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ABSTRACT: The global rise in obesity underscores the urgent need for effective long-term weight-management strategies. 
Weight loss (WL) is extremely beneficial in combating obesity complications, justifying the great success of recent WL 
medications. However, most individuals trying to lose weight will fail to maintain a lower body weight. Weight regain 
following WL increases the risk of cardiovascular disease and mortality. Adipose tissue inflammation is a critical mediator 
of metabolic dysfunction in obesity, contributing to cardiovascular complications. In obesity, chronic low-grade inflammation, 
marked by immune infiltration and dysregulated adipocyte function, contributes to systemic insulin resistance and metabolic 
comorbidities. However, the adipose tissue response to WL and subsequent weight regain is distinct from that in non–
weight-fluctuating obesity and far less studied. This review synthesizes current literature to elucidate the dynamic shifts in 
adipose tissue across the continuum of obesity, WL, and weight regain.
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The global prevalence of obesity has risen dramati-
cally over the past few decades. Obesity drives the 
development of several complications such as insulin 

resistance, type 2 diabetes, and cardiovascular disease.1

Weight loss (WL) is the preferred strategy against 
obesity because it reduces many of its associated com-
plications. Weight-management interventions include life-
style changes, pharmacotherapy such as glucagon-like 
peptide-1 receptor agonists (eg, semaglutide and tirzepa-
tide), or bariatric surgery. The magnitude and benefits of 
WL vary depending on the initial grade of obesity, as well as 
the intervention applied, but overall studies have reported 
significant improvements in obesity complications and qual-
ity of life.2 Therefore, maintaining WL is the goal for man-
agement of obesity comorbidities. However, weight regain 
(WR) after WL is common due to complex physiological, 
behavioral, and environmental factors. Metabolic adapta-
tions, such as a decline in resting energy expenditure and 
increased hunger hormones, as well as gradual return to 
previous eating and activity patterns, promote WR.3,4

An added layer of complexity to fully understanding 
metabolic disease lies in the dynamic nature of physi-
ological metabolism. Fluctuation of body weight, broadly 
known as weight cycling, has been linked to adverse 
metabolic dysfunction, heightening the risk of cardio-
vascular disease and diabetes, and increased risk for 
mortality in humans.5–10 Although intentional WL can 
improve cardiometabolic parameters (blood pressure, 
lipid profiles, and glycemic control), regaining the lost 
weight often negates these benefits or even exacer-
bates these conditions.4,9,10 WR may intensify chronic 
low-grade inflammation by promoting cyclical expan-
sion and contraction of adipose depots.11 This repeated 
adipose tissue remodeling, together with fluctuations in 
other cardiometabolic factors, can strain the vasculature, 
contribute to endothelial dysfunction, and impair insulin 
secretion- all of which are core risk factors for cardio-
vascular disease.12,13

The adverse effects of obesity on inflammation 
and subsequent disease are not yet fully understood. 
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Importantly, our understanding of the processes and con-
sequences of WL and WR is far less complete than in 
non–weight-fluctuating (primary) obesity. Because many 
reviews addressed the influence of obesity on adipose 
remodeling, in this review, we focus on the regulation of 
adipose tissue inflammation during WL and WR.

ADIPOSE TISSUE TYPES AND FUNCTION
Adipose tissue is composed of 2 major types: white adi-
pose tissue (WAT) and brown adipose tissue (BAT). WAT 
is responsible for energy storage in the form of triglyc-
erides and the release of free fatty acids (FFAs) during 
periods of energy deficit. Conversely, BAT uses its stored 
energy to fuel heat production to maintain core body 
temperature. A third category, beige adipocytes, can 
emerge within WAT depots under certain stimuli (eg, cold 
exposure) and function similarly to BAT.14 While BAT is 
a critical adipose depot regulating whole-body metabo-
lism,15 studies exploring the effects of WL and WR on 
BAT are lacking, and therefore, this review will focus on 
WAT.

In lean individuals, WAT depots are metabolically flex-
ible and exhibit a healthy balance of adipogenesis, lipo-
genesis, and lipolysis. Adipose tissue also serves as an 
endocrine organ, secreting adipokines, lipids, cytokines, 
and growth factors that regulate appetite, insulin sensi-
tivity, and energy homeostasis.16 Many cell types reside 
in WAT, including adipocytes, preadipocytes, endothelial 
cells, fibroblasts, and immune cells. Importantly, visceral 
adipose tissue (VAT), located in the abdominal cavity, is 
more prone to inflammation and insulin resistance than 
subcutaneous adipose tissue, which is often more benign 
and even protective.14

New transcriptomics methodologies have revolution-
ized our understanding of adipose tissue by providing 

unprecedented resolution of its cellular heterogene-
ity.17–19 While earlier work has suggested that there are 
multiple types of white adipocytes, single-nucleus RNA-
sequencing allows for finer characterization of adipocyte 
subpopulations and their selectivity for variables such 
as adipose depot and metabolic state.20 Initial compari-
sons between mouse and human find that while there 
are many overall cross-species similarities in adipocytes, 
they do not cluster into the same subpopulations. These 
differences could be due to experimental conditions, 
limitations in mapping subpopulations across species, or 
simply species differences in adipocyte function, which 
will require elucidation in future studies.

ADIPOSE TISSUE REMODELING
Primary Obesity
With the development of obesity, WAT undergoes exten-
sive remodeling. Excess nutrient intake leads to chronic 
positive energy balance, causing WAT to expand either 
through increased adipocyte size (hypertrophy) or num-
ber (hyperplasia). Lean WAT expansion often prioritizes 
hyperplasia, generating smaller adipocytes. In obesity, 
however, WAT expansion is often dominated by hypertro-
phy. While early studies showed reduced insulin sensitivity 
in large compared with small adipocytes,21–23 these find-
ings have not been recently validated,24 and the underly-
ing mechanisms that could explain this relationship remain 
unexplored. Nonetheless, as adipocytes enlarge, local 
hypoxia may ensue due to inadequate angiogenesis and 
insufficient oxygen delivery. This hypoxic stress triggers 
the stabilization of HIF-1α (hypoxia-inducible factor-1α) 
and promotes cytokine release (eg, MCP-1 [monocyte 
chemoattractant protein-1] and IL [interleukin]-6), extra-
cellular matrix deposition, fibrosis, and cell death.26 In turn, 
dying adipocytes release damage-associated molecular 
patterns that recruit immune cells, especially macro-
phages, to clear cellular debris. This self-perpetuating 
cycle drives a proinflammatory state in WAT.16

Nonstandard Abbreviations and Acronyms

ATM	 adipose tissue macrophage
BAT	 brown adipose tissue
FFA	 free fatty acid
HIF-1α	 hypoxia-inducible factor-1α
IFN	 interferon
IL	 interleukin
LAM	 lipid-associated macrophage
MCP-1	 monocyte chemoattractant protein-1
TNF-α	 tumor necrosis factor-α
Treg	 regulatory T cell
VAT	 visceral adipose tissue
WAT	 white adipose tissue
WL	 weight loss
WR	 weight regain

Highlights

•	 Weight loss reverses many detrimental features of 
obese adipose tissue but incompletely restores tis-
sue homeostasis.

•	 Weight regain reactivates and often exacerbates 
inflammatory pathways, driving worsened metabolic 
dysfunction compared with primary obesity.

•	 Obesity imprints long-lasting reprogramming in 
several adipose tissue cell types that persists after 
weight loss and accelerates inflammation during 
weight regain.

•	 Preventing chronic weight cycling requires sustain-
able weight-management strategies and therapies 
targeting persistent adipose-immune dysfunction.
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Weight Loss
WL reverses many of the detrimental alterations in 
obese WAT by remodeling adipocyte and stromal popu-
lations, reducing senescence and hypertrophy, and par-
tially restoring lean-like gene programs.27–29 Reduced 
energy intake creates a negative energy balance, lead-
ing to mobilization of FFAs from adipocytes to the circu-
lation through lipolysis, and generally changes the types 
of lipids secreted from WAT. For instance, increased 
secretion of bioactive sphingolipids from WAT corre-
lates with inflammation and insulin resistance in obe-
sity,30 while WL induces dynamic changes in adipose 
and plasma lipids, which have been suggested to favor 
weight maintenance.31,32 WL-induced lipid secretion 
decreases adipocyte size and reduces adipocyte num-
ber in some contexts.33–35 This shrinking of adipocytes 
correlates with improved insulin sensitivity, enhances 
mitochondrial oxidative phosphorylation, and normalizes 
adipokine secretion, including increased production of 
protective adipokines like adiponectin.36–43 Interestingly, 
early WL is marked by macrophage recruitment to WAT, 
possibly to deal with the increased FFA released from 
adipocytes, which subsides with extension of the WL 
period.44 However, how WL influences adipose land-
scape and function over time is largely unknown. Fur-
thermore, as adipocytes shrink, hypoxia is alleviated due 
to improved oxygen diffusion and potentially increased 
angiogenesis.40 The reversal of the proinflammatory 
milieu (eg, immune cell infiltration, abnormal adipokine, 
and cytokine secretion) also contributes to improved 
metabolic health.45–48 The mechanisms by which WL 
reverses, and not just halts, much of the damage caused 
in WAT by obesity are largely unknown. Moreover, while 
WL is beneficial, some of the abnormalities induced by 
obesity do not resolve, including immune cell exhaus-
tion, adipose tissue fibrosis, and epigenetic modifica-
tions sustaining inflammatory gene upregulation and 
adipocyte dysfunction,49–51 with underlying mechanisms 
undetermined.

Weight Regain
WR often initiates a rapid resurgence of the detrimental 
adipose tissue changes observed in obesity, sometimes 
even exceeding its initial severity. This process involves 
hypertrophy rather than promoting hyperplasia.22,37,38 
Hypertrophy can lead to a swift return of adipocyte 
dysfunction, including decreased insulin sensitivity and 
altered adipokine secretion.13,39 Studies on mouse mod-
els of obesity revealed a substantial increase in adiposity 
upon WR correlating with circulating leptin but not adi-
ponectin levels.39,40 Moreover, VAT experiences a rapid 
resurgence of inflammation and cell death, exacerbat-
ing the secretion of proinflammatory cytokines such as 
TNF-α (tumor necrosis factor-α) and IL-6.56

IMMUNE CELL DYNAMICS ACROSS 
DIFFERENT METABOLIC CONDITIONS
Primary Obesity
Adipose tissue macrophages (ATMs) are the most exten-
sively studied immune cells in WAT. Macrophage deple-
tion results in enhanced lipolysis44 and improved glucose 
and insulin tolerance in both obese and lean mice, while 
increasing adiponectin and decreasing leptin plasma lev-
els,57 underscoring the relevance of this cell type in the 
metabolic control under obese conditions.

Newer findings acknowledge the existence of ATM 
phenotypic, functional, and spatial heterogeneity in dif-
ferent metabolic conditions.58,59 In the lean state, ATMs 
are mostly resident cells of embryonic origin.60 Resident 
ATMs are typically located near the vasculature (perivas-
cular macrophages)61 and sympathetic nerves (nerve-
associated macrophages).62,63 In general, resident ATMs 
in the lean state help maintain tissue homeostasis by 
clearing debris and promoting remodeling, lipid recycling, 
and supporting insulin sensitivity.64 In obesity, both the 
number and phenotype of ATMs change dramatically, ini-
tially because of resident macrophage proliferation, fol-
lowed by infiltration of bone marrow–derived monocytes 
that differentiate into macrophages and expand locally.65 
ATMs manage the adipocyte lipid load through several 
mechanisms, including uptake, storage, and hydrolysis of 
lipids from adipocyte-derived exosomes.66 Furthermore, 
ATMs participate in dead adipocyte clearance by secre-
tion of lysosomal content into dying adipocytes (exoph-
agy)67 in a process regulated by NOX2.68

The term lipid-associated macrophages (LAMs) has 
been adopted to describe a population of CD11c+/CD9+/
TREM2+ cells that accumulate surrounding dying adipo-
cytes forming crown-like structures, a histological hall-
mark of inflamed WAT.59,69 LAMs are distinguishable from 
other ATMs by their lipid-handling gene signature, includ-
ing lipid/lipoprotein transporters (Trem2, Cd36, Fabp4, and 
Fabp5) and lipases (Lipa and Lpl).59 Accordingly, LAMs 
exhibit specialized functions that support their role in the 
obese tissue milieu, including FFA uptake via CD3659 and 
possibly TREM2-driven efferocytosis through phospho-
lipid recognition on apoptotic cells, as shown in the brain 
and liver.70,71 Altogether, this evidence highlights the role 
of macrophages in sustaining protective lipid-buffering in 
obesity.59,72–75

In lean adipose tissue, regulatory T cells (Tregs) 
and T-helper type 2 cells predominate, producing anti-
inflammatory cytokines (eg, IL-10) that help maintain 
metabolic homeostasis.76 Remarkably, Tregs disappear 
in the obese VAT, with recent findings suggesting that 
IFN (interferon)-α77 and loss of IL-2778 signaling, as 
well as disturbed cholesterol homeostasis,79 prevent 
Treg maintenance in mice, while IFN-γ mediates these 
changes in humans.80 Obesity causes a shift toward 
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a proinflammatory T-cell milieu, characterized by an 
increase in CD8+ T cells capable of promoting macro-
phage recruitment and Th1 cells producing IFN-γ, which 
contributes to proinflammatory macrophage polarization 
and insulin resistance.81 Recently, a role for γδT cells 
has been established, which maintain adipose Tregs and 
thermogenesis via production of IL-17.82,83

B cells contribute to adipose tissue function through 
the production of pathogenic antibodies that can recog-
nize the ectodomain of the insulin receptor,84 secretion of 
reparative antibodies that promote dead adipocyte clear-
ance, and improved insulin resistance85 by modulating 
T-cell responses.86 In addition, adipose-resident B1-B 
cells secrete protective IgM antibodies, which have been 
associated with improved metabolic parameters in obese 
humans.87 On the other hand, B2 cells are recruited and 
activated in the WAT following leukotriene B4 receptor 
signaling, releasing IL-1β and IL-6, and contributing to 
worsened glucose and insulin sensitivity in coordination 
with T cells and macrophages.88 A detailed account of 
these and other immune cell functions in obese WAT is 
reviewed elsewhere.64

Weight Loss
The immune response in the context of WL is dynamic, 
and the outcome in terms of cell abundances and func-
tions can vary across WL methods and duration. Upon 
caloric restriction, ATMs recruitment increases transiently 
in response to WAT-derived FFAs that accumulate as the 
product of lipolysis and enhanced chemoattractant activ-
ity through upregulation of CCR2.44,89 However, as lipoly-
sis and triglyceride levels decrease with prolonged WL, 
so does the ATM content, presumably in response to a 
reduction in adipose triglyceride lipase activity.44 Mouse 
studies of diet-switch-induced WL identified proliferation 
of ATMs with a proinflammatory signature,50 persistent 
abundance of M1-like macrophages,90 or a decrease in 
tissue resident macrophages.49 Furthermore, compared 
with primary obesity, post-WL ATMs did not show sig-
nificant changes in oxygen consumption rates, inflam-
matory cytokine production,91 and phagocytosis, despite 
increased ROS production.92 The persistent hyperinflam-
matory state upon WL has been linked to epigenomic 
reprogramming induced by obesity.93 However, data col-
lected from patients undergoing bariatric surgery show 
a decrease in WAT macrophage content associated with 
the long-term downregulation of some inflammatory 
gene expression.94,95 This was validated in recent single-
cell RNAseq data sets from human WL.27,96 In addition 
to changes in ATM overall abundance during short-term 
caloric restriction–induced WL, single-cell RNAseq in 
mice identified a subpopulation of VAT macrophages 
enriched in genes associated with phagocytosis, with 
Fcgr4 being the most highly upregulated gene. The 
gene signature of Fcgr4+ macrophages supports their 

role in adipose tissue remodeling,97 and these macro-
phages were later suggested to facilitate resolution of 
obesity-related inflammation.98 It is plausible that FCGR4 
mediates the clearance of dying adipocytes coated with 
autoreactive IgGs produced by BAFF-activated B cells.85

Adipose T cells are particularly sensitive to obesity, as 
WL rarely restores T-cell balance and function. WL nota-
bly increases effector memory CD8+ T cells. However, 
these cells are enriched in genes related to exhaustion, 
such as PD-1 and TIGIT, indicating continued dysfunc-
tion despite the WL. Moreover, Tregs are not restored 
by WL.49 Systemic T-cell responses that were found to 
be impaired in obesity are not fully recovered by WL 
either. For instance, a switch from a high-fat diet to a 
chow diet is capable of rescuing CD8+ tumor-infiltrating 
T-lymphocyte function in a melanoma model. However, 
semaglutide-induced WL failed to restore tumor immu-
nity, suggesting divergent outcomes of metabolic repro-
gramming and the type of WL on immune responses.99

B-cell dynamics in the adipose tissue during WL 
are less explored. One study found reduced periph-
eral B cells and associated inflammatory markers, such 
as plasmatic IgG, and secreted cytokines in patients 
after bariatric surgery,100 while another report showed 
restored balance of naive and memory B cells, despite 
increased proinflammatory gene expression 6 months 
post-surgery.101

A variety of other immune cells show parallel improve-
ments when body weight decreases. Mast cells’ genetic 
depletion or pharmacological stabilization has been 
implicated in WL.102 Circulating neutrophils increase the 
release of specialized proresolving mediators during WL 
in humans, specifically resolvin E1,103 indicating activa-
tion of inflammation resolution pathways.

Altogether, these findings highlight the dynamic 
shifts in immune cell abundance and function after WL 
and point to the need for detailed mechanistic studies 
to explain why different interventions lead to varying 
outcomes.

Weight Regain
Some studies have shown no modulation of ATM propor-
tions during WR compared with primary obesity or even 
a reduction in total macrophage content with inverse 
CD11c+/CD206+ frequencies,104,105 while others show 
the expansion of CD11c+ macrophages.106 Single-cell 
RNAseq analysis found that increased LAM gene sig-
natures in VAT are mainly driven by monocyte infiltration. 
Interestingly, LAMs’ content is higher in WR compared 
with matched-weight primary obesity, therefore not cor-
relating with body weight.49 Metabolic profile of ATMs 
obtained from weight-cycled mice (in a model of diet-
switch-induced WL) shows increased mitochondrial res-
piration and TNF-α production compared with the lean 
group, while no significant differences are observed 
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with primary obesity.91 On the other hand, Fcgr4+ mac-
rophages that accumulate with caloric restriction revert 
to their obese proportions in VAT upon WR, which was 
associated with accelerated atherogenesis.98 Therefore, 

while some studies report shifts in immune cell abun-
dance after WR, others observe changes in function 
without altered numbers. These findings are not mutu-
ally exclusive; rather, they reflect the complex and 

Figure. Adipose tissue dynamics in obesity, weight loss, and weight regain.
Obese adipose tissue is hypertrophic, with increased extracellular matrix deposition and immune cell infiltration, including activated 
macrophages having upregulated lipid-handling gene signatures. Weight loss reduces adipocyte size and extracellular matrix accumulation, 
while immune cells remain in the tissue, displaying a dynamic, yet not fully restorative, immune response. Weight regain enhances macrophages 
and T-cell proinflammatory phenotypes and increases cardiometabolic disease risk. IFN indicates interferon; IL, interleukin; LAM, lipid-
associated macrophage; MCP-6, monocyte chemoattractant protein-6; and TNF-α, tumor necrosis factor-α.
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context-dependent nature of immune remodeling. Com-
prehensive profiling that integrates both abundance and 
function across time points and interventions will be key 
to fully understanding the inflammatory outcomes of WR.

WR increases both CD4+ and CD8+ T cells with a 
proinflammatory signature in the VAT. In addition, a trend 
towards accumulation of CD8+ effector memory T cells 
was identified,104 and a role for CD70, a key costimulatory 
molecule in memory generation, has been suggested to 
mediate obesogenic memory leading to worsened glucose 
tolerance during WR.107Treg abundances do not recover 
with WR either.49 Interestingly, CD4+ T cells were sug-
gested to not only accumulate in adipose with WR but also 
to be responsible for the associated body mass increase.108

Mast cells increase in WR and so does their expres-
sion of lipid-handling associated genes, including Trem2 
and Fabp5, although their specific functions in WAT 
remain mostly undetermined.49 Whether other cell types 
play a role in adipose tissue inflammation during WR is 
yet unknown.

CONCLUDING REMARKS
WAT inflammation links obesity to metabolic dysfunction, 
with immune cell dynamics and function playing a pivotal 
role in both the progression and resolution of disease 
(Figure). WL ameliorates inflammation but incompletely 
restores adipose-immune homeostasis, while WR reig-
nites and exacerbates inflammatory pathways, often 
leading to worse disease outcomes than primary obesity. 
The take-home message is clear: chronic inflammation in 
WAT is not merely a consequence of obesity but a dynamic 
process shaped by weight fluctuations, underscoring the 
importance of sustainable weight-management strate-
gies to break the cycle of inflammation and metabolic 
deterioration. Critical future questions remain: how do 
persistent immune cell alterations during WL contribute 
to metabolic memory and relapse risk? Does the method 
of WL (eg, surgery, pharmacotherapy, or diet) shape the 
consequences of WL on inflammation? Can therapies 
targeting specific immune populations prevent adipose 
tissue dysfunction during WR? Elucidating the mecha-
nisms driving heightened inflammation upon WR will 
be essential for developing interventions to sustain the 
benefits of WL. Addressing these questions will require 
integrating human studies with advanced animal models 
that capture the complexity of adipose-immune cross-
talk, ultimately paving the way for novel approaches to 
mitigate the burden of obesity-related diseases.
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