptidase-4 Inhibitors, FDA Food and Drug Administration, GLP-1 Glucagon Like Peptide 1, GLP-1RA Glucagon Like Peptide 1 Receptor Agonist, GSK3\(\beta\) Glycogen Synthase Kinase-3 Beta, hADSC Human Adipose-Derived Stem Cell, HDAC! Histone Deacetylase 1, IL-6 Interleukin-6, MOF Major Osteoporotic Fracture, OPG Osteoprotegerin, RAGE Receptor for Advanced Glycation Endproducts, RANKL Receptor Activator of Nuclear Factor KB Ligand, REMS Risk Evaluation and Mitigation Strategy, ROS Reactive Oxygen Species, SGLT-21 Sodium-Glucose Cotransporter-2 Inhibitors, T2D Type 2 Diabetes Mellitus, WNT Wingless-Related Integration Site

Current Osteoporosis Reports (2025) 23:38 Page 11 of 16 38

of bone formation markers including alkaline phosphatase, osteocalcin, and procollagen type 1 N-terminal propeptide (P1NP), while reducing C-terminal telopeptide of type I collagen (CTX). In vitro, GLP-1 attenuated AGE-induced osteogenic damage by reducing reactive oxygen species (ROS) and receptor for advanced glycation end-products (RAGE) expression [23].

In contrast, Mieczkowska et al. reported reduced mechanical strength in diabetic controls without microarchitectural alterations. Liraglutide did not restore strength but altered matrix composition, including collagen structure and tissue hydration (p < 0.05) [24].

Another study by Li et al. demonstrated that liraglutide upregulated osteoblast-related markers—osteocalcin, Runx2, and collagen type I—and promoted mineralization [25].

Semaglutide

Abo-Elenin et al. reported that semaglutide mitigated ovariectomy-induced bone deterioration by improving bone microarchitecture and preserving bone mineral content. Additionally, semaglutide enhanced β -catenin expression, thereby promoting bone formation and inhibiting receptor activator of nuclear factor κB ligand (RANKL) activation [26].

In contrast, Lv et al. found that semaglutide did not significantly alter cortical or trabecular bone parameters in diabetic mice over a four-week period, except for a reduction in cortical thickness observed in the semaglutide group (p=0.032). Although levels of C-terminal telopeptide of type I collagen (CTX) and procollagen type 1 N-terminal propeptide (P1NP) declined, intergroup differences were not statistically significant (p>0.05). Semaglutide modulated messenger RNA expression of RANKL and osteoprotegerin (OPG), resulting in an increased OPG/RANKL ratio [27].

Exendin-4

Deng et al. demonstrated that exendin-4 promoted osteogenic differentiation of bone marrow-derived mesenchymal stem cells in T2D models. This effect was associated with downregulation of histone deacetylase 1 (HDAC1) and phosphorylated β -catenin, along with upregulation of wingless-type MMTV integration site (Wnt) family member 3, β -catenin, and Runx2 expression. In vivo, exendin-4 significantly reduced blood glucose levels, increased body weight, and improved bone density and microarchitectural quality in the right tibia of T2D mice [28].

Human Studies

BMD and Bone Turnover Markers

Jensen et al. reported no significant changes in hip or lumbar spine BMD in the liraglutide plus exercise group compared to placebo. However, liraglutide alone was associated with a modest but statistically significant decrease in BMD at both the hip (p=0.03) and lumbar spine (p=0.04) compared to exercise alone [29].

In addition, Cai et al. observed site-specific effects of GLP-1RAs: exenatide increased total hip BMD, while dulaglutide caused a mild reduction at the femoral neck. Placebo was associated with generalized BMD loss, whereas insulin glargine increased BMD at several lumbar spine levels. Both exenatide and insulin glargine improved BMD at the femoral neck and total hip compared to placebo [30].

In contrast, Hansen et al. reported no significant effect of semaglutide on P1NP levels but observed a significant increase in the bone resorption marker P-CTX (p=0.021). After 52 weeks, lumbar spine and total hip aBMD were significantly lower in the semaglutide group compared to placebo, while femoral neck aBMD remained unchanged [31].

Moreover, Akyay et al. found that exenatide significantly modulated bone remodelling markers by decreasing RANK/RANKL and increasing OPG levels (p<0.05). However, no significant changes in BMD or conventional bone turnover markers were observed in either the exenatide or insulin glargine groups [32].

Another study by Hygum et al. reported that P-CTX levels increased in both liraglutide and placebo groups, though the between-group difference was not significant. Liraglutide induced an initial decline in P1NP followed by a sustained increase, while placebo showed no change. Hip BMD remained stable with liraglutide but declined in the placebo group (p=0.01 between groups) [33].

Furthermore, Huang et al. found that GLP-1RA therapy resulted in a greater reduction in lumbar spine BMD compared to controls (p=0.041), with no significant effect on femoral neck BMD [34].

In addition, Refaie et al. demonstrated that 12 months of GLP-1RA therapy increased bone turnover markers and adiponectin, along with a modest reduction in myostatin. Lumbar spine BMD declined significantly as measured by DXA but not by risk evaluation and mitigation strategy (REMS). Femoral BMD decreased slightly but significantly using both imaging modalities, while trabecular bone score showed marginal improvement [35].

38 Page 12 of 16 Current Osteoporosis Reports (2025) 23:38

Fracture Risk

Xiao et al. reported that GLP-1RA use was associated with the lowest risk of fracture-related adverse events among antidiabetic medications. This included reduced risk for overall fractures (adjusted reporting odds ratio [aROR]=0.44), osteoporotic fractures (aROR=0.39), and hip fractures (aROR=0.34). Albiglutide demonstrated the most favourable profile (aROR=0.11). Exclusion of insulin users did not alter the findings, suggesting a consistent protective association [36].

In addition, Al-Mashadi et al. found a non-significant reduction in major osteoporotic fracture (MOF) risk with GLP-1RA use compared to Dipeptidyl Peptidase-4 Inhibitors (DPP-4i) (adjusted hazard ratio [aHR]=0.86; 95% CI: 0.73–1.03). However, hip fracture risk was significantly lower among GLP-1RA users (HR=0.68; 95% CI: 0.49–0.96), particularly at higher daily doses and in extended follow-up analyses. Subgroup and sensitivity analyses supported these findings [37].

In contrast Deng et al. identified a modest but statistically significant increase in the risk of osteoporosis with pathological fractures among GLP-1RA users (odds ratio [OR]=1.12, p=0.042), raising concern about a potential detrimental effect. However, this association was limited and contrasts with the overall protective trends observed in other studies [38].

A study by Patil et al. reported no significant association between GLP-1RA use and the incidence of either all clinical fractures or osteoporotic fractures (adjusted hazard ratio [aHR]=0.94; 95% CI: 0.86–1.03). However, a subgroup analysis of hip fractures among women showed a higher aHR (2.19; 95% CI: 0.59–8.17), although the wide confidence interval indicates statistical non-significance [39].

Adverse drug reactions related to GLP-1RA use have also been examined. In a study by Terauchi et al., no cardiovascular events were reported, and only a single case of femoral neck fracture was observed during the study period [40].

The discrepancies in fracture outcomes across these studies likely reflect significant differences in cohort characteristics, follow-up duration, data sources, and methodological rigor. Xiao et al.'s analysis was based on adverse event reporting, lacking control for confounders, while Al-Mashadi et al. utilized a well-adjusted registry cohort with longer follow-up. Deng et al. relied on administrative coding to define fractures, possibly inflating case numbers. Patil et al.'s US-based cohort was 97% male, limiting generalizability, especially for hip fractures in women where a wide confidence interval (aHR=2.19; 95% CI: 0.59–8.17) rendered results inconclusive. Lastly, Terauchi et al. reported only a single fracture case in a prospective Japanese cohort but lacked a comparator arm and had low event rates, limiting its interpretability.

Nelson et al. investigated the effects of semaglutide on body composition using computed tomography (CT) imaging analysis. In the weight-loss group (n=67), post-treatment scans demonstrated significant reductions in visceral adipose tissue area (309.4 vs. 341.1 cm², p<0.001), subcutaneous adipose tissue area (371.4 vs. 410.7 cm², p<0.001), muscle area (179.2 vs. 193.0 cm², p<0.001), and liver volume (2379.0 vs. 2578.0 cm³, p=0.009). An increase in liver attenuation (74.5 vs. 67.6 Hounsfield units, p=0.03) was also observed, indicating improved hepatic fat content. In contrast, in the weight-gain group (n=48), increases were noted in visceral adipose tissue (334.0 vs. 312.8 cm², p=0.002), subcutaneous adipose tissue (485.8 vs. 448.8 cm^2 , p=0.01), and intramuscular adipose tissue (48.4) vs. 37.6 cm², p=0.009), while muscle attenuation significantly decreased (5.9 vs. 13.1 Hounsfield units, p < 0.001). Other measured parameters showed no significant changes [41].

Chen et al. evaluated the effects of a 3-month dulaglutide intervention on body composition. Statistically significant reductions were observed in body weight, visceral fat area, total body fat, lean body mass, skeletal muscle mass, and body water content (all p < 0.05). Despite these absolute decreases, the relative proportions of lean body mass and skeletal muscle mass increased, indicating a favourable shift in body composition. Bone mineral quality remained unchanged. Multiple linear regression analysis revealed a significant independent association between percentage change in body fat and HbA1c (β =0.449, t=3.148, p=0.002), suggesting a potential link between fat reduction and glycaemic improvement [42].

Fracture Risk Estimation in the Cardiovascular Outcome Trials

The systematic literature search identified no eligible studies assessing fracture risk in people with T2D within cardiovascular outcome trials of GLP-1RAs, and therefore no studies were available for formal quality assessment. However, several studies were identified that closely aligned with the inclusion criteria and are included in this section for contextual discussion.

Discussion

Animal and Human Studies

The cumulative evidence from preclinical studies suggests that GLP-1RAs may influence skeletal health through several biological mechanisms, including modulation of bone metabolism, suppression of inflammatory pathways, and

Current Osteoporosis Reports (2025) 23:38 Page 13 of 16 38

regulation of key osteogenic signalling cascades. Experimental models consistently show that liraglutide and semaglutide can preserve or improve BMD and trabecular architecture [21–23, 26]. These effects were primarily attributed to anti-inflammatory activity [21], enhanced callus formation and osteoblast function [22, 25], and activation of the Wnt/ β -catenin signalling pathway, which plays a central role in osteogenesis [23, 26, 38]. While these findings support a potential skeletal benefit of GLP-1RAs, they are based on animal and in vitro models and thus require cautious interpretation before being extrapolated to clinical populations.

Additionally, modulation of the RANKL/OPG axis by GLP-1RAs has been implicated in the inhibition of osteoclastogenesis and bone resorption [26, 27]. Reductions in oxidative stress and advanced glycation end-product (AGE)-mediated damage—reported by Cheng and Deng—have also been proposed to promote osteoblastic differentiation in diabetic bone environments [23, 38]. However, the translational relevance of these findings is limited by interspecies differences and the lack of fracture-specific endpoints in most animal models.

Importantly, not all preclinical findings are consistent. Lv et al. reported minimal structural improvements following short-term administration of semaglutide in diabetic mice, despite observable biochemical changes [27]. Similarly, Mieczkowska et al. found no restoration of mechanical bone strength with liraglutide treatment, although changes in matrix composition were noted [24]. These findings suggest that biochemical and microarchitectural adaptations may occur earlier than measurable improvements in biomechanical properties.

In human studies, findings are more heterogeneous. Some studies report site-specific reductions in BMD associated with GLP-1RA use—such as lumbar spine decline with liraglutide monotherapy [29] and dulaglutide [30, 34]), —while others describe preservation or even improvement in BMD, particularly with exenatide and insulin glargine at the hip and spine [30]. This variability may reflect differences in study design, population characteristics, duration of treatment, and the confounding effects of weight loss—an important variable that few studies have adequately adjusted for. Notably, mechanical loading through exercise appeared to attenuate BMD loss in individuals treated with liraglutide [29].

Evidence from studies examining bone turnover markers is also inconsistent. Semaglutide has been associated with increased bone resorption without corresponding changes in bone formation markers [31], while liraglutide has shown a biphasic P1NP response alongside BMD stabilization [33]. Refaie et al. reported elevated turnover markers and a modest reduction in myostatin following

GLP-1RA therapy, accompanied by marginal declines in BMD and preservation of trabecular bone score [35]. Collectively, these findings suggest that the skeletal effects of GLP-1RAs may be both agent-specific and influenced by the duration of exposure.

Mechanistic studies in humans also offer preliminary evidence that GLP-1RAs may influence osteoclastogenesis. Akyay et al. demonstrated favorable modulation of the RANK/RANKL/OPG axis with exenatide; however, no concurrent changes in BMD or bone turnover markers were observed during the study period [32]. This suggests that downstream structural effects may require longer treatment durations to become detectable.

Despite inconsistencies in BMD and bone turnover outcomes, fracture data appear more consistent. GLP-1RA use has been associated with a reduced risk of fracture-related adverse events, including hip and osteoporotic fractures, with the strongest protective effect observed for albiglutide [36]. These findings were supported by Al-Mashadi et al., who reported a significant reduction in hip fracture risk at higher GLP-1RA doses and with extended follow-up [37]. In contrast, Deng et al. observed a modest increase in osteoporosis-related fracture risk among GLP-1RA users [38]. However, the small effect size and observational design limit the interpretability of this finding, which remains inconsistent with the broader evidence

Body Composition and Skeletal Interaction

Changes in body composition induced by GLP-1RAs may mediate or confound their effects on skeletal health. Nelson et al. demonstrated significant reductions in visceral and subcutaneous adipose tissue, liver volume, and hepatic steatosis following semaglutide-induced weight loss; however, these changes were accompanied by concurrent reductions in muscle mass and cross-sectional area [41]. Conversely, weight gain was associated with increased fat accumulation and decreased muscle attenuation, suggesting potentially adverse effects on overall musculoskeletal quality.

Chen et al. similarly observed reductions in total fat, visceral fat, and lean mass following dulaglutide treatment, alongside an increase in the relative proportion of lean tissue [42].

Bone mineral quality remained stable, and fat loss was independently associated with improvements in HbA1c. These findings highlight a potential link between improved metabolic control and bone health. However, the implications of concurrent muscle loss remain uncertain and warrant further investigation, particularly in older adults or populations at risk for sarcopenia.

38 Page 14 of 16 Current Osteoporosis Reports (2025) 23:38

Limitations

This review is subject to several limitations. No cardiovascular outcome trials with predefined fracture endpoints were identified, limiting the clinical generalizability of the findings. The inclusion of primarily preclinical and observational studies introduces a risk of publication bias, as studies reporting positive skeletal effects of GLP-1RAs are more likely to be published than those with null or negative outcomes.

Most human studies included had relatively short followup durations and limited drug exposure periods, restricting the ability to assess long-term skeletal outcomes. Additionally, there was considerable heterogeneity in outcome measures, study populations, and GLP-1RA formulations, which complicated direct comparisons across studies. Results were also reported in varying formats, preventing meaningful data synthesis and precluding the possibility of meta-analysis.

Few studies adjusted for weight loss as a confounding factor, which may have biased interpretations of BMD outcomes. Moreover, postmenopausal women—who are at the highest risk for osteoporotic fractures—were underrepresented in many cohorts, further limiting the generalizability of the findings to this key population.

Finally, although changes in body composition may mediate the skeletal effects of GLP-1RAs, this review included only two studies on the topic, despite the availability of additional relevant literature. This may represent an important limitation of the search strategy and warrants broader inclusion in future reviews.

Conclusion

This systematic review highlights a critical gap in the literature: no cardiovascular outcome trials of GLP-1RAs in people with T2D have directly assessed fracture risk. While available evidence suggests that GLP-1RAs do not increase the risk of falls or fractures compared to SGLT-2 inhibitors, the current data remain insufficient to support definitive conclusions.

Experimental and mechanistic studies provide preliminary support for a potential beneficial effect of GLP-1RAs on bone metabolism; however, findings from human studies are limited and inconsistent. Given the elevated burden of both cardiovascular and skeletal complications in people with T2D, future clinical trials should incorporate bone health endpoints to enable a more comprehensive evaluation of the benefit-risk profile of GLP-1RAs.

6 Future Perspectives

Integrating Mechanistic and Clinical Evidence

The identification of GLP-1 receptor expression on osteoblasts and osteoclasts raises the possibility of a direct skeletal effect. Animal studies have shown promising outcomes, including increased trabecular bone volume, reduced osteoclast activity, and improved bone microarchitecture. These findings suggest that GLP-1RAs may modulate bone turnover and enhance skeletal strength.

However, translational evidence in humans remains limited. While some meta-analyses indicate a potential reduction in fracture risk with long-term GLP-1RA use, results remain inconclusive. Well-designed, prospective clinical trials with standardized bone-specific endpoints are needed to clarify the role of GLP-1RAs in bone health and to determine whether their effects translate into meaningful fracture risk reduction in people with T2D.

Clinical Implications and Gaps in the Literature

Despite the increasing use of GLP-1RAs in people with T2D and CVD, skeletal outcomes remain underreported in major cardiovascular outcome trials. This represents a critical gap in the evidence base, particularly given the elevated risk of falls and fractures in this population.

The absence of integrated bone health assessments—such as DXA and bone turnover markers—in large-scale trials limits the ability to comprehensively evaluate the net clinical benefit of GLP-1RA therapy. Incorporating these measures into future cardiovascular outcome trials would be both feasible and clinically meaningful, enabling a more complete understanding of their impact on multimorbidity in people with T2D.

Future Directions

Future randomized controlled trials should integrate skeletal endpoints into cardiovascular outcome trial designs, particularly in high-risk populations. Validated measures of circulatory and cardiac electrical function may serve as useful proxies for broader systemic effects but should be complemented by direct bone health assessments. Studies investigating the long-term skeletal safety and potential bone-protective effects of GLP-1RAs could clarify their role in fracture prevention strategies for people with T2D.

Further research is also needed to explore the impact of T2D subtypes, GLP-1RA subclasses, and specific CVD phenotypes on fracture risk. Variables such as body weight,

Current Osteoporosis Reports (2025) 23:38 Page 15 of 16 38

HbA1c, GLP-1RA dose, blood pressure regulation, and overall metabolic control may differentially influence skeletal vulnerability. Given the dual burden of cardiovascular disease and skeletal fragility in this population, studies should move beyond fracture incidence to investigate the underlying mechanisms linking metabolic health to bone integrity.

Key References

 Chen K, Wu R, Mo B, et al Comparison between liraglutide alone and liraglutide in combination with insulin on osteoporotic rats and their effect on bone mineral density.

A promising animal study investigating the effects of GLP-1RA on BMD and their potential bone-protective properties, using an osteoporotic rat model. The findings highlight promising directions for future research with potential clinical implications.

Akyay OZ, Canturk Z, Selek A, et al (2023) The effects
of exenatide and insulin glargine treatments on bone
turnover markers and bone mineral density in postmenopausal patients with type 2 diabetes mellitus. Medicine
(United States) 102:E35394. https://doi.org/10.1097/M
D.00000000000035394.

An interesting human study investigates the molecular effects of GLP-1RA previously observed in animal models, finding notable similarities in outcomes, as well as some differences. These findings underscore the need for further research focused specifically on human models.

Nelson LW, Lee MH, Garrett JW, et al (2024) Intrapatient Changes in CT-Based Body Composition After Initiation of Semaglutide (Glucagon-Like Peptide-1 Agonist) Therapy. American Journal of Roentgenology. https://doi.org/10.2214/ajr.24.31805.

This study offers valuable and comprehensive insights into changes in body composition, with a broad focus on various tissues in living humans using GLP-1RA, compared to non-users.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11914-025-00937-y.

Acknowledgements I would like to express my sincere gratitude to my supervisor, Associate professor Nicklas Højgaard-hessellund Rasmussen, for his invaluable support throughout the review process of this study. His expertise and insightful feedback have been important in optimizing and fine making of this work, including the review of articles achieved from the systematic search. His guidance and constructive input have significantly strengthened the quality of this work.

Author Contributions All authors reviewed the records identified through the systematic literature search. N.R. contributed to writing optimization and provided valuable consultation throughout the process. A.A.M. drafted the review and created all figures.

Funding DDEA research grant (NNF22SA0079901).

Data Availability No datasets were generated or analysed during the current study.

Declarations

Competing interests The authors declare no competing interests.

References

- Rajbhandari J, Fernandez CJ, Agarwal M, et al. Diabetic heart disease: a clinical update. World J Diabetes. 2021;12(4):383

 406. https://doi.org/10.4239/wjd.v12.i4.383.
- Mahalingasivam AA, Jespersen AK, Ejskjaer N, et al. The coexistence of peripheral and vestibular neuropathy in diabetes: a cross-sectional study. Eur Arch Otorhinolaryngol. 2024;281:663– 72. https://doi.org/10.1007/s00405-023-08130-6.
- Rasmussen NH, Dal J, den Bergh J, et al. Increased risk of falls, Fall-related injuries and fractures in people with type 1 and type 2 Diabetes - A nationwide cohort study. Curr Drug Saf. 2021;16:52–61. https://doi.org/10.2174/1574886315666200908110058.
- Rasmussen NH, Dal J. Falls and fractures in diabetes-more than bone fragility. Curr Osteoporos Rep. 2019;17:147–56. https://doi.org/10.1007/s11914-019-00513-1.
- Rasmussen NH-H, Dal J, Kvist AV, et al. Bone parameters in T1D and T2D assessed by DXA and HR-pQCT - a cross-sectional study: the DIAFALL study. Bone. 2023;172:116753. https://doi .org/10.1016/j.bone.2023.116753.
- Candido R, Srivastava P, Cooper ME, Burrell LM. Diabetes mellitus: a cardiovascular disease. Curr Opin Investig Drugs. 2003;4:1088–94.
- De Rosa S, Arcidiacono B, Chiefari E, et al. Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links. Front Endocrinol (Lausanne). 2018;9:2. https://doi.org/10.3389/fendo.2018.00002.
- Blackwood J. Cognitive function and falls in older adults with type 2 diabetes mellitus. J Geriatr Phys Ther. 2019;42:E91–6. htt ps://doi.org/10.1519/JPT.000000000000209.
- Viggers R, Rasmussen NH-H, Vestergaard P. Effects of incretin therapy on skeletal health in type 2 Diabetes-a systematic review. JBMR Plus. 2023;7:e10817. https://doi.org/10.1002/jbm4.10817.
- Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696–705. https://doi.org/10.1016/S0140-6736(06)69705-5.
- Scheen AJ. Clinical pharmacology of antidiabetic drugs: what can be expected of their use? Presse Med. 2023;52:104158. https://doi.org/10.1016/j.lpm.2022.104158.
- 12. Abdul-Ghani MA, Williams K, Kanat M, et al. Insulin vs GLP-1 analogues in poorly controlled type 2 diabetic subjects on oral therapy: a meta-analysis. J Endocrinol Invest. 2013;36:168–73. https://doi.org/10.3275/8367.

38 Page 16 of 16 Current Osteoporosis Reports (2025) 23:38

- Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab 23 Suppl. 2021;3:5–29. https://doi.org/10.1111/dom.14496.
- Scheen AJ. Dual GIP/GLP-1 receptor agonists: new advances for treating type-2 diabetes. Ann Endocrinol (Paris). 2023;84:316– 21. https://doi.org/10.1016/j.ando.2022.12.423.
- De Block C, Bailey C, Wysham C, et al. Tirzepatide for the treatment of adults with type 2 diabetes: an endocrine perspective. Diabetes Obes Metab. 2023;25:3–17. https://doi.org/10.1111/dom.14831.
- Giugliano D, Scappaticcio L, Longo M, et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol. 2021;20:189. https://doi.org/10.1186/s12933-021-01366-8.
- Sattar N, Lee MMY, Kristensen SL, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021;9:653–62. h ttps://doi.org/10.1016/S2213-8587(21)00203-5.
- Alejandro R. Jadad RAMDCCJDJMRDJGHJM Assessing the quality of reports of randomized clinical trials: is blinding necessary? https://scholar.google.com/citations?view_op=view_citation n&hl=en&user=pjha-gkAAAAJ&citation_for_view=pjha-gkAA AAJ: xSYboBqXhAC. Accessed 6 Mar 2025.
- GA Wells BSDOJPVWMLPT The Newcastle-Ottawa Scale (NOS). https://www.ohri.ca/programs/clinical_epidemiology/ox ford.asp. Accessed 6 Mar 2025.
- GRADE. https://www.gradeworkinggroup.org/. Accessed 6 Mar 2025
- Chen K, Wu R, Mo B et al. Comparison between liraglutide alone and liraglutide in combination with insulin on osteoporotic rats and their effect on bone mineral density.
- Wang R, Na H, Cheng S, et al. Effects of glucagonlike peptide-1 receptor agonists on fracture healing in a rat osteoporotic model. Exp Ther Med. 2023. https://doi.org/10.3892/etm.2023.12111.
- Cheng Y, Liu P, Xiang Q, et al. Glucagon-like peptide-1 attenuates diabetes-associated osteoporosis in ZDF rat, possibly through the RAGE pathway. BMC Musculoskelet Disord. 2022. https://doi.org/10.1186/s12891-022-05396-5.
- Mieczkowska A, Millar P, Chappard D, et al. Dapagliflozin and liraglutide therapies rapidly enhanced bone material properties and matrix biomechanics at bone formation site in a type 2 diabetic mouse model. Calcif Tissue Int. 2020;107:281–93. https://doi.org/10.1007/s00223-020-00720-4.
- Li Y, Fu H, Wang H, et al. GLP-1 promotes osteogenic differentiation of human ADSCs via the Wnt/GSK-3β/β-catenin pathway.
 Mol Cell Endocrinol. 2020. https://doi.org/10.1016/j.mce.2020.1 10921.
- Abo-Elenin MHH, Kamel R, Nofal S, Ahmed AAE. The crucial role of beta-catenin in the osteoprotective effect of semaglutide in an ovariectomized rat model of osteoporosis. Naunyn Schmiedebergs Arch Pharmacol. 2024. https://doi.org/10.1007/s00210-02 4-03378-z.
- Lv F, Cai X, Lin C, et al. Effects of semaglutide and tirzepatide on bone metabolism in type 2 diabetic mice. Pharmaceuticals. 2024. https://doi.org/10.3390/ph17121655.
- Deng Y, Zhu W, Anhua lin, et al. Exendin-4 promotes bone formation in diabetic States via HDAC1-Wnt/β-catenin axis. Biochem Biophys Res Commun. 2021;544:8–14. https://doi.org/10.1016/j.bbrc.2021.01.039.
- Jensen SBK, Sørensen V, Sandsdal RM, et al. Bone health after exercise alone, GLP-1 receptor agonist treatment, or combination treatment: a secondary analysis of a randomized clinical trial. JAMA Netw Open. 2024;e2416775. https://doi.org/10.1001/jama networkopen.2024.16775.

- Cai TT, Li HQ, Jiang LL, et al. Effects of GLP-1 receptor agonists on bone mineral density in patients with type 2 diabetes mellitus: a 52-week clinical study. BioMed Res Int. 2021. https://doi.org/1 0.1155/2021/3361309.
- Hansen MS, Wölfel EM, Jeromdesella S et al. (2024) Onceweekly semaglutide versus placebo in adults with increased fracture risk: a randomised, double-blinded, two-centre, phase 2 trial. EClinicalMedicine 72:. https://doi.org/10.1016/j.eclinm.2024.10 2624
- 32. Akyay OZ, Canturk Z, Selek A, et al. The effects of exenatide and insulin glargine treatments on bone turnover markers and bone mineral density in postmenopausal patients with type 2 diabetes mellitus. Medicine (Baltimore). 2023;102:E35394. https://doi.org/10.1097/MD.00000000000035394.
- 33. Hygum K, Harsløf T, Jørgensen NR, et al. Bone resorption is unchanged by liraglutide in type 2 diabetes patients: a randomised controlled trial. Bone. 2020. https://doi.org/10.1016/j.bone.2019. 115197.
- Huang CF, Mao TY, Hwang SJ. The effects of switching from dipeptidyl peptidase-4 inhibitors to glucagon-like peptide-1 receptor agonists on bone mineral density in diabetic patients. Diabetes Metab Syndr Obes. 2023;16:31–6. https://doi.org/10.2 147/DMSO.S389964.
- Al Refaie A, Baldassini L, Mondillo C, et al. Glucagon-like Peptide-1 receptor agonists and diabetic osteopathy: another positive effect of incretines?? A 12 months longitudinal study. Calcif Tissue Int. 2024;115:160–8. https://doi.org/10.1007/s00223-024-01240-1
- Xiao Y, Zhou M, Xiao W. Fracture events associated with GLP-1 receptor agonists in FDA adverse events reporting system. Acta Diabetol. 2024. https://doi.org/10.1007/s00592-024-02415-w.
- Al-Mashhadi ZK, Viggers R, Fuglsang-Nielsen R, et al. The risk of major osteoporotic fractures with GLP-1 receptor agonists when compared to DPP-4 inhibitors: A Danish nationwide cohort study. Front Endocrinol (Lausanne). 2022;13. https://doi.org/10.3 389/fendo.2022.882998.
- 38. Deng G, Wu L, Xiong S, et al. The role of antidiabetic drugs in bone health: assessing the risk of osteoporosis subtypes and fractures using Mendelian randomization. Orthop Res Rev. 2025;17:129–45. https://doi.org/10.2147/ORR.S508278.
- Patil T, Cook M, Hobson J, et al. Evaluating the safety of Sodium-Glucose Cotransporter-2 inhibitors in a nationwide veterans health administration observational cohort study. Am J Cardiol. 2023;201:281–93. https://doi.org/10.1016/j.amjcard.2023.06.016.
- 40. Terauchi Y, Usami M, Inoue T. The durable safety and effectiveness of lixisenatide in Japanese people with type 2 diabetes: the post-marketing surveillance PRANDIAL study. Adv Ther. 2022;39:2873–88. https://doi.org/10.1007/s12325-022-02121-5.
- Nelson LW, Lee MH, Garrett JW, et al. Intrapatient changes in CT-Based body composition after initiation of semaglutide (Glucagon-Like Peptide-1 Agonist) therapy. Am J Roentgenol. 2024. https://doi.org/10.2214/ajr.24.31805.
- Chen S, Wang X, Jin Y, et al. Assessment of changes in body composition after 3 months of dulaglutide treatment. Diabetes Metabolic Syndrome Obes. 2024;17:1301–8. https://doi.org/10. 2147/DMSO.S443631.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

