

Multi-ingredient supplementation for combating sarcopenia and polymorbidity

Joshua P. Nederveen^{a,c}, Mats I. Nilsson^b and Mark A. Tarnopolsky^{b,c}

Purpose of review

We discuss the premise and potential of multi-ingredient supplements (MIS) in the treatment of complex skeletal muscle (SkM) pathologies, and provide an updated review of literature on nutraceuticals in sarcopenia and sarcopenic obesity (SO) management, with an emphasis on single- vs. multi-ingredient protein-based formulations.

Recent findings

Several meta-analyses have confirmed the synergistic benefits of combining resistance training (RT) with dietary protein supplementation in older adults with sarcopenia or physical frailty, with a potential ceiling effect at 1.5–1.7 g PRO/kg BW/day.

Single-ingredient supplements with proven synergism with RT and clinical relevance for sarcopenia treatment include the major milk proteins (whey and/or casein) and creatine monohydrate. Vitamin D₃, calcium, and/or n-3 polyunsaturated fatty acids are also recommended for mitigating concurrent micronutrient deficiencies, bone loss, and inflammation. More evidence is needed to justify monotherapy with leucine or leucine metabolites over high-quality protein sources.

RCTs have demonstrated superiority of whey-based MIS compared to isocaloric and isonitrogenous placebo for enhancing SkM growth in both younger and older persons, including obese and nonobese sarcopenic subgroups, as confirmed by *in vivo* body composition and/or biopsy sampling.

Multi-ingredient formulations containing high-quality milk proteins, creatine monohydrate, vitamin D_3 , calcium, and n-3 polyunsaturated fatty acids may therefore be recommended in the multimodal treatment of sarcopenia and sarcopenic obesity.

Summary

Resistance training is the first-line treatment for musculoskeletal conditions and improves lean body mass, strength, and function in sarcopenia patients. Increased protein intake augments RT-induced muscle anabolism across clinical subpopulations, with recent evidence suggesting superiority of multi vs. single-ingredient protein-based supplements.

Keywords

aging, multi-ingredient, muscle, nutrition, obesity, protein, sarcopenia, sarcopenia obesity

INTRODUCTION

As global demographics shift toward an aging population, society confronts mounting challenges in preserving optimal body composition and functional capacity throughout the lifespan. The definition of sarcopenia has evolved considerably from its initial characterization as age-related skeletal muscle mass (SkM) loss with functional decline [1] to the current comprehensive diagnostic frameworks that assess lean body mass (LBM), strength, and function [2]. Current estimates of sarcopenia prevalence are ~10–16% in older adults, escalating to ~30% among adults aged >65 years and 50–60% in octogenarians [3].

Sarcopenic obesity (SO), a related and complex health condition, is characterized by concurrent SkM

loss and body fat gain, representing a growing concern in older adults due to associated comorbidities, including dyslipidemia, insulin resistance, and heart disease [4]. Sarcopenic obesity has a ~10% prevalence in older adults [5] and represents an ~twofold risk of frailty and associated health outcomes [6]. Obesity

^aDepartment of Kinesiology, McMaster University, ^bExerkine Corporation and ^cDepartment of Pediatrics, McMaster University Medical Centre, Hamilton, Canada

Correspondence to Mark A. Tarnopolsky, MD, PhD, Department of Pediatrics, McMaster University Medical Center (MUMC), 1200 Main St W, Hamilton, ON L8N 3Z5, Canada. E-mail: tarnopol@mcmaster.ca

Curr Opin Clin Nutr Metab Care 2025, 28:000-000

DOI:10.1097/MCO.000000000001166

1473-6519 Copyright © 2025 Wolters Kluwer Health, Inc. All rights reserved.

www.co-clinicalnutrition.com

KEY POINTS

- Resistance training (RT) is the first-line treatment for improving lean body mass (LBM), strength, and function in nonobese and obese sarcopenia patients.
- High-quality protein intake potentiates RT-induced LBM and strength gains, with a potential ceiling effect at 1.5–1.7 g PRO/kg BW/day.
- Proven nutraceuticals for treating sarcopenia include milk proteins (whey and/or casein) and creatine monohydrate. Vitamin D₃, calcium, and n-3 polyunsaturated fatty acids are also recommended, especially in comorbid states.
- Large-scale and well controlled trials that compare single- vs. multi-ingredient protein-based supplements (w/wo exercise therapy) are currently limited. Recent trials have shown superiority of whey/casein-based multi-ingredient supplements vs. isoenergetic and/or isonitrogenous placebo (maltodextrin or collagen peptides) in both younger and older adults, including sarcopenic subgroups w/wo obesity.
- Multi-ingredient supplements allow for better targeting
 of interconnected organ systems and pathways that
 contribute to complex disease states (i.e., sarcopenia),
 with specific utility for management of polymorbid
 conditions (i.e., sarcopenic obesity).

alone threatens to cost ~ \$4 trillion annually by 2035 [7], with sarcopenia imposing further financial burdens on healthcare systems across the world [8].

Therapeutic options remain limited, with no approved pharmaceutical interventions despite extensive research efforts [9,10]. The complexity of age-related muscle pathophysiology necessitates multitarget approaches, as traditional mono-drug strategies [11–13] inadequately address the full constellation of contributing factors to these diseases. Exercise and physical activity represent the sole interventions demonstrating efficacy across multiple pathophysiological pathways [14]. Developing cost-effective, safe treatments targeting the multifaceted contributors to age-associated muscle loss requires enhanced mechanistic understanding to address this escalating global health crisis.

ETIOLOGY

Age-related muscle loss is a complex pathophysiological process driven by concurrent deterioration of interconnected organs systems (e.g., musculoskeletal, nervous, endocrine, vascular, reproductive, and digestive) and disruption of hallmark cell signaling pathways that ultimately lead to disability, loss of independence, and increased mortality risk [15,16]. The pathophysiology is characterized by universal hallmarks of aging, including mitochondrial dysfunction, oxidative damage, autophagic impair-(termed and chronic inflammation 'inflammaging'). Sarcopenia is associated with a decrease in anabolic hormones combined with increased pro-inflammatory cytokines, a reduction in muscle blood flow and muscle satellite cell content. Muscle growth/maintenance is ultimately governed by the balance of several growth-regulatory processes, mainly protein synthesis (MPS) and protein breakdown (MPB), with current evidence pointing to impaired anabolism driving age-related SkM loss. Specifically, it manifests as impaired anabolic responses to protein-containing meals, exercise, and/ or growth factors, effectively producing the 'anabolic resistance' phenomenon that typically emerges with aging [17,18]. Metabolic alterations affecting muscle preservation may also be exacerbated by obesity, malnutrition (overnutrition or undernutrition), and physical inactivity/immobility, insulin resistance, contributing to SkM anabolic resistance with aging.

Episodic disuse represents a critical precipitating event in the development and progression of sarcopenia, characterized by discrete periods of physical inactivity that can rapidly accelerate muscle loss beyond the gradual decline typically associated with normal aging [19]. These episodes occur with increasing frequency in older adults due to hospitalizations, periods of recovery following acute illness, osteoarthritis, and progressive reductions in habitual physical activity levels [20]. The clinical significance of these events lies in their creation of a stepwise deterioration in muscle mass and function, where each episode pushes individuals towards a steeper downward trajectory. Episodic disuse is also relevant for muscle health across the lifespan, with middle-aged adults losing SkM during disuse similar to that seen in older adult populations [21,22]. Of critical note for aging muscle, however, is the finding that two weeks of disuse may results in decreased MPS rates and impaired glucose regulation in overweight, prediabetic older adults, with these effects persisting even after returning to normal activity levels [23] - in contrast to the full recovery seen in younger individuals. These findings, paired with an attenuated ability for older adults to gain meaningful muscle volume following retraining after disuse [24], highlight the impact of episodic disuse on the progression of age-associated muscle wasting.

Sarcopenic obesity has been recently redefined as a concurrent decline in muscle mass and function along with increased adipose tissue, representing a growing concern in older adults due to significant health consequences impacting mortality and comorbidities [25]. The pathophysiology of this condition involves a complex interplay between muscle and adipose tissue, hormonal changes, inflammation, mitochondrial impairment, reduced bioenergetic potential, oxidative stress and lifestyle factors, creating a multifaceted syndrome that poses diagnostic and management challenges in clinical settings [26]. Obesity has a deleterious effect on SkM mitochondria by disrupting biogenesis and dynamics, leading to decreased content and compromised function [27,28] – but improving mitochondrial capacity in the muscle may drive successful body re-composition [28].

Given the multifactorial pathogenesis of sarcopenic obesity and sarcopenia alike, multi-ingredient supplements targeting multiple pathophysiological mechanisms should be superior to single nutrient approaches, as first proposed in the treatment of neurological disorders by Tarnopolsky & Beal in 2001 [29]. The notion of using multi-ingredient supplementation mainly rests on the simultaneous targeting of interconnected organ systems and signaling pathways to potentiate LBM/muscle gains in both nonobese and obese populations at increased risk for muscle loss. Single-agent or pathway-redundant ingredients addressing only one aspect of sarcopenia (e.g., exclusively supplementing protein to address anabolic resistance) are less likely to succeed than multi-ingredient strategies targeting anabolic resistance, mitochondrial dysfunction, oxidative stress, impaired autophagy, and dysbiosis simultaneously.

CURRENT MANAGEMENT STRATEGIES

International clinical practice guidelines for sarcopenia recommend combined treatment plans focused on resistance training (RT), higher protein intake, and nutrition education [30]. RT is the most effective exercise mode for improving SkM mass, strength, and function, and is the first-line strategy to prevent and manage sarcopenia [31]. Two full-body RT sessions per week at a relatively high exercise intensity may be sufficient for mitigating age-related muscle loss [32]. Aerobic training (AT) also has merits for attenuating the hallmarks of aging (e.g., mitochondrial dysfunction, oxidative stress, impaired autophagy, and inflammation) and delay muscle wasting [33,34]. A combination of RT and AT can provide both neuromuscular and cardiorespiratory benefits and does not result in interference effects in healthy older adults [31]. Although current exercise guidelines are generally effective for attenuating sarcopenia risk, they need to be adjusted for patients who are immobilized, limited to low-intensity physical therapy or otherwise unable to perform enough exercise. A stronger emphasis may be placed on adjunctive treatments (such as nutritional interventions) in physically frail individuals, comorbid states, and during periods of illness, disuse, and immobilization (Fig. 1).

Nutritional recommendations include a healthy diet (as reviewed by Calvani et al.[35]), adequate hydration, and increased daily protein intake (1.2-1.5 g PRO/kg BW/day) to avoid protein-energy malnutrition (PEM) [35,36]. A recent network meta-analysis of 42 RCTs with 3728 participants confirmed that RT with or without nutritional intervention (e.g., protein supplementation) and the combination of RT and balance training or aerobic training (AT) are effective for improving strength, function, and quality of life in older adults with sarcopenia [37]. The investigators also reported synergistic benefits of exercise/nutrition therapy on certain strength outcomes, which is largely consistent with the meta-analysis by Liao et al. demonstrating that protein supplementation improves RT-induced adaptations in older adults [38]. This synergism was recently confirmed in sarcopenic and/or physically frail individuals in meta-analyses by Cuyul-Vasques et al. [39^{*}] and Yoshimura et al. [40]. Morton and Phillips have previously demonstrated that dietary protein supplementation enhances RT-induced changes in fat free mass (FFM), muscle fiber cross-sectional area (CSA), and mid-femur CSA in healthy adults, but that the synergistic benefits may be blunted in older persons [41]. This adaptive impairment is likely attributed to SkM anabolic resistance and a higher total daily protein requirement (1.2–1.5 g PRO/kg BW), protein dosing per meal (~0.4–0.6g PRO/kg BW), and post RT protein dose (~35-40 g PRO) to maintain and/or potentiate muscle growth at old age [42]. A recent meta-analysis by Nunes and Phillips [43] suggests that a daily protein intake of 1.2– 1.59 g/kg BW/day is necessary to enhance RT-induced LBM and strength gains in older adults though metaanalysis has reported a potential upper threshold for FFM improvement at 1.6g PRO/kg BW/day [41]. In terms of protein quality, both animal- and plant-based protein sources are recommended in a healthy diet, while animal-based options are more efficiently digested/utilized by the body (PDCAAS ~1.0), have higher anabolic potential (EAA, BCAA, and leucine content), and promote greater muscle gains vs. plant proteins [44]. As single-ingredient supplements (i.e., monotherapy), the major milk proteins, whey and casein, are therefore more effective for maintaining LBM in older adults, and have repeatedly been shown in meta-analysis to enhance RT-induced muscle gains in sarcopenia patients [39,45,46,47,48].

The potential therapeutic benefits of other nutraceuticals in sarcopenia management (beyond milk proteins) must be evaluated on a case-by-case basis

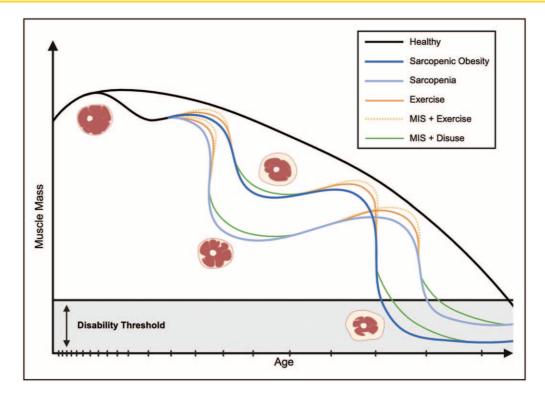
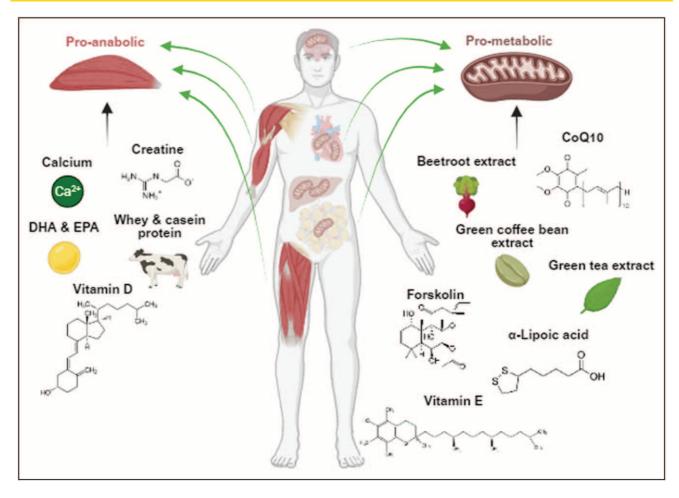


FIGURE 1. Age-related sarcopenia involves progressive muscle mass and strength decline, contributing to increased fall risk, fractures, and reduced mobility. Episodic disuse events create steeper downward trajectories that compound the effects of healthy aging (which would feature lifelong physical activity and sufficient nutrition). These episodes occur more frequently in older adults and often result in incomplete recovery despite rehabilitation, causing rapid transitions between progressively worse functional states. Sarcopenic obesity presents a complex paradox where increased total weight may predispose to higher comorbidities but also temporarily preserve bone and muscle mass. MIS may limit the impact of disuse on muscle loss and amplify the impact of exercise on muscle gain in both sarcopenic and sarcopenic obesity conditions.

and supported by evidence from placebo-controlled, double-blind RCTs or meta-analytic data using studies that are similar enough that their results can be meaningfully combined to produce a more precise estimate of the overall effect. Creatine monohydrate (CrM) has been extensively studied as a monotherapy during exercise training in older adults, with meta-analytic data supporting the use of creatine monohydrate (3–5 g/day) for improving SkM mass, strength, and power in older adults [49,50]. The effects of *n*-3 (omega-3) polyunsaturated fatty acids (n-3-PUFAs) were recently reviewed by Nunes et al., who concluded that *n*-3-PUFA monotherapy has no benefits on LBM, muscle strength and physical function in healthy young or older adults [51**], which is in line with current meta-analyses [52,53]. However, the inclusion of n-3-PUFAs (EPA and DHA; 1 - 2g/day) in sarcopenia treatment may be justified by their general health benefits, including improvements in systemic inflammation [54,55], blood lipid levels [56], and cardiovascular mortality risk [57]. Of particular interest for periods of immobility contributing to the pathogenesis of sarcopenia over time was the finding that n-3-PUFA supplementation

attenuated disuse atrophy [58], likely by improving mitochondrial function [59]. Further high-quality research is needed to elucidate the extent and mechanisms of n-3-PUFA uptake into skeletal muscle and other relevant tissues. Currently, there is insufficient evidence to support vitamin D₃ monotherapy in sarcopenia treatment [60,61]; however, vitamin D₃ supplementation (~1000-2000 IU/d w/wo calcium) is recommended for the prevention of low bone mass and vitamin D insufficiency [62,63]. A meta-analysis by Nasimi *et al.* further suggested that vitamin D_3 may synergize with whey protein to improve muscle mass, strength, and function in older adults, potentially attributed to correction of vitamin D insufficiency [45]. Ultimately, low bone mass is strongly associated with sarcopenia and any intervention that supports bone health (i.e., vitamin D_3 + calcium) likely will benefit muscle health in sarcopenic patients. Although leucine is a recognized rate-limiting factor for MPS (\sim 2.8–4 g/meal in older adults), the evidence for leucine monotherapy in sarcopenia treatment is limited [64]. Meta-analyses on β-hydroxy-β-methylbutyrate (HMB; a leucine metabolite) also demonstrate minimal benefits in sarcopenic populations [65,66]. Together, a well designed supplementation plan for sarcopenia should include high-quality proteins (whey and/or casein) and creatine monohydrate for direct musculoskeletal benefits, with vitamin D₃, calcium, and *n*-3-PUFAs as optional (whilst strongly recommended) for improved bone health, anti-inflammatory benefits, and metabolic synergism.

Strategies for treating sarcopenic obesity are multimodal and aim to induce a net negative energy balance for reducing fat mass (FM; white adipose tissue (WAT)), ectopic lipid deposition, and inflammation, concurrent with maintenance of FFM, specifically SkM and bone [67]. Thus, a significant challenge for SO management is to balance 'proanabolic' (e.g., muscle gain) and 'pro-metabolic' (e.g., WAT loss) signals to optimize body re-composition and improve the SkM/WAT ratio. Current recommendations include hypocaloric diets (-200 to -700 kcal/day; ~0.5 kg BW/week), increased protein intake (1.2-1.5 g/kg BW/day), and regular exercise training, such as RT (2–3 times/week), AT (150 min/week), or combined RT/AT [67,68]. More extreme weight loss methods may be merited in some cases, including bariatric surgery, pharmacotherapy (e.g., GLP-1 receptor agonists), and/or very low-calorie diets (VLCDs), but will also lead to substantial LBM deterioration (~20–40% of total weight loss), as recently reviewed by others [69,70]. While the clinical significance of LBM loss is a topic of considerable debate [71,72], maintenance of LBM is undeniably important at old age and weight cycling (i.e., weight loss followed by unintentional weight gain) may predispose individuals to sarcopenia or sarcopenic obesity [73].


Although interventional RCTs are currently limited in this population, an umbrella review of metaanalyses by Reiter et al. demonstrated that all exercise modes (RT, AT, or RT/AT) reduce fat mass and/or body fat (%) in SO patients, while RT may be more effective in improving gait speed and leg strength (in a nonenergy restricted conditions) [74]. A meta-analysis by Eglseer et al. confirmed that RT effectively improves body fat, lean mass, strength, and gait speed, and that combining exercise with protein intake may add synergism in SO patients [75^{••}]. A recent topical review by Prado et al. stressed the importance of combining high-quality proteins with n-3-PUFAs, calcium, vitamin D_3 , and antioxidants for targeting the underlying aspects of SO etiology (e.g., oxidative stress and inflammation) [67]. Singleingredient supplements with known metabolic benefits include polyphenols (e.g., green coffee bean, green tea, and forskolin), mitochondrial antioxidants (e.g., α -lipoic acid, CoQ10, and vitamin E), and conjugated linoleic acid (CLA) [76,77]. Thus, nutraceuticals with proven pro-anabolic or prometabolic effects have clinical utility for improving body re-composition and underlying SkM pathology in SO patients (Fig. 2), though further research in this area is needed.

MULTI-INGREDIENT SUPPLEMENTS – PREMISE AND POTENTIAL

The underlying mechanisms that drive biological aging are similar across organ systems and cell populations in humans [16]; however, there is no universal treatment that can be applied to all age-related conditions, except exercise therapy [31]. This principle holds true for both single- and multi-ingredient supplements (MIS) although the application of MIS leverages the ability to simultaneously target many interconnected organ systems and intracellular pathways that drive primary and secondary pathoetiologies.

Given the complex pathoetiology, an idealized MIS formulation for sarcopenia (Table 1) should seek to ameliorate the hallmarks of aging (e.g., mitochondrial dysfunction, oxidative stress, impaired autophagy, and inflammation) and stimulate SkM growthregulatory processes, thereby more effectively overcome age-related anabolic resistance and muscle loss vs. single-ingredient supplements. The inclusion of nutraceuticals that promote SkM anabolism and weight gain is generally desirable over those that induce weight loss and fat oxidation considering that protein-energy malnutrition and an underweight body mass index ($<\sim 18.5-20 \,\mathrm{kg/m^2}$) are strongly associated with sarcopenia. However, MIS that are designed to attenuate the universal hallmarks of aging and/or activate pro-longevity pathways still hold therapeutic promise for optimizing SkM function, body composition, and overall health. Thus, nutraceuticals that can target mitochondria and/or other organelles and cell mechanisms involved in quality control, repair, and recycling are potential therapeutic options for attenuating myocellular aging [33].

The use of idealized MIS has even greater therapeutic potential in the treatment of polymorbid conditions, such as sarcopenic obesity, where both intrinsic and extrinsic pathways converge and contribute significantly to SkM anabolic resistance and deterioration. A combination of nutraceuticals that can safely aid in alleviating peripheral insulin resistance, adipose tissue expansion, and ectopic lipid deposition, while maintaining LBM and/or muscle, may be an ideal treatment strategy for sarcopenic obesity, especially during acute periods of stress and disuse (e.g., illness, immobilization, and/or energy restriction) (Table 1). While milk proteins are evolutionary designed to optimize growth and satiety (for

FIGURE 2. Rationale for the treatment of sarcopenia or sarcopenic obesity with a multi-ingredient supplement targeting prometabolic and pro-anabolic outcomes.

example, the 60:40 whey/casein ratio in humans [78]), it is not known whether they maintain lean mass and/or interfere with fat loss in extreme weight management, such as bariatric surgery, GLP-1 RA therapy, or VLCDs. Thus, nutraceuticals that promote SkM anabolism and satiety signaling (e.g., whey/casein and CrM) may be combined with those that induce body re-composition and pro-longevity

pathways (e.g., polyphenols and mitochondrial antioxidants) to counteract both myocellular aging and overnutrition to optimize the results of weight management. The development of novel protein and amino acid (AA) blends that target a balanced activation of pro-anabolic (muscle gain) vs. pro-metabolic (loss of adiposity) signaling pathways therefore also have relevance for the treatment of SO. Recent

Table 1. Idealized multi-ingredient supplementation as a treatment strategy for sarcopenia and sarcopenic obesity

Category	Sarcopenia	Sarcopenic obesity
Anabolic activators	Whey, casein, CrM	Whey, casein, CrM
Metabolic enhancers	n-3-PUFAs	Polyphenols, n-3-PUFAs, CLA
Vitamins & minerals	Vitamin D _{3,} calcium	Vitamin D _{3,} calcium
Mitochondrial antioxidants	CoQ10, α-LA, vitamin E	CoQ10, α-LA, vitamin E
Other	Pro-anabolic protein/AA blends	Pro-metabolic protein/AA blends

CLA, conjugated linoleic acid; CrM, creatine monohydrate; PUFA, polyunsaturated fatty acid.

advancements in nutritional biochemistry and food technology have enabled the precise formulation of bespoke and novel amino acid compositions. Predominately, this may be particularly beneficial for plant-based diets that typically lack enough levels of essential amino acids (EAAs) compared to animalderived sources. Supplemental free-form amino acids, including branched-chain amino acids (BCAAs) and EAAs, have demonstrated clinical utility in mitigating muscle loss, especially under conditions of compromised gastrointestinal function, dysregulated appetite or anabolic resistance, features that are often associated with older age or disordered eating [93]. While BCAAs - with leucine often in focus - serve as a potent anabolic signal to upregulate MPS, they are insufficient to maintain muscle mass when other dietary protein intake is limited. Evidence indicates that nonessential amino acids (NEAAs), particularly L-glutamine and L-arginine, exert pleiotropic effects through multiple signaling pathways that can contribute to maintenance of muscle mass [94,95]. Strategic inclusion of specific NEAAs in novel amino acid formulations, alongside leucine enrichment may reduce muscle atrophy and deleterious body composition changes [96,97] during periods of disuse.

Emerging evidence also suggests that supplementation that focuses exclusively on excessive BCAA intake may have adverse metabolic consequences. Studies indicate a correlation between blood levels of BCAAs and obesity and insulin resistance [98]. Recently, Yu et al. (2021) demonstrated that the detrimental effects of BCAA overconsumption are primarily mediated by isoleucine and valine, rather than leucine, in a mouse model. Specifically, diets low in isoleucine were shown to reprogram hepatic and adipose tissue metabolism, improving insulin sensitivity, enhancing ketogenesis, and increasing energy expenditure [99]. Beyond BCAA restriction, Olsen et al. (2024) demonstrated the restriction of dietary methionine and cysteine (essential and semi-essential sulfur amino acids, respectively) lead to a significantly greater loss of fat free mass in participants with overweight or obesity during weight loss, suggesting benefit in carefully selecting amino acids included in therapeutic interventions [100].

Given these insights, tailored amino acid compositions represent a promising avenue for future therapeutics – if provided alongside other critical components of a MIS. By leveraging improved production methods and clinical evidence, it is possible to create novel formulations that optimize metabolic health while minimizing potential adverse effects associated with indiscriminate amino acid supplementation.

MULTI-INGREDIENT SUPPLEMENTS – CLINICAL EVIDENCE

Based on previous meta-analytic data, protein supplementation (single-and/or multi-ingredient) improves RT-stimulated gains in FFM and strength in both younger and older adults [41,47,79,80], with an upper threshold for improvement at ~1.5–1.7g PRO/kg BW/day [41,81]. Several meta-analyses conducted 2023–2025 have reported similar findings in sarcopenic individuals [39*,40*,45*,82,83*], while the benefits of multi vs. single-ingredient protein supplements remain unclear in all (sub)populations.

O'Bryan *et al.* [80] conducted a systematic review and meta-analysis of 35 trials with 1387 participants and reported that multi-ingredient protein supplements (MIPs) were superior to non-MIP supplements for lean mass and maximal strength gains in healthy adults undergoing long-term resistance exercise training (RET; 6–78 weeks). Subgroup analyses showed that the benefits were greater in untrained vs. trained individuals, and that MIP supplementation resulted in analogous gains in lean mass and improved upper body strength gains in older vs. younger adults. Although MIP supplements were not statistically superior to protein alone (PRO), the mean differences favored MIP over PRO for all study outcomes. These findings support the use of MIPs over non-MIPs and PRO alone for maximizing lean mass and strength gains across age groups, but with more pronounced benefits in sedentary and older adults.

In contrast, the meta-analysis by Puente-Fernandez et al. found no benefits of multi-ingredient supplementation vs. calorie-matched placebo (PLA) on FFM and strength gains in middle-aged and older healthy participants engaging in ≥ 6 weeks of AT or RT [84]. The authors attributed these differences in findings (vs. O'Bryan et al. and Liao et al. [38,80]) to removing RCTs that included clinical populations (i.e., obesity and sarcopenia) and those with no isocaloric comparator group. Conversely, this research team also reported superiority of a multiingredient postworkout supplement (i.e., carbohydrates, leucine-enriched whey, vitamin D₃, CrM, and β-HMB) vs. isocaloric placebo for improving body composition in aging, physically active individuals following a 6-week RT training program [85].

Wageh *et al.* [86,87**] examined the effects of whey-based MIS (whey protein isolate 20 g, CrM 2.5 g, leucine 2 g, calcium citrate 300 mg, and vitamin D 1000 IU) vs. isonitrogenous and isoenergetic PLA (collagen peptides 20 g, alanine 1.4 g, glycine 0.6 g) in healthy young adults undergoing a 10-week progressive RT program. The intervention improved LBM significantly in both groups, but the gains were superior in the whey-based MIS cohort attributed to a

greater increase in muscle fiber CSA [87**]. Muscle biopsies were also taken before and after a damaging bout of exercise in the untrained (pre intervention) and trained (post intervention) states and were suggestive of greater acute satellite cell activation in the whey-based MIS group following the intervention [86]. These results clearly suggest that whey-based MIS may be superior to isocaloric/isonitrogenous collagen PLA in augmenting muscle growth in healthy young males and females, as confirmed by both body composition analysis (DXA) and muscle biopsy sampling.

Several RCTs have previously reported superiority of a similar high-quality protein-based MIS (e.g., whey and/or casein, CrM, vitamin D₃, calcium, and *n*-3-PUFAs) vs. calorie- and/or isonitrogenous placebo (i.e., maltodextrin or collagen peptides) in both younger and older adults [87**,88-90], including a sarcopenic subgroup [91]. In a recent retrospective analysis [92^{*}], Nilsson et al. analyzed baseline predictors of the adaptive response to home-based exercise/nutrition therapy in older adults, and confirmed that obesity/MetS is key driver of anabolic resistance and that a high-quality whey/casein-based MIS may be more effective than a collagen-based alternative for improving body composition in older adults at risk for sarcopenic obesity. Notably, total protein intake exceeded current treatment guidelines in both MIS and PLA groups in this study (i.e., 1.26 vs. 1.43 g PRO/kg BW/day, respectively). With relevance to obesity and weight management, Nederveen et al. [76] has shown that a polyphenol-based MIS (containing green coffee bean, green tea, forskolin, beetroot, CoQ10, α-LA, and vitamin E) may promote significant body weight and FM loss vs. isocaloric placebo in overweight and/or obese individuals. Furthermore, Alblaji et al. recently demonstrated the therapeutic potential of krill oil (which contains n-3-PUFAs, choline, and astaxanthin) for maintaining FFM during weight management [101].

In summary, recent RCTs have shown superiority of whey/casein-based MIS vs. isoenergetic and/or isonitrogenous placebo in both younger and older adults, including sarcopenic subgroups with obesity as a comorbidity. While a systematic review of the literature reveals significant discrepancies between current meta-analyses, a key limitation of the meta-analytical approach is that it combines highly heterogeneous RCTs into supposedly homogeneous groups, potentially obscuring the superior efficacy of specific nutraceutical MIS combinations.

FUTURE DIRECTIONS

Overall, there is a need for more large-scale RCTs with appropriate control groups (isocaloric and/or

isonitrogenous placebo) to assess the therapeutic potential of multi vs. single-ingredient protein supplements with or without exercise therapy across all subpopulations. The development of novel protein and/or AA blends may further enhance the clinical efficacy of MIS and allow for more precise targeting of complex pathoetiologies and polymorbid disease states. A tailored nutraceutical approach for sarcopenic obesity must strike a balance between pro-anabolic (muscle gain) and pro-metabolic (loss of adiposity) signals for optimizing body composition, with specific relevance to extreme weight management.

CONCLUSION

A nutraceutical strategy that includes multi-ingredient supplements is advantageous for targeting interconnected organ systems and cell pathways that drive complex musculoskeletal diseases, such as sarcopenia, with specific utility for management of polymorbid disease states (i.e., sarcopenic obesity). Overall, the 'no one-size-fits-all' principle holds true for both single- and multi-ingredient supplements and it is imperative to identify and promote idealized, nutraceutical combinations that are supported by high-quality clinical evidence, mechanistic plausibility, and standardized manufacturing practices.

Acknowledgements

We would like to acknowledge Nicoletta de Maat for generating the figure (created with BioRender.com), and Bart Hettinga for his assistance.

Financial support and sponsorship

None.

Conflicts of interest

M.A.T. is the founder, C.E.O., and C.S.O. of Exerkine Corporation. M.I.N receives salary support as a senior research scientist for Exerkine. M.A.T. and M.I.N. are shareholders in the company. Exerkine Corporation has filed patents on the use of multi-ingredient supplementation for muscle loss and weight management. All authors warrant that these COIs did not impact on the decision to publish the manuscript or its contents.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest
 - Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr 1997; 127 (Suppl):990S-991S.
- Kirk B, Cawthon PM, Arai H, et al. The conceptual definition of sarcopenia: Delphi Consensus from the Global Leadership Initiative in Sarcopenia (GLIS). Age Ageing 2024; 53:afae052.

- Zhang R, Wang J, Xi H, et al. Global research trends in sarcopenia: a bibliometric analysis of exercise and nutrition (2005–2025). Front Nutr 2025: 12:1579572.
- Mirzai S, Carbone S, Batsis JA, et al. Sarcopenic obesity and cardiovascular disease: an overlooked but high-risk syndrome. Curr Obes Rep 2024; 13: 532–544.
- Gao O, Mei F, Shang Y, et al. Global prevalence of sarcopenic obesity in older adults: a systematic review and meta-analysis. Clin Nutr 2021; 40: 4633–4641.
- 6. Hirani V, Naganathan V, Blyth F, et al. Longitudinal associations between body composition, sarcopenic obesity and outcomes of frailty, disability, institutionalisation and mortality in community-dwelling older men: the Concord Health and Ageing in Men Project. Age Ageing 2016; 46:413–420.
- Sweis NJ. The economic burden of obesity in 2024: a cost analysis using the value of a statistical life. Crit Public Health 2024; 34:1–13.
- Daskalopoulou C, Wu YT, Pan W, et al. Factors related with sarcopenia and sarcopenic obesity among low- and middle-income settings: the 10/66 DRG study. Sci Rep 2020; 10:20453.
- Kwak JY, Kwon KS. Pharmacological interventions for treatment of sarcopenia: current status of drug development for sarcopenia. Ann Geriatr Med Res 2019; 23:98–104.
- Najm A, Niculescu AG, Grumezescu AM, Beuran M. Emerging therapeutic strategies in sarcopenia: an updated review on pathogenesis and treatment advances. Int J Mol Sci 2024; 25:4300.
- Sheffield-Moore M, Paddon-Jones D, Casperson SL, et al. Androgen therapy induces muscle protein anabolism in older women. J Clin Endocrinol Metab 2006: 91:3844–3849.
- Ferrando AA, Sheffield-Moore M, Paddon-Jones D, et al. Differential anabolic effects of testosterone and amino acid feeding in older men. J Clin Endocrinol Metab 2003; 88:358–362.
- 13. Rooks D, Swan T, Goswami B, et al. Bimagrumab vs optimized standard of care for treatment of sarcopenia in community-dwelling older adults: a randomized clinical trial. JAMA Netw Open 2020; 3:e2020836.
- McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance exercise, aging, disuse, and muscle protein metabolism. Compr Physiol 2021; 11:2249–2278.
- Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell 2013; 153:1194–1217.
- López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: An expanding universe. Cell 2023; 186:243–278.
- Moore DR, Churchward-Venne TA, Witard O, et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci 2015; 70: 57–62
- Wall BT, Gorissen SH, Pennings B, et al. Aging is accompanied by a blunted muscle protein synthetic response to protein ingestion. PLoS One 2015; 10: e0140903.
- Oikawa SY, Holloway TM, Phillips SM. The impact of step reduction on muscle health in aging: protein and exercise as countermeasures. Front Nutr 2019; 6:75.
- 20. Covinsky KE, Palmer RM, Fortinsky RH, et al. Loss of independence in activities of daily living in older adults hospitalized with medical illnesses: increased vulnerability with age. J Am Geriatr Soc 2003; 51:451–458.
- Arentson-Lantz EJ, English KL, Paddon-Jones D, Fry CS. Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults. J Appl Physiol 2016; 120:965–975.
- English KL, Mettler JA, Ellison JB, et al. Leucine partially protects muscle mass and function during bed rest in middle-aged adults. Am J Clin Nutr 2016; 103: 465–472
- McGlory C, von Allmen MT, Stokes T, et al. Failed recovery of glycemic control and myofibrillar protein synthesis with 2 wk of physical inactivity in overweight, prediabetic older adults. J Gerontol A Biol Sci Med Sci 2018; 73:1070–1077.
- Suetta C, Hvid LG, Justesen L, et al. Effects of aging on human skeletal muscle after immobilization and retraining. J Appl Physiol 2009; 107: 1172–1180.
- Donini LM, Busetto L, Bischoff SC, et al. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Clin Nutr 2022; 41:990–1000.
- Axelrod CL, Dantas WS, Kirwan JP. Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism 2023; 146:155639.
- Jun L, Tao YX, Geetha T, Babu JR. Mitochondrial adaptation in skeletal muscle: impact of obesity, caloric restriction, and dietary compounds. Curr Nutr Rep 2024; 13:500–515.
- Pileggi CA, Hooks BG, McPherson R, et al. Targeting skeletal muscle mitochondrial health in obesity. Clin Sci (Lond) 2022; 136:1081–1110.
- Tarnopolsky MA, Beal MF. Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol 2001; 49: 561–574
- Dent E, Morley JE, Cruz-Jentoft AJ, et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): screening, diagnosis and management. J Nutr Health Aging 2018; 22:1148–1161.
- Izquierdo M, de Souto Barreto P, Arai H, et al. Global consensus on optimal exercise recommendations for enhancing healthy longevity in older adults (ICFSR). J Nutr Health Aging 2025; 29:100401.

- **32.** Hurst C, Robinson SM, Witham MD, *et al.* Resistance exercise as a treatment for sarcopenia: prescription and delivery. Age Ageing 2022; 51:afac003.
- Nilsson MI, Tarnopolsky MA. Mitochondria and aging the role of exercise as a countermeasure. Biology (Basel) 2019; 8:40.
- Marzetti E, Calvani R, Coelho-Júnior HJ, et al. Mitochondrial quantity and quality in age-related sarcopenia. Int J Mol Sci 2024; 25:2052.
- Calvani R, Picca A, Coelho-Júnior HJ, et al. Diet for the prevention and management of sarcopenia. Metabolism 2023; 146:155637.
- Wu W, Chen F, Ma H, et al. Dietary protein requirements of older adults with sarcopenia determined by the indicator amino acid oxidation technology. Front Nutr 2025; 12:1486482.
- Shen Y, Shi Q, Nong K, et al. Exercise for sarcopenia in older people: a systematic review and network meta-analysis. J Cachexia Sarcopenia Muscle 2023; 14:1199–1211.
- Liao CD, Tsauo JY, Wu YT, et al. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: a systematic review and meta-analysis. Am J Clin Nutr 2017; 106: 1078-1091.
- 39. Cuyul-Vásquez I, Pezo-Navarrete J, Vargas-Arriagada C, et al. Effectiveness of
- whey protein supplementation during resistance exercise training on skeletal muscle mass and strength in older people with sarcopenia: a systematic review and meta-analysis. Nutrients 2023; 15:3424.

This systematic review and meta-analysis of randomized trials in older adults with sarcopenia demonstrates that whey protein supplementation combined with resistance exercise training produces statistically significant but clinically modest improvements in skeletal muscle mass and handgrip strength compared to resistance training alone.

 40. Yoshimura Y, Matsumoto A, Inoue T, et al. Protein supplementation alone or combined with exercise for sarcopenia and physical frailty: A systematic review and meta-analysis of randomized controlled trials. Arch Gerontol Geriatr 2025; 131:105783.

This systematic review and meta-analysis in older adults with sarcopenia or physical frailty demonstrates that protein supplementation combined with exercise significantly improves skeletal muscle index and handgrip strength compared to exercise alone, while protein supplementation alone shows only modest benefits, though this publication highlights the need for more high quality trials.

- 41. Morton RW, Murphy KT, McKellar SR, et al. A systematic review, metaanalysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med 2018; 52:376–384.
- Aragon AA, Tipton KD, Schoenfeld BJ. Age-related muscle anabolic resis tance: inevitable or preventable? Nutr Rev 2022; 81:441–454.
- Nunes EA, Colenso-Semple L, McKellar SR, et al. Systematic review and meta-analysis of protein intake to support muscle mass and function in healthy adults. J Cachexia Sarcopenia Muscle 2022; 13:795–810.
- 44. Reid-McCann RJ, Brennan SF, Ward NA, et al. Effect of plant versus animal protein on muscle mass, strength, physical performance, and sarcopenia: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2025; 83:e1581-e1603.
- 45. Nasimi N, Sohrabi Z, Nunes EA, et al. Whey protein supplementation with or without vitamin d on sarcopenia-related measures: a systematic review and meta-analysis. Adv Nutr 2023; 14:762–773.

This systematic review and meta-analysis demonstrates that whey protein supplementation alone benefits sarcopenic/frail older adults by improving lean mass and physical function, while the combination of whey protein with vitamin D provides significant improvements in lean mass, muscle strength, and physical function in healthy older adults, possibly through correction of vitamin D deficiency.

- 46. Li ML, Zhang F, Luo HY, et al. Improving sarcopenia in older adults: a systematic review and meta-analysis of randomized controlled trials of whey protein supplementation with or without resistance training. J Nutr Health Aging 2024; 28:100184.
- Naclerio F, Larumbe-Zabala E. Effects of whey protein alone or as part of a multiingredient formulation on strength, fat-free mass, or lean body mass in resistance-trained individuals: a meta-analysis. Sports Med 2016; 46:125–137.
- **48.** Liao CD, Huang SW, Chen HC, et al. Comparative efficacy of different protein
- supplements on muscle mass, strength, and physical indices of sarcopenia among community-dwelling, hospitalized or institutionalized older adults undergoing resistance training: a network meta-analysis of randomized controlled trials. Nutrients 2024; 16:941.

This network meta-analysis of randomized controlled trials across community-dwelling, hospitalized, and institutionalized older adults demonstrates that whey protein supplementation combined with resistance training is superior to other protein sources for improving muscle mass, handgrip strength, and walking speed in sarcopenic individuals.

- Devries MC, Phillips SM. Creatine supplementation during resistance training in older adults-a meta-analysis. Med Sci Sports Exerc 2014; 46:1194–1203.
- 50. Forbes SC, Candow DG, Ostojic SM, et al. Meta-analysis examining the importance of creatine ingestion strategies on lean tissue mass and strength in older adults. Nutrients 2021; 13:1912.
- **51.** Nunes EA, D'Souza AC, Steen JP, Phillips SM. Lack of evidence for Omega-3
- ■■ fatty acid supplementation in enhancing lean mass, muscle strength, and physical function in healthy adults and clinical populations: an overview of reviews. Clin Nutr ESPEN 2025; 67:155–165.

This overview of systematic reviews examining omega-3 fatty acid supplementation across healthy young and older adults and clinical populations reveals limited evidence supporting benefits for muscle mass, strength, or physical function, concluding that omega-3 monotherapy does not significantly improve these outcomes.

- 52. Timraz M, Binmahfoz A, Quinn TJ, et al. The effect of long chain n-3 fatty acid supplementation on muscle strength in older adults: a systematic review and meta-analysis. Nutrients 2023; 15:3579.
- 53. Tseng PT, Zeng BY, Zeng BS, et al. Omega-3 polyunsaturated fatty acids in sarcopenia management: a network meta-analysis of randomized controlled trials. Ageing Res Rev 2023; 90:102014.
- Calder PC. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 2006; 83:1505S-1519S.
- 55. Kavyani Z, Musazadeh V, Fathi S, et al. Efficacy of the omega-3 fatty acids supplementation on inflammatory biomarkers: an umbrella meta-analysis. Int Immunopharmacol 2022; 111:109104.
- 56. Wang T, Zhang X, Zhou N, et al. Association between omega-3 fatty acid intake and dyslipidemia: a continuous dose-response meta-analysis of randomized controlled trials. J Am Heart Assoc 2023; 12:e029512.
- Khan SU, Lone AN, Khan MS, et al. Effect of omega-3 fatty acids on cardiovascular outcomes: a systematic review and meta-analysis. EClinical-Medicine 2021; 38:100997.
- McGlory C, Gorissen SHM, Kamal M, et al. Omega-3 fatty acid supplementation attenuates skeletal muscle disuse atrophy during two weeks of unilateral leg immobilization in healthy young women. FASEB J 2019; 33:4586–4597.
- 59. Miotto PM, McGlory C, Bahniwal R, et al. Supplementation with dietary ω-3 mitigates immobilization-induced reductions in skeletal muscle mitochondrial respiration in young women. FASEB J 2019; 33:8232–8240.
- 60. Widajanti N, Hadi U, Soelistijo SA, et al. The effect of vitamin D supplementation to parameter of sarcopenia in elderly people: a systematic review and meta-analysis. Can Geriatr J 2024; 27:63–75.
- Prokopidis K, Giannos P, Katsikas Triantafyllidis K, et al. Effect of vitamin D monotherapy on indices of sarcopenia in community-dwelling older adults: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2022; 13:1642–1652.
- Bouillon R, Manousaki D, Rosen C, et al. The health effects of vitamin D supplementation: evidence from human studies. Nat Rev Endocrinol 2022; 18: 96–110
- Bouillon R, Marcocci C, Carmeliet G, et al. Skeletal and extraskeletal actions of vitamin D: current evidence and outstanding questions. Endocr Rev 2019; 40:1109–1151.
- 64. Guo Y, Fu X, Hu Q, et al. The effect of leucine supplementation on sarcopeniarelated measures in older adults: a systematic review and meta-analysis of 17 randomized controlled trials. Front Nutr 2022; 9:929891.
- 65. Feng Y, Chen P, Li T, et al. Effects of exercise with or without β-hydroxy-β-methylbutyrate supplementation on muscle mass, muscle strength, and physical performance in patients with sarcopenia: a systematic review and meta-analysis. Front Nutr 2024; 11:1460133.
- 66. Su H, Zhou H, Gong Y, et al. The effects of β-hydroxy-β-methylbutyrate or HMB-rich nutritional supplements on sarcopenia patients: a systematic review and meta-analysis. Arch Gerontol Geriatr 2024; x:127.
- 67. Prado CM, Batsis JA, Donini LM, et al. Sarcopenic obesity in older adults: a clinical overview. Nat Rev Endocrinol 2024; 20:261–277.
- Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol 2018; 14:513–537.
- Caturano A, Amaro A, Berra CC, Conte C. Sarcopenic obesity and weight loss-induced muscle mass loss. Acta Diabetol 2025; 28:339–350.
- Chavez AM, Carrasco Barria R, León-Sanz M. Nutrition support whilst on glucagon-like peptide-1 based therapy. Is it necessary? Curr Opin Clin Nutr Metab Care 2025; 28:351–357.
- Conte C, Hall KD, Klein S. Is weight loss-induced muscle mass loss clinically relevant? JAMA 2024; 332:9–10.
- Prado CM, Phillips SM, Gonzalez MC, Heymsfield SB. Muscle matters: the effects of medically induced weight loss on skeletal muscle. Lancet Diabetes Endocrinol 2024; 12:785–787.
- 73. Zamboni M, Giani A, Fantin F, et al. Weight cycling and its effects on muscle mass, sarcopenia and sarcopenic obesity. Rev Endocr Metab Disord 2025; doi: 10.1007/s11154-025-09963-8. [Online ahead of print].
- 74. Reiter L, Bauer S, Traxler M, et al. Effects of nutrition and exercise interventions on persons with sarcopenic obesity: an umbrella review of meta-analyses of randomised controlled trials. Curr Obes Rep 2023; 12:250–263.
- **75.** Eglseer D, Traxler M, Schoufour JD, et al. Nutritional and exercise interventions in individuals with sarcopenic obesity around retirement age: a systematic
- •• in individuals with sarcopenic obesity around retirement age: a systematic review and meta-analysis. Nutr Rev 2023; 81:1077-1090.

This systematic review and meta-analysis of retirement-age adults with sarcopenic obesity demonstrates that resistance training effectively reduces body fat while increasing muscle mass, strength, and gait speed, with additional benefits when combined with increased protein intake for enhanced fat mass reduction.

76. Nederveen JP, Mastrolonardo AJ, Xhuti D, et al. Novel multi-ingredient supplement facilitates weight loss and improves body composition in overweight and obese individuals: a randomized, double-blind, placebo-controlled clinical trial. Nutrients 2023; 15:3693.

This double-blind, placebo-controlled trial in overweight and obese young adults demonstrates that a 12-week multi-ingredient supplement containing green tea

extract, CoQ10, alpha-lipoic acid, and other metabolic compounds significantly reduces body weight and fat mass compared to placebo.

- Liang CW, Cheng HY, Lee YH, et al. Effects of conjugated linoleic acid and exercise on body composition and obesity: a systematic review and metaanalysis. Nutr Rev 2023; 81:397–415.
- 78. Toffolon A, de Rocco-Ponce M, Vettore M, et al. Effect of reversal of whey-protein to casein ratio of cow milk, on insulin, incretin, and amino acid responses in humans. Mol Nutr Food Res 2021; 65:e2100069.
- 79. Cermak NM, Res PT, de Groot LC, et al. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr 2012; 96:1454–1464.
- 80. O'Bryan KR, Doering TM, Morton RW, et al. Do multi-ingredient protein supplements augment resistance training-induced gains in skeletal muscle mass and strength? A systematic review and meta-analysis of 35 trials. Br J Sports Med 2020; 54:573–581.
- 81. Tagawa R, Watanabe D, Ito K, et al. Dose-response relationship between protein intake and muscle mass increase: a systematic review and metaanalysis of randomized controlled trials. Nutr Rev 2021; 79:66–75.
- 82. Song Z, Pan T, Tong X, et al. The effects of nutritional supplementation on older sarcopenic individuals who engage in resistance training: a metaanalysis. Front Nutr 2023; 10:1109789.
- 83. Chang MC, Choo YJ. Effects of whey protein, leucine, and vitamin D supplementation in patients with sarcopenia: a systematic review and meta-analysis. Nutrients 2023; 15:521.

This meta-analysis of sarcopenic patients demonstrates that whey protein, leucine, and vitamin D supplementation increases appendicular muscle mass regardless of exercise participation, but significantly improves handgrip strength and physical performance only when combined with a physical exercise program, highlighting the critical importance of exercise for functional benefits in sarcopenia treatment.

- 84. Puente-Fernández J, Larumbe-Zabala E, Jiménez A, et al. No impact of combining multi-ingredient supplementation with exercise on body composition and physical performance, in healthy middle-aged and older adults: a systematic review and meta-analysis. Exp Gerontol 2023; 172:112079.
- 85. Puente-Fernández J, Larumbe-Zábala E, Roberts J, Naclerio F. Effect of a multi-ingredient post-workout dietary supplement on body composition and muscle strength a randomized controlled trial. J Diet Suppl 2025; 22: 445–462.
- 86. Wageh M, Fortino SA, Pontello R, et al. The effect of multi-ingredient protein versus collagen supplementation on satellite cell properties in males and females. Med Sci Sports Exerc 2024; 56:2125–2134.
- 87. Wageh M, Fortino SA, McGlory C, et al. The effect of a multi-ingredient supplement on resistance training-induced adaptations. Med Sci Sports Exerc 2021; 53:1699–1707.

This double-blind randomized controlled trial in healthy young men and women demonstrates that a multi-ingredient supplement containing whey protein, creatine, calcium, and vitamin D enhances 10-week resistance training-induced gains in lean body mass and upper-body muscle growth compared to collagen peptide placebo, providing evidence for synergistic benefits during strength training.

- 88. Bell KE, Fang H, Snijders T, et al. A multi-ingredient nutritional supplement in combination with resistance exercise and high-intensity interval training improves cognitive function and increases N-3 index in healthy older men: a randomized controlled trial. Front Aging Neurosci 2019; 11:107.
- Bell KE, Snijders T, Zulyniak M, et al. A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: a randomized controlled trial. PLoS One 2017; 12: e0181387
- Bell KE, Snijders T, Zulyniak MA, et al. A multi-ingredient nutritional supplement enhances exercise training-related reductions in markers of systemic inflammation in healthy older men. Appl Physiol Nutr Metab 2017; 42:1-4.
- Nilsson MI, Mikhail A, Lan L, et al. A five-ingredient nutritional supplement and home-based resistance exercise improve lean mass and strength in free-living elderly. Nutrients 2020; 12:2391.
- 92. Nilsson MI, Xhuti D, de Maat NM, et al. Obesity and metabolic disease impair the anabolic response to protein supplementation and resistance exercise: a retrospective analysis of a randomized clinical trial with implications for aging, sarcopenic obesity, and weight management. Nutrients 2024; 16: 4407

This retrospective analysis of a randomized trial in older males demonstrates that obesity and metabolic syndrome are key predictors of anabolic resistance to resistance exercise and protein supplementation, with whey/casein-based multi-ingredient supplements proving superior to collagen-based alternatives for improving lean mass, strength, and performance in metabolically compromised individuals at risk for sarcopenic obesity.

- Conte C, Bossi F, Ferrara G, et al. Optimizing body composition during weight loss: the role of amino acid supplementation. Nutrients 2025; 17:2000.
- 94. Nishizaki K, Ikegami H, Tanaka Y, et al. Effects of supplementation with a combination of β-hydroxy-β-methyl butyrate, L-arginine, and L-glutamine on postoperative recovery of quadriceps muscle strength after total knee arthroplasty. Asia Pac J Clin Nutr 2015; 24:412–420.
- Mitchell WK, Phillips BE, Wilkinson DJ, et al. Supplementing essential amino acids with the nitric oxide precursor, L-arginine, enhances skeletal muscle perfusion without impacting anabolism in older men. Clin Nutr 2017; 36: 1573–1579.

- Holloway TM, McGlory C, McKellar S, et al. A novel amino acid composition ameliorates short-term muscle disuse atrophy in healthy young men. Front Nutr 2019: 6:105.
- 97. Lees MJ, Wilson OJ, Webb EK, et al. Novel essential amino acid supplements following resistance exercise induce aminoacidemia and enhance anabolic signaling irrespective of age: a proof-of-concept trial. Nutrients 2020; 12:2067.
- Connelly MA, Wolak-Dinsmore J, Dullaart RP. Branched chain amino acids are associated with insulin resistance independent of leptin and adiponectin in subjects with varying degrees of glucose tolerance. Metab Syndr Relat Disord 2017; 15:183–186.
- 99. Yu D, Richardson NE, Green CL, et al. The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine. Cell Metab 2021; 33:1056-1074. e7.
- 100. Olsen T, Stolt E, Øvrebø B, et al. Dietary sulfur amino acid restriction in humans with overweight and obesity: a translational randomized controlled trial. J Transl Med 2024; 22:40.
- 101. Alblaji M, Gray SR, Almesbehi T, et al. Benefits of krill oil supplementation during alternate-day fasting in adults with overweight and obesity: a randomized trial. Obesity (Silver Spring) 2025; 33:1694– 1703.