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Abstract

As artificial intelligence (AI) becomes increasingly integrated into 
complex decision-making environments, there is a growing need to 
develop AI systems that complement human capabilities. AI and humans 
offer distinct strengths: AI excels at processing large datasets, identifying 
statistical patterns and optimizing predefined objectives, whereas 
humans are skilled at navigating uncertainty, novelty and interpersonal 
challenges. The synergy between humans and AI is particularly vital 
in dynamic decision-making domains — such as disaster response 
situations — in which rapid analysis of AI results must be balanced with 
human judgement and ethical considerations. In this Perspective, we 
provide a conceptual framework to integrate human decision-making 
with AI, focusing on cognitive AI: a computational approach that models 
human cognitive processes to create AI systems that learn and make 
decisions in ways similar to those of humans. We discuss the elements 
and necessary capabilities of cognitive AI and how to realize human–AI 
complementarity in decision-making while considering ethical risks. 
By advancing these areas, researchers can lay the groundwork for 
adaptive and cognitively grounded human–AI teamwork that is aligned 
with human values and goals.
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to no external intervention (full autonomy). For example, in a medical 
decision situation, a physician and a diagnostic AI system might oper-
ate at comparable levels of autonomy during the diagnosis and treat-
ment of a patient. The AI system independently analyses the patient’s 
medical history, laboratory results and imaging scans to identify a 
potential diagnosis and treatment recommendations, while the physi-
cian evaluates the patient’s symptoms, asks clarifying questions and 
weighs up the emotional and social factors. Together, they arrive at a 
more informed decision than either could alone.

The goal of human–AI complementarity is to combine human 
strengths with the computational power of AI to produce better deci-
sions than either the humans or AI could achieve independently26–30. 
However, current human–AI systems often fail to achieve true comple-
mentarity, and the reasons for this shortfall remain unclear30. Achieving 
human–AI complementarity will require addressing a complex set of 
factors, and integrating different perspectives and potential alternative 
approaches5,16,20,31–33.

Of the possible approaches to achieve human–AI complementarity, 
one with great promise is cognitive AI. Cognitive AI aims to emulate 
and simulate the human mind as an information-processing system. 
To emulate means to replicate the cognitive process that led to human 
decisions, whereas to simulate means to model these processes compu-
tationally to understand better how decisions emerge. Thus, cognitive 
AI functions similarly to early AI systems, which simulate human beings 
to emulate the way humans’ minds work34. Cognitive AI, in combination 
with data-driven AI, has the potential to enable effective complemen-
tarity during dynamic decision-making. Cognitive AI aims to model 
human-like reasoning, memory and decision-making to mimic how 
people perceive, interpret and respond to complex tasks. By contrast, 
data-driven AI relies on large-scale statistical patterns in data to identify 
correlations and make predictions, without necessarily modelling how 
humans think. Although the two approaches are distinct, together they 
can enable human–AI complementarity by combining human-aligned 
reasoning with powerful data-driven insights.

In this Perspective, we outline a cognitive approach to human–AI 
complementarity in dynamic decision-making tasks. We begin by pre-
senting the notion of cognitive AI and the role that it would have in 
supporting human decisions and fostering seamless collaboration with 
humans in teams. Then we discuss the need to develop dynamic models 
of the environment, the cognitive AI capabilities needed to advance AI, 
and how to realize the vision of cognitive AI for human–AI complemen-
tarity. Next, we highlight the broader societal and ethical implications of 
advancing cognitive AI and conclude with concrete recommendations 
to guide future work towards achieving human–AI complementarity.

We use the term human–AI complementarity here to describe 
systems that enable interactions at the cognitive level rather than 
interactions with the physical world35. Similarly, although work on 
human–robot interaction is discussed throughout the Perspective, 
the discussions of challenges regarding a physical environment or a 
robot’s sensing capabilities36 are outside the scope of cognitive AI.

Cognitive AI for human–AI complementarity
Our vision is to develop cognitive AI systems that emulate humans’ 
cognitive information processing. Such cognitive AI systems would 
not only assist humans but would also be able to simulate human 
beings and act as teammates alongside humans. Cognitive AI would 
be capable of understanding and responding to human actions and 
engaging in meaningful interactions with humans, thus revolution-
izing how humans communicate and collaborate with technology. 

Introduction
Humans make thousands of decisions per day, from trivial choices — like 
what movie to watch — to very complex and consequential choices — 
like what cancer treatment to take. Some of those decisions are static, 
meaning that the individual needs to make a single decision in a steady 
environment. Examples of such decisions are picking a name for a 
newly born child or an insurance plan from a fixed set of options. 
However, many decisions are dynamic in nature: the environment 
changes autonomously over time, the decision-making task itself 
might evolve — possibly in response to previous decisions — and the 
decision-maker can learn from and adapt to previous observations. 
For example, during an emergency response operation, a firefighter 
conducts real-time assessment of the situation and adjusts their actions 
based on rapidly changing conditions in the world1. As in this exam-
ple, dynamic decision-making involves making a sequence of interde-
pendent decisions in a constantly evolving environment2. In dynamic 
decision-making, humans often face multiple practical constraints — 
such as time pressure, workload and limited resource availability — that  
complicate decision-making3.

Data-driven AI systems play an essential part in supporting 
dynamic decision-making in many domains4,5. These computational 
models leverage vast amounts of data to learn and make predictions 
by identifying key patterns through statistical modelling6,7. Some-
times, full automation (systems that operate without human interven-
tion) of decision-making is feasible and effective with data-driven AI. 
For instance, data-driven AI systems can make autonomous decisions 
in online advertising or by finding and displaying the shortest path to 
a destination on a virtual map. However, in many dynamic tasks, full 
automation is not possible or appropriate because data-driven AI can 
fail when faced with novel, rapidly changing conditions, ambiguity or 
incomplete information — in such cases, human input and oversight 
are necessary8. For example, human oversight is often necessary to 
ensure quality control and compliance with legal requirements, espe-
cially in critical tasks like medical diagnosis9,10. Additionally, tasks that 
involve societal tradeoffs — such as pre-trial criminal risk assessments 
of defendants — require human professionals to adhere to ethical 
norms and involve complex judgements that are currently beyond the 
reach of AI predictions11–15.

Thus, in dynamic decision-making tasks, data-driven AI is mostly 
used as a tool that takes advantage of the power of computing and 
data-driven automation to provide recommendations and advice to 
humans, who make the final decisions16. Examples include AI-powered 
socially assistive robots for elderly care, nursing and healthcare17,18. 
Current data-driven AI systems have major difficulties in adapting 
to dynamic environments, accounting for human input in real time, 
and automatically adjusting their recommendations on the basis of 
changing goals, shifting contexts, user feedback and evolving patterns 
in the environment19.

Despite these limitations, there is a vision of a future in which 
AI is not a mere tool or assistant but a member of a team including 
human decision-makers20–25. In this vision, humans and AI form a syn-
ergistic relationship known as human–AI complementarity, in which 
both can operate at comparable levels of autonomy and complement 
each other’s strengths and weaknesses so that they arrive at a more 
informed and balanced decision together than either could alone. 
Autonomy refers to the capacity of an agent (human or artificial) to 
make and act on decisions independently, without external control. 
Levels of autonomy describe the extent to which an agent acts with 
external intervention, ranging from full intervention (no autonomy) 
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Cognitive AI aims to emulate and simulate the human mind as an 
information-processing system, similar to what was envisioned in the 
origins of AI34,37,38, unified theories of cognition39 and the beginnings 
of human–computer interaction40,41. This design enables AI systems to 
reason, adapt and interact in ways that align with how humans think, 
enabling greater transparency and interpretability. Unlike data-driven 
AI, cognitive AI seeks to explain and replicate how and why decisions 
are made, mirroring human mental functions rather than just match-
ing outputs. Furthermore, cognitive AI must mimic human limitations 
and constraints, because doing so will allow us to interpret human 
behaviour and to predict (and prevent) human error.

Although this idea might appear anthropomorphic42,43 inasmuch 
as it involves attributing human-like characteristics to AI, it is important 
to clarify that cognitive AI does not aim to replicate human identity or 
appearance. Rather, it draws on formal models of cognition to enhance 
reasoning, learning and decision-making in ways that are aligned with 
human cognitive processes. Although anthropomorphism can emerge 
in human users’ perceptions of AI, especially in contexts where systems 
behave autonomously or use natural language44,45, the goal of cognitive 
AI is not to elicit social attribution or human-likeness, but to support 
complementary roles in joint tasks. As such, the use of terms like ‘team-
mate’ or ‘collaboration’ refers to functional integration and shared 
goals, not to metaphorical or emotional resemblance. This distinction 
is critical to avoid conflating cognitively grounded modelling with 
anthropomorphic design intent46.

Whereas the origins of AI and human–computer interaction 
are focused on a broad set of problems and the full range of capaci-
ties of the human mind, here we focus on cognitive AI as applied to 
dynamic decision-making. For example, managing resources dur-
ing the real-time evolution of disasters like wildfires, hurricanes 
and floods is an extremely complex task. These situations demand 
decision-makers to evaluate tradeoffs among multiple alternatives 
and make choices under high uncertainty and with many constraints, 
such as limited time and resources47–49. It is critical to balance speed 
and accuracy (rapid decisions can save lives but acting too quickly on 
incomplete information can lead to misguided responses), to consider 
resource trade-offs (immediate solutions like temporary shelters can 
address short-term needs but be unsustainable in the long term), and 
to balance human safety against economic costs (evacuations can 
be necessary to save lives but disrupt communities and economies). 
These decisions often require coordination and collaboration among 
multiple decision-makers and poor teamwork can result in conflicts 
and inconsistencies across efforts.

In such decisions, data-driven AI acts as an assistant to human 
decision-makers, often by providing recommendations or aid through 
synthesis or explanations (Fig. 1a). For example, algorithms can analyse 
and synthesize large amounts of data such as weather forecasts and 
satellite images in real time50,51. Autonomous vehicles, such as drones 
and ground robots, can assist in search-and-rescue operations and 
access hard-to-reach and dangerous areas, reducing the risk to human 
rescuers52. Disaster robotics can be used to assist disaster managers and 
search-and-rescue missions53–56. Data-driven AI has been used to assess 
flood mapping and project impact and to verify inundation models, as 
well as to aid human decision-makers to optimize resource allocation 
and support logistics, and to help with long-term recovery efforts57–59. 
Although using data-driven AI as an assistant to human decisions has 
proved very valuable, it does not achieve human–AI complementarity21,60. 
In this AI-as-assistant approach, the AI does not need to fully represent a 
dynamic environment, nor need it have a dynamic mental model of the 

human. Instead, humans are tasked with maintaining a mental model of 
the environment and a mental model of the AI (for instance, how likely 
it is to err on specific cases) in order to use the AI’s recommendations 
effectively61. Because the human is tasked with interpreting the outputs 
of the AI, the AI designers need to consider transparency, trustworthi-
ness, accuracy, confidence and the interpretability of AI explanations. 
These aspects are critical to the adoption of AI-as-assistant62,63.

In our approach to human–AI complementarity, cognitive AI 
serves as a dynamic computational representation of the mental 
model of the human, which can be used by data-driven AI for decision 
support (Fig. 1b), or to simulate a human partner in a human–AI team 
(Fig. 1c). Although both decision support and assistance involve helping 
users, they differ in purpose and complexity. Assistance helps humans 
to execute their own decisions, often by simplifying tasks or offering 
convenient options. By contrast, decision support enhances the quality 
of decision-making by providing relevant insights, interpreting data, 
evaluating alternatives and predicting outcomes.

Both of these aspects of our approach rely on the possibility of 
knowledge tracing using cognitive AI. Knowledge tracing is a method 
of estimating and updating a human’s knowledge state over time based 
on their observable behaviours and responses in sequential tasks. 
This method64 has now been used in multiple dynamic decision-making 
tasks to predict the decision a human will make at a given point in 
time, based on a history of actions taken previously65,66. Tracing indi-
vidual human actions is similar to how intelligent tutoring systems 
support student learning, by mimicking the strategies and knowl-
edge of human tutors and optimizing them for interaction with the 
learner67,68. In dynamic decision-making, cognitive AI provides a model 
of the human’s mental state, which can then enable data-driven AI to 
fine-tune its use of large datasets and deliver more accurate, timely 
and personalized decision support.

Embedding human-like cognitive processes of cognitive AI into 
human–AI interactions enables data-driven AI to reason in ways that 
are aligned with human thought, facilitating mutual understanding 
and true complementarity. Because cognitive AI explicitly models 
the steps and constraints of human decision-making, it enhances the 
transparency and interpretability of AI behaviour. This alignment 
fosters trustworthiness, as the system’s outputs can be traced back to 
human-relevant reasoning patterns, rather than to opaque statistical 
associations. In turn, users are more likely to have confidence in the 
AI’s recommendations, and the ability to simulate individual mental 
models enables personalized decision support that improves both the 
accuracy and the relevance of AI assistance.

Data-driven AI can also use the mental model of the human pro-
vided by cognitive AI to change the choice architecture of a dynamic 
decision-making task (Fig. 1b). Choice architecture interventions 
involve re-structuring or altering the descriptions or other aspects of 
the choice options to influence decision-making69,70. Data-driven AI can 
adjust the choice options that are available to the decision-maker or 
alter the way the choice options are presented to the decision-maker71. 
It can also adjust the time and mode of presentation of those options, 
by using the model of the human provided by cognitive AI.

Thus, using cognitive AI for decision support enables human–AI 
complementarity by aiding human reasoning and judgement in cogni-
tively demanding tasks, with the aim not just to help the human to act 
but to think along with them. This idea of using cognitive AI for decision 
support has been illustrated in cognitively demanding tasks, includ-
ing specific applications like cyber deception training for detecting 
phishing emails65,66,72. However, substantially more research is needed 
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to demonstrate its broader utility and to establish its role in enabling 
effective human–AI complementarity.

Cognitive AI can also emulate human cognitive decision processes 
and function as a human-like partner within a team (Fig. 1c). Teams are 
typically composed of heterogeneous agents, each with distinct roles, 
responsibilities and capabilities, who work interdependently towards 
a shared goal43. Interdependence is critical, creating the need for coor-
dination, communication and joint activity among team members73.  

In dynamic decision-making tasks, outcomes are often achieved not by 
a single individual but through collaboration within a team of agents. 
Collaboration is the process by which agents — human or artificial — 
work together in a team to achieve a common goal. In this context, 
cognitive AI, like human teammates, can be designed to specialize in 
particular tasks or to operate effectively under specific conditions. 
Different cognitive AI teammates might take different roles, contrib-
uting their strengths when relevant, and stepping back when not, 
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Fig. 1 | Types of human–AI complementarity. a, Data-driven AI is used as an 
assistant to provide recommendations and advice to the human decision-maker. 
b, Cognitive AI and knowledge-tracing methods are used to create a mental 
model of the human and provide data-driven AI with specific predictions of 
human actions. Using the input from cognitive AI, data-driven AI calibrates the 
recommendations and decision support or adjusts the choice architecture to 
support human decision-making. c, Cognitive AI acts autonomously as part of a 

team and can also apply knowledge tracing to generate mental models of specific 
humans in a team or of the team as a whole. Cognitive AI provides data-driven 
AI with a model of the human and a model of collective human and cognitive AI 
teamwork. Data-driven AI can calibrate its decision support towards the team as 
a whole or just to individual members of the team. It can also adjust the choice 
architecture in the environment for humans to improve future decisions.
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thereby enhancing collective performance and enabling more adap-
tive, flexible and intelligent team behaviour74–76. To achieve human–AI 
collaboration in a team, cognitive AI would need not only the ability to 
act autonomously, to make decisions, to adapt to the environment and 
to improve its own performance over time31,77. It will also need to have 
the capability to engage in interdependent processes with other agents 
in the team to draw the allocation, update and retrieval of cognitive 
resources from other team members78,79.

Using AI as a teammate is currently only an emerging idea20,21,31, and 
its future development will require advanced definitions, formaliza-
tions, experiments and research progress in multiple disciplines as 
they relate to the design of AI and the study of team work and emergent 
collaboration and adaptation in hybrid teams. A central vision for this 
emerging area is to achieve effective human–AI complementarity in 
dynamic decision-making environments by advancing cognitive AI, 
not only for decision support, but also as a capable and adaptive team-
mate. Although cognitive AI can contribute in various ways, its ability to 
model human reasoning and adapt to a dynamic environment makes it 
especially well suited to collaborative roles that require coordination, 
shared understanding and mutual responsiveness.

AI models of dynamic environments
To deliver decision support, adapt the choice architecture and/or influ-
ence the behaviour of agents in a team, any AI (cognitive or data-driven) 
must maintain accurate representations of the changing environ-
ment. Dynamic decision-making environments are characterized by 
complexity, uncertainty and continuous change over time. In such 
settings, decisions must often be made with incomplete information, 
under time pressure, and in response to evolving goals or external con-
ditions. The environment might be only partially observable, require 
multi-step planning and involve feedback loops in which earlier deci-
sions influence future states. A model of the environment must there-
fore capture temporal dynamics and causal relationships, and the AI 
must be able to adapt to new or unforeseen information. Thus, AI sys-
tems must be updated in real time, accounting for human actions and 
changes in environmental demands. Here we review these capabilities 
in existing AI systems.

Reinforcement learning AI is designed to operate in dynamic 
environments and it is relatively well suited to maintaining a repre-
sentation of such environments. For example, reinforcement learn-
ing agents learn to make decisions by interacting repeatedly with 
an environment80. Reinforcement learning agents take actions and 
observe the outcomes of those actions (in the form of rewards or 
penalties) and maintain a goal to maximize cumulative rewards over 
time. To this end, reinforcement learning agents learn about the reward 
corresponding to different courses of action in the environment (which 
necessitates a certain level of exploration or trial and error), while tak-
ing actions that guarantee high rewards (which necessitates exploita-
tion, or using the information obtained so far to take the action that 
leads to high rewards). Using techniques like Q-learning81,82, reinforce-
ment learning agents gradually improve both their understanding 
of the environment and their decision-making strategy, aiming to 
find an optimal policy that leads to high long-term rewards in the 
environment. These agents maintain a model of the environment 
including the human in it and can adapt their behaviour on the basis of 
the feedback received from human users (through satisfaction scores 
or the rate at which a human follows their recommendations), which 
over time improves their ability to respond appropriately to human 
collaborators. For example, reinforcement learning agents are used 

to help robots to learn to perform tasks while interacting with their 
physical environment, to learn complex behaviours or to adapt to 
changing conditions. These agents enable robots to acquire new skills 
autonomously, such as walking, grasping objects or navigating through 
environments83. Thus, reinforcement learning agents are particularly 
suitable for dynamic, complex environments, including those that 
involve human interactions84, with some important caveats.

At least three factors need to be addressed to achieve competent 
reinforcement learning models of dynamic decision environments. 
One factor is that reinforcement learning agents often require substan-
tial amounts of training data (human interactions and interactions with 
the environment) to learn effectively. In environments in which each 
action has a real-world cost (for instance, resource allocation in disaster 
management), learning from real-world data can be impractical (if the 
data are scarce or expensive), which limits reinforcement learning 
speed and reliability. Second, training reinforcement learning agents 
in high-dimensional environments is exceedingly resource-intensive, 
requiring substantial computational power and time. Third, effective 
dynamic decision-making demands long-term planning: the ability 
to act under uncertainty and to perform well even when rewards are 
delayed or infrequent. In such settings, reinforcement learning agents 
often struggle to learn optimal decision-making policies, because 
their learning is highly dependent on the design, timing and structure 
of the reward function85,86. Crafting effective reward functions typi-
cally requires substantial domain knowledge: an expert understand-
ing of the task, of the environment and of what constitutes desirable 
behaviour87. This domain knowledge is distinct from the knowledge 
in training data, which consists of statistical patterns observed during 
interaction or simulation. Even when domain knowledge is available, 
converting it into rewards that a reinforcement learning agent can learn 
from is often a complex and non-trivial task.

In addition to reinforcement learning, systems that use Bayesian 
inference offer a promising framework for learning in dynamic 
decision-making environments. By continuously updating beliefs 
about the state of the world based on incoming evidence, Bayesian 
methods enable agents to represent uncertainty, adapt to change 
and refine their understanding of the environment over time. For 
example, Bayesian learning from demonstration enables an agent 
to generalize from limited human demonstrations and dynamically 
incorporate new information to improve task performance88,89. This 
probabilistic, data-efficient approach is well suited to dynamic set-
tings, because it supports ongoing learning, targeted information 
gathering by querying the human for the most informative data points, 
and the construction of flexible models of the environment that evolve 
from experience.

However, Bayesian models also face practical challenges, par-
ticularly in specifying prior distributions. A well known issue is that 
poorly chosen priors can lead to biased or unstable inferences, espe-
cially in complex or uncertain environments. Although some existing 
models use human input to calibrate priors, developing a principled, 
generalizable method for doing so remains difficult. This challenge 
is particularly relevant in the context of human–AI complementarity 
in dynamic decision-making, where priors must not only reflect the 
structure of the changing environment, but also align with human 
reasoning and adapt to evolving human inputs. The need for priors 
that are both context-sensitive and cognitively compatible makes 
this an open problem at the intersection of statistical learning and 
human-centred AI. Some models aim to integrate Bayesian approaches 
with reinforcement learning to enhance adaptability and uncertainty 
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in dynamic environments. For instance, techniques like dropout-based 
Bayesian approximation in deep learning demonstrate how uncertainty 
estimates can be incorporated into generative models, enabling more 
robust and calibrated predictions90. Similarly, Bayesian reinforcement 
learning methods emphasize the role of structured priors and inductive 
biases in learning and generalization90,91.

In summary, some data-driven AI systems are appropriate for 
maintaining a dynamic representation of the changing environment. 
But these systems must advance their capabilities to achieve a rep-
resentation of dynamic environments, including reducing the num-
ber of human interactions with the environment required to learn 
about the environment effectively, improving their ability to perform 
long-term dynamic planning in the absence of immediate observations 
of rewards, and defining a theoretical approach for generalizing priors 
for dynamic decision-making tasks.

Necessary AI capabilities
Beyond a model of the dynamic environment, there are other capabili-
ties that cognitive AI and data-driven AI must have to achieve human–AI 
complementarity. Regardless of whether cognitive AI is used for deci-
sion support or as a teammate, cognitive AI must be competent and 
reliable; capable of human-accessible communication; and enable 
flexible interactions with humans and with data-driven AI (Table 1). 
These capabilities are discussed below, where we draw examples and 
implications from research across different types of AI.

Competence and reliability
Data-driven AI can demonstrate competence (the ability to perform 
a task effectively and accurately) and reliability (the consistency of 
performance over time and across tasks) in domains in which decision 
accuracy is easily quantified and optimal solutions are well defined. 
For example, data-driven AI typically performs well in static decision 
tasks that are well structured, have clear objectives and offer large 
datasets for pattern recognition7. These include applications such as 
image classification, optimization problems and data analytics, where 
AI systems can process large amounts of data to identify patterns that 
are often not evident to humans92,93.

However, in dynamic decision-making environments, where accu-
racy is difficult to measure and optimal solutions might not exist, it 

becomes more challenging to assess these qualities. Data-driven AI 
demonstrates low competence in the absence of large amounts of 
data and in dynamic decision-making tasks that involve uncertainty, 
ambiguity, rapidly changing environments, delayed decision effects 
and time constraints94. In such cases, it is especially important for AI 
systems to recognize the limits of their knowledge and determine when 
to defer to human judgement.

Cognitive AI can support the competence and reliability of AI 
systems by applying metrics that are often used to evaluate human 
decision-making in dynamic tasks. These metrics include bench-
marks or comparisons to expert judgements, calculated for each deci-
sion within a sequence95. In addition to outcome-based measures, 
studies emphasize the importance of process metrics, such as the 
sequence and timing of decisions, and the ability to adapt to changing 
circumstances96,97. Similar metrics could be applied to evaluate the 
competence and reliability of cognitive AI itself and to help to deter-
mine when human intervention might be necessary. Determining the 
competence and reliability of AI in dynamic tasks is essential for pro-
moting its adoption in decision support and for ensuring the effective 
use of cognitive AI in team collaboration under dynamic conditions14,98.

Although some AI systems have been created to be competent in 
specific dynamic — and somewhat ambiguous — tasks, they are often 
applicable only to those specific tasks. For example, AI is highly com-
petent in dynamic tasks such as board games99,100, the game Go101,102 
and computer games103. However, an AI system that performs well 
in one task (such as Go) does not perform well in other tasks (such as 
search and rescue operations)104. AI systems are currently created to 
be competent in a particular task configuration but they are not reli-
able, because they cannot easily generalize to new tasks or to changing 
configurations of the same task.

Some cognitive AI systems have aimed to address the character-
istics of dynamic decision-making tasks, demonstrating human-like 
competence in their capability to maintain performance under chang-
ing configurations of the same task105. However, research is required 
to advance the competence of cognitive AI in combination with 
data-driven AI, and to achieve reliability across different tasks106,107.

In summary, current AI systems lack the competence and reliability 
needed for effective human–AI complementarity in dynamic decision-
making. Whereas data-driven AI excels in static, well defined tasks, it 

Table 1 | Requirements for cognitive AI in dynamic environments

Property Description Flooding disaster scenario

Competence and 
reliability

Cognitive AI must maintain high and predictable 
performance in the presence of uncertainty and 
ambiguity, especially when decision rules or metrics 
are not clearly defined, and when data are sparse or 
unavailable. It must also support the development of 
tractable notions of decision quality in dynamic tasks

During a severe flood with disrupted communications, cognitive AI helps 
emergency managers to prioritize evacuation zones despite gaps in sensor data 
and rapidly shifting water levels. It adapts to limited information by using human 
inputs and learned patterns to make consistent recommendations and evaluates 
decision quality based on reducing exposure risk rather than fixed optimization 
targets

Human-accessible 
communication 
capabilities

Cognitive AI must communicate effectively with 
humans through understandable, transparent 
formats. Effective communication includes improving 
uncertainty quantification, enhancing interpretability, 
reducing misleading outputs and tailoring 
communication to different users

In coordinating flood relief, cognitive AI conveys projected inundation 
zones through interactive maps, provides confidence estimates for shelter 
accessibility, and communicates resource deployment options in plain 
language. It gives field responders concise visual cues while offering technical 
justification and uncertainty levels to command centre staff

Flexible interactions Cognitive AI must represent and update models of 
human mental states, predict likely human actions, 
collaborate with data-driven AI systems, and support 
flexible team configurations. It should incorporate 
meta-cognitive processes and enable shared 
decision-making across human–AI teams

When responding to flooding in an urban area, cognitive AI monitors responder 
fatigue and task load, dynamically adjusting its support (for example, by  
proposing reassignment of personnel or shifting from autonomous decision- 
making to human oversight). It integrates with drone-based data-driven AI,  
anticipating human goals (like rescue priority) and adjusting its recommendations 
accordingly to fit evolving team roles
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struggles with uncertainty, with changing conditions and with tasks in 
which optimal solutions are unclear. Cognitive AI offers a promising path 
by incorporating human-centred metrics of competence and reliability, 
but further development is needed to investigate how to generalize 
across tasks and to determine when to defer to human judgement.

Human-accessible communication
To achieve human–AI complementarity in dynamic decision-making 
environments, cognitive AI also needs to provide accessible ways to com-
municate with humans. Effective communication is essential for coor-
dinating actions, sharing intentions and resolving misunderstandings, 
especially in environments in which decisions must be made quickly 
and under conditions of uncertainty. Without clear communication, 
humans might misinterpret or fail to trust AI recommendations, ulti-
mately reducing team performance108. Prior work has proposed various 
approaches to close the communication gap between humans and AI, 
including uncertainty quantification109, explanations110,111, visualizations, 
and other media for communication (such as natural language).

Bayesian approaches112, ensemble methods113 and other tech-
niques114 quantify model uncertainty and are used to represent epis-
temic uncertainty — the uncertainty stemming from limited knowledge 
or information about the system or process in question. Although 
these methods offer a rigorous way to estimate confidence in model 
predictions, they are often computationally expensive and rely on ad 
hoc assumptions (such as the choice of prior distributions), which can 
make their outputs difficult for human decision-makers to interpret 
and rely on115. AI must be capable of conveying uncertainty in ways 
that are understandable to users, providing intuitive explanations or 
calibrated confidence estimates116. Research shows that communicat-
ing uncertainty clearly (through confidence intervals or probabilistic 
forecasts) can improve human trust, calibration and decision quality, 
particularly in high-stakes or ambiguous environments16. Thus, effec-
tive uncertainty representation might not only support transparency 
but also enhance AI adoption in human–AI teams.

Another approach to human-accessible communication is algo-
rithmic transparency, including explainability and interpretability62,98. 
Explainability refers to the ability of AI to make its internal processes 
and decision logic understandable to human users, and especially how 
specific inputs influence outputs. Doing so is particularly important in 
complex models like deep neural networks, where the reasoning behind 
predictions is often opaque117. Explainability enables users to assess 
how and why a model arrived at a decision, which in turn supports trust, 
accountability and appropriate reliance on AI systems. Interpretability 
refers to the degree to which a human can understand the cause of a 
decision made by an AI model62. Although related, explainability goes 
a step further by providing a post hoc explanation that helps users to 
understand the reasoning behind the model’s output, even when the 
model itself is too complex to interpret directly.

Given the black-box nature of many modern AI models (such as  
deep learning models with millions of parameters), a substantial body 
of research has proposed approaches for explainability98,110,117–119. 
For instance, local explanations aim to explain how an AI model 
arrived at a specific decision or prediction, identifying which fea-
tures contributed most to an individual decision, making complex 
models more transparent120,121. Such techniques can improve human 
understanding of AI predictions and foster trust, which in turn sup-
ports better decision-making in collaborative human–AI settings120,121. 
For example, in medical diagnosis, local explanations can show why an 
AI predicted a specific disease for a specific patient by highlighting the 

most influential clinical features. However, the fidelity and useability 
of explainability methods have not been adequately established and 
they are being actively researched122.

Other research suggests that it is important to create mod-
els that are interpretable in the first place and avoid the need for 
explainability118. Creating interpretable AI may involve incorporating 
human feedback to help to adapt and improve AI behaviour in ways 
that better align with human expectations and support trust over 
time84. Moreover, cognitive AI is inherently interpretable because it is 
built on transparent, theory-driven models of human reasoning and 
decision-making processes. These structured representations make it 
easier to trace how inputs lead to outputs, and they can be integrated 
with data-driven AI to enhance both explainability and interpretability.

Visualizations are an important form of structured explanations 
that make complex model behaviour more accessible to human users123. 
Visualizations like heat maps, feature importance graphs and decision 
trees help users to understand how input features influence model 
outputs124. For example, sensitivity analysis shows how model pre-
dictions change in response to variations in the input features, high-
lighting which variables matter most124. These visual tools support 
communication by making model reasoning more transparent, which 
in turn helps users to interpret, evaluate and trust AI recommendations.

Natural language is another human-accessible form of commu-
nication, which can be tailored to the needs of different human users. 
For example, a doctor might need a detailed, technical explanation 
of an AI-provided diagnosis including citations to reputable sources, 
whereas a patient might only need a simplified version (without tech-
nical jargon) to understand the diagnosis. Large language models 
(LLMs), a form of generative AI, can engage in natural language com-
munication, providing a smooth integration with humans125. However, 
LLM agents can produce content that is factually incorrect, irrelevant, 
incoherent or misleading126,127. Because LLMs generate content based 
on statistical patterns rather than true understanding, they can pro-
duce outputs that seem plausible but are not appropriate128. Human 
over-reliance on such outputs can lead to costly mistakes. Moreover, 
it is often challenging for human teammates to understand why a gen-
erative AI agent makes certain decisions or recommendations owing 
to the opacity of the agent’s decision-making process and internal 
models of the environment84. This lack of interpretability can pose 
challenges for human communication, in cases where understanding 
the rationale behind the teammates’ decisions is critical for trust and 
appropriate reliance. These issues are specific to current LLMs and 
other generative AI approaches; and it might be possible to develop 
other forms of AI that communicate in natural language using struc-
tured, rule-based or cognitively grounded models that provide more 
reliable and interpretable outputs (for example, ref. 129).

In summary, cognitive AI needs to communicate in ways that are 
accessible to humans to enable human–AI complementarity. Doing so 
will require reduced computational costs and ad hoc assumptions for 
uncertainty quantification, improved approaches for explainability 
and transparency, and approaches that include human input to adapt 
and meet human expectations. In particular, LLMs must become more 
reliable in the accuracy of their responses and more adaptive to indi-
vidual users, tailoring their communication style, content and level of 
detail to suit different users and contexts.

Flexible interactions
Humans, cognitive AI and data-driven AI must interact to reach deci-
sions, and the nature of these interactions depends on how cognitive 
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AI is configured within the team. Cognitive AI can take on different 
roles, such as functioning as a decision-support tool or as a collabora-
tive teammate, depending on the task demands and level of autonomy 
assigned. These are distinct use cases, but they do not necessarily 
require entirely separate systems; rather, a well designed cognitive AI 
system should be flexible enough to support both roles, adapting its 
level of engagement, communication and autonomy to fit the needs 
of the human team and the decision context.

A common configuration of human–AI interaction involves a sin-
gle human working with a single AI agent. Even in this configuration, 
there are multiple ways in which humans and AI (whether cognitive 
or data-driven) can interact. Cognitive AI can be configured to act 
either for decision support, by using knowledge tracing and providing 
data-driven AI with a model of the human’s mental state, or as a collabo-
rative teammate alongside the human. In either role, there are multiple 
ways in which humans and AI (whether cognitive or data-driven) can 
interact16. First, AI can act as an advisor to the human, and the human 
then makes the final decision16. Second, humans can provide oversight 
of the AI decision130,131. Third, the human and the AI can make their own 
decisions independently and rely on a predefined aggregation function 
(for instance, a simple average, an uncertainty-weighted average, or an 
independent human referee) to combine those decisions into a final 
call16,26. Fourth, the human and the AI make their own decisions inde-
pendently, but the AI additionally produces some auxiliary material 
characterizing its decision for the human (such as through explana-
tions or uncertainty quantifications)132. This list is not an exhaustive 
set of possibilities even if we limit our attention to a single AI and a 
single human. In more complex human–AI teaming scenarios (Fig. 1c) 
that involve multiple humans and multiple cognitive AI agents col-
laborating on dynamic decision tasks, these interactions demand 
even greater flexibility. They require the team to continuously adapt 
roles, communication patterns and decision strategies to changing 
conditions and task requirements.

In summary, effective human–AI complementarity requires flex-
ible interaction among humans, cognitive AI and data-driven AI, with 
cognitive AI configured to serve either as a decision-support tool or 
as a collaborative teammate. The structure of these interactions can 
vary widely, even within simple setups such as a single human working 
with a single AI agent. Interaction modes include advisory roles from 
AI without deciding, human oversight of AI decisions, independent 
decisions with aggregated outputs, and explanation-based support 
to inform human judgement. In more complex team settings that 
involve multiple humans and cognitive AI agents, these interactions 
must be more flexible and adaptive, requiring the team to adjust roles, 
communication styles and coordination strategies in real time as task 
demands evolve.

Realizing complementarity with cognitive AI
Initial efforts to develop cognitive AI for human–AI complementarity 
are ongoing and there is much work to build on. Existing efforts can 
be grouped broadly into three areas. First, researchers are integrating 
cognitive architectures with machine learning to create systems that 
are both human-aligned and computationally adaptive. Socio-cognitive 
frameworks model human roles, mental states and team structures to 
enable AI to function as collaborative teammates133,134; resource-rational 
approaches account for cognitive limitations by linking high-level 
goals to algorithmic constraints135. Second, a growing body of work 
focuses on fusing cognitive models with generative AI to combine the 
interpretability of human-like reasoning with the scalability of modern 

machine learning. These efforts include embedding generative mod-
els into cognitive architectures to support complex socio-cultural 
reasoning136, enhancing cognitive models of decision-making with 
data-efficient generative techniques137, and developing systems 
capable of integrating structured mental representations and adap-
tive generative mechanisms138. Third, cognitive AI is being applied 
to real-world tasks such as cyber defence, user training and behav-
ioural intervention139. These systems simulate human responses to 
threats, anticipate behaviour in social-engineering scenarios, and 
design effective decision environments, which demonstrates their 
potential to enhance decision-making and collaboration in dynamic, 
high-stakes contexts140. Collectively, these efforts mark foundational 
steps towards building cognitive AI systems that support effective and 
adaptive human–AI teaming.

Despite these promising initial efforts, current approaches to 
developing AI for human–AI complementarity remain limited in sev-
eral critical ways. Many systems focus narrowly on either emulating 
human behaviour or on optimizing task performance, without fully 
capturing the dynamic, individualized and context-sensitive nature of 
human cognition. There is often a lack of integration between cognitive 
representations and adaptive capabilities, resulting in AI systems that 
are either too rigid to generalize or too opaque to support effective col-
laboration. The vision for realizing human–AI complementarity with 
cognitive AI will address the ability to represent, adapt and reason 
with a human’s mental model over time, which can be used either 
to emulate human behaviour or to perform knowledge tracing of a 
user’s decisions over time to predict their future actions77. To serve 
this purpose, cognitive AI must be grounded in cognitive science prin-
ciples, incorporate a certain amount of flexibility for variability in 
human behaviour, and have some level of autonomy in representing 
and updating models of the human and environment.

Cognitive science fundamentals
Cognitive AI cannot be developed simply by scaling up data-driven AI 
with more computing power or larger datasets104. Instead, cognitive 
AI requires fundamentally different architectures, which are grounded 
in cognitive science and aim to model the processes underlying human 
memory, learning and decision-making77,141. Building cognitive AI 
systems is a first step towards human–AI complementarity for dynamic 
decision-making34,77.

An initial approach to generate cognitive AI is using cognitive archi-
tectures that intend to simulate human thought processes in a unified 
approach41. For instance, ACT-R (adaptive control of thought-rational) 
and SOAR (state, operator and result) are two cognitive architectures 
that represent human perception and action, memory, learning, 
problem-solving, decision-making and other capabilities142,143. The goal 
of cognitive architectures is to provide a comprehensive computational 
model of the human mind39 and can inform the development of com-
putational systems that align with human information processing by 
modelling key cognitive functions. When integrated with data-driven 
AI such as generative models or deep learning, these cognitive systems 
can be enhanced with greater scalability, pattern recognition and 
adaptability to complex environments137,144. This hybrid approach 
combines the structured reasoning and interpretability of cognitive 
architectures with the flexibility and data efficiency of data-driven AI.

Existing cognitive science approaches to modelling aspects of 
human cognition — particularly human decision-making in dynamic, 
uncertain environments — can be broadly classified into heuristic- 
based and learning-based systems. In dynamic decision-making 
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environments, humans often rely on cognitive heuristics: simplified 
decision rules that allow for efficient decisions without requiring full 
exploration of the environment. Heuristics reduce cognitive load 
by simplifying the processing of large amounts of information and by  
offering practical strategies for managing uncertainty in complex 
tasks145. Examples include heuristics like ‘win-stay, lose-shift’, the 
‘hot-stove effect’ or ‘probability matching’, which guide behaviour on 
the basis of recent outcomes or the frequency of observed events146,147. 
However, heuristics are inherently imprecise and are often described 
descriptively rather than formalized computationally148. To evaluate 
their effectiveness in dynamic decision-making tasks, formal com-
putational models of these heuristics must be developed and tested 
for complex, evolving tasks148. Although many researchers have pro-
posed formal models of heuristics, such as lexicographic rules149, or 
elimination-by-aspect150, these models are relatively rare in psychology, 
especially in applications to complex, dynamic environments where 
human decision-making unfolds over time151,152. For the development of 
cognitive AI, heuristics offer valuable insights into human-like strate-
gies, making them an important foundation for building interpretable 
and adaptive AI systems.

Cognitive learning agents are intended to learn sequential deci-
sions from experience by updating their behaviour based on feedback 
over time. These agents are often grounded in reinforcement learning 
or Bayesian learning frameworks, which provide mechanisms for adapt-
ing to dynamic environments85,91. For example, a key distinction in rein-
forcement learning between model-free and model-based approaches 
illustrates two different strategies for dynamic decision-making153. 
Model-free agents learn action values directly from experience with-
out constructing an internal model of the environment, whereas 
model-based agents build and update such a model to simulate 
future outcomes, so that in this way their process resembles deliber-
ate decision-making. This distinction captures important aspects of 
human cognition and serves as a foundation for developing cogni-
tively plausible learning agents. Other cognitive learning agents aim 
to explain the cognitive process by which humans make decisions in 
dynamic tasks96. For example, instance-based learning theory is an 
approach that aims to mimic human decision-making in dynamic tasks 
by using past experiences to inform current decisions77,96. It posits that 
people rely on a combination of specific instances or examples from 
memory, rather than on abstract rules or generalized knowledge, to 
make decisions in dynamic and uncertain environments. This approach 
aligns with how humans often recall and use past experiences in real life 
to solve new problems154. Cognitive AI systems can rely on these com-
putational learning models of human-like cognition to represent the 
human’s mental model of the dynamic environment and the human’s 
own intentions with regard to decision-making. Taken together, these 
learning-based approaches offer a promising foundation for building 
adaptive, interpretable and human-aligned cognitive AI systems that 
can function in dynamic decision settings.

Role flexibility
Cognitive AI can take definite roles in a team and interdependencies 
with other team members can be clearly defined, in order to pursue 
collaboration towards a common goal. Cognitive AI can be used by 
powerful data-driven AI to personalize and time the decision support 
to the human65,66,155. Furthermore, cognitive AI can also be a teammate 
to humans, contributing to dynamic tasks as part of a team in which 
creativity, collaboration and diverse actions lead to better outcomes. 
A team configuration defines the roles and interdependencies of the 

human and the AI in a collaborative team, and it should leverage the 
complementary strengths of humans and AI to optimize the team 
decision process.

AI that is optimal for independent decision-making might not be 
the best teammate27,156. To use cognitive AI as a teammate, AI systems 
need to adjust their decision support to align with both individual and 
collective human mental models. To ensure effective collaboration in 
the team, there must also be a clear mechanism for identifying and 
resolving conflicts or discrepancies between human judgements 
and cognitive AI decisions. For example, human–AI complementa-
rity can emerge when cognitive AI approaches a task using a differ-
ent strategy than the human teammate157. In such cases, rather than 
requiring perfect agreement, the system can flag the divergence, 
explain the reasoning in human-understandable terms, and support 
the human in reevaluating their assumptions. Doing so enables both 
agents to benefit from their distinct perspectives, which leads to more 
robust decisions that reflect both experience-based intuition and 
systematic reasoning.

Given the high uncertainty and unpredictability of dynamic 
decision-making tasks, it is important that interactions between 
humans and AI are flexible, so that humans can adapt roles or override 
AI when needed. A flexible configuration will also enable the human to 
adjust the AI role as their trust improves or assign tasks to the teammate 
that is best equipped to handle the task.

Autonomy and mental models
High levels of autonomy and self-directed behaviour are desirable in 
cognitive AI. Autonomy is needed to enable the AI to act as a teammate 
and collaborate with human partners in complex, rapidly changing 
scenarios. Cognitive AI would complement human capabilities by 
adapting to new information as it arrives from the environment thanks 
to its dynamic model of the environment and the dynamic human–AI 
mental model. When working in a team, cognitive AI should be capable 
of acting autonomously and working in capacities similar to those of 
their human partners to collaborate towards a common goal.

Cognitive AI would maintain a mental model of the human’s desires 
and preferences that could be used to anticipate the human’s needs and 
challenges, interpret their intentions, and explain human behaviours. 
Shared mental models are the knowledge structures that are com-
mon to all members of human teams. These shared mental models 
enable humans to collaborate and coordinate effectively in dynamic 
environments158. Humans create, store and manipulate the internal 
models of the dynamic systems with which they interact — such as 
flight operations in aviation, command and control systems in military 
settings, or emergency response procedures in crisis management —  
as team members must continuously update their understanding of 
goals, roles and environmental conditions to act effectively as a unit159. 
Humans also develop a mental model of their AI partners, how they work 
and the expectations regarding their behaviour21. These human–AI 
shared mental models are not static, but rather evolve dynamically 
as team members interact and adapt to change with technology160.

However, the shared mental model formed between humans and 
AI, which encompasses the dynamic system, team structure, team 
roles, individual capabilities and other relevant features, can have a 
crucial role in enabling collaboration with cognitive AI in team set-
tings (Fig. 1c). To function effectively within a human–AI team, cog-
nitive AI will need to understand the shared team goals and its own 
role within the team. One formulation of this concept originates in 
studies of collective intelligence and is captured by the transactive 
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systems framework, which can be formalized for computational 
implementation78,79,133. In this framework, team members (human or 
artificial) maintain awareness not only of their own knowledge and 
capabilities but also of what others in the team know and can do. This 
‘who knows what’ structure enables efficient information sharing, task 
allocation and coordination. Applying this framework to AI systems 
means designing them to represent and update knowledge about their 
teammates’ expertise, responsibilities and roles. For cognitive AI, doing 
so could involve creating internal models of human teammates’ mental 
states and capabilities, enabling the system to anticipate when to offer 
support, when to defer and how to contribute more effectively to col-
lective goals. Embedding such transactive memory mechanisms into 
cognitive AI would enhance its ability to act as an integrated, adaptive 
member of human–AI teams.

The concept of a shared mental model is related to theory of mind: 
the human capability of understanding the beliefs and desires of others. 
Computational models of theory of mind have been of great interest in 
the computational cognitive sciences, where they have been used to 
predict human actions and assist in collaborative tasks135,161–163. Models 
such as Bayesian theory of mind161,162,164 aim to infer a human’s mental 
state from observed behaviour, enabling artificial agents to adapt their 
responses in socially and contextually appropriate ways. Bayesian mod-
els have also been extended to support sequential decision-making 
by incorporating hierarchical structures that reflect how knowledge 
might be organized across levels of abstraction. In hierarchical Bayesian 
models, the learning process occurs at multiple levels of abstraction, 
such as estimating low-level task parameters for specific actions 
and higher-level strategies. This layered representation enables the 
model to adapt flexibly to new and rapidly changing environments 
by generalizing from past experience while remaining sensitive to 
context-specific variations165.

Human theory of mind involves multiple cognitive and social 
capacities and further specificity and formalization of these capacities 
are needed to develop them effectively in AI systems. For example, 
social intelligence capabilities can be designed to enable AI to 
engage human users in more natural and contextually appropriate 
conversations166. Similarly, techniques such as affective computing 
and sentiment analysis can help to advance cognitive AI by enabling it 
to detect human emotional states from text, voice or facial expressions 
and adjust its responses accordingly to support more empathetic and 
effective interaction167.

Cognitive AI should help to maintain a dynamic mental model 
of the environment that reflects how humans perceive, interpret and 
reason about complex environments over time. Unlike data-driven 
AI models that often represent the environment statistically or algo-
rithmically, a cognitive AI system must capture the mental model as 
experienced by the human, including key decision-making variables, 
perceived cause-and-effect relationships, feedback loops that repre-
sent causality, and emergent dynamics within the environment168,169. 
Moreover, cognitive AI should be capable of adapting to novel tasks and 
personalizing its reasoning and support according to its understanding 
of each human teammate’s goals, prior experiences and preferences. 
This personalization enables more effective and context-sensitive col-
laboration within human–AI teams, by providing data-driven AI with 
predictions about human decisions so that it can adjust the recom-
mendations, environment and interventions according to the chang-
ing preferences of humans over time65,66,155,170. This capability could be 
realized through techniques such as reinforcement learning, in which 
the system learns optimal actions by receiving feedback from human 

users, and meta-learning, in which the system learns to learn from a 
variety of tasks171. However, in contrast to reinforcement learning and 
other data-driven approaches, cognitive AI can generate theory-driven 
predictions even in the absence of empirical training data172,173. These 
predictions are possible because cognitive models are grounded in 
formal theories of human cognition that describe how decisions are 
made on the basis of mechanisms such as memory retrieval, similarity 
and experience-based reasoning. For example, instance-based learning 
models can make accurate predictions about human decision-making 
without being trained on human data, and use cognitive principles to 
simulate sequential decisions173.

In summary, the development of cognitive AI represents a trans-
formative step towards creating systems that can either emulate 
human decision-making or function as teammates alongside humans. 
By integrating insights from cognitive science and leveraging advanced 
data-driven AI, these systems will be able to emulate human-like 
thought processes, adapt dynamically to changing environments, 
and maintain the shared mental models that are critical for effective 
collaboration. Beyond merely responding to commands, cognitive AI 
will predict human needs, engage in meaningful interactions, and assist 
in decision-making, all while fostering trust and transparency. This 
ambitious vision seeks to merge theoretical foundations with practical 
innovations, ensuring that cognitive AI enhances human capabilities 
and complements human judgement in complex, dynamic scenarios. 
These ideal features of cognitive AI are applicable to any dynamic 
decision-making tasks174, such as disaster management (Box 1).

Ethical considerations and risks
The development of cognitive AI for human–AI complementarity 
requires careful consideration of human values. Data-driven AI sys-
tems lack the ability to reason about ethical and societal implications 
of their decisions in novel environments, but this ability is key to the 
trustworthiness of AI teammates175,176. Moreover, cognitive AI systems 
can have major long-term ramifications for society; therefore, responsi-
ble conduct of research in this field requires careful consideration of the 
societal effect of deploying such AI at scale in consequential domains.

Ethical competence
Some of the key ethical principles that are usually invoked when AI 
is used to make or assist high-stakes decisions are beneficence, fair-
ness and justice, transparency and privacy177. Accounting for these 
principles is the minimum requirement for ethical competence — the 
ability to identify and understand relevant values and ethical principles, 
recognize ethical conflicts and make decisions that align with those 
principles and values. Data-driven AI agents lack capabilities for moral 
agency and responsibility and cannot take intentional action35, but our 
vision of cognitive AI requires ethical competence.

Beneficence requires establishing that cognitive AI contributes 
positively to the life plans and wellbeing of individuals and communities 
who are affected by it while upholding their fundamental rights178,179. 
For example, beneficent cognitive AI should have an accurate mental 
model of their teammates— including what contributes to the wellbeing 
of their human teammates and how the AI can benefit the teammates.

Fairness and justice prohibit discrimination against individuals or 
groups based on characteristics such as race, gender, age, socioeco-
nomic status or other protected attributes180,181. To be considered fair, 
cognitive AI should have an accurate model of the decision-making envi-
ronment in which it operates, including the social and political context 
that renders certain individuals and communities disadvantaged.
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Transparency requires clarity and openness surrounding decisions 
and requires that this information is provided in an accessible manner 
to AI stakeholders, including developers, users and regulators119,182. 
Human-accessible communication and flexible interactions with 
human teammates are a hallmark of ethically competent cognitive AI.

Finally, developing ethically competent cognitive AI requires 
vast amounts of personal and sensitive data from human teammates 
and the environment. Privacy requires that these data are protected 
in compliance with privacy rights and to maintain confidentiality, 
security and appropriate use183. Trustworthy cognitive AI agents 
must be able to identify and protect sensitive data in a contextually 
appropriate manner.

Researchers have attempted to design data-driven AI that is 
compliant with the above values, although different stakeholders 
might prioritize these values differently depending on the context184. 
For example, AI developers tend to prioritize values like transparency 
and technical robustness, whereas members of the public are more 
likely to emphasize fairness and protection from harm184. Furthermore, 
there are several barriers to operationalizing these values in prac-
tice, including a lack of organizational incentives and accountability 
structures, misalignment between ethical goals and business metrics, 
limited resources and tooling for ethical AI development, and insuffi-
cient cross-functional collaboration. Even when practitioners are moti-
vated to build responsible AI, these structural and cultural challenges 
within organizations often prevent meaningful change. Addressing 

these barriers is essential before ethically competent cognitive AI 
systems can be developed185.

Long-term ramifications
If not designed and deployed carefully, cognitive AI presents substantial 
long-term risks and ramifications for human society. Many of these con-
cerns are relevant for data-driven AI agents, even if they do not emulate 
human cognition177,185. But cognitive AI that closely emulates human 
capabilities exacerbates these risks because such systems might be 
perceived as more trustworthy, leading to overreliance, misinterpreta-
tion of intent and diminished human oversight when cognitive AI acts in 
a fully autonomous manner. Moreover, the ability to mimic human-like 
reasoning can obscure accountability and raise more acute ethical 
concerns around manipulation, bias replication and decision opacity.

Training and deploying all kinds of AI consumes vast amounts of 
energy and the increased demand for powerful processors and data 
centres could result in substantial environmental degradation, includ-
ing deforestation, water pollution and habitat destruction186,187. Also, 
AI that is capable of performing many complex tasks as efficiently 
as humans without suffering from the same physiological limita-
tions and psychological biases could reduce the demand for human 
labour and change the nature of work188,189. It is also possible that human 
decision-makers could become overly dependent on cognitive AI190,191, 
leading to a decline in human critical thinking and problem-solving 
skills192. For instance, as people become less accustomed to storing and 

Box 1 | Human–AI complementarity in a disaster management scenario
 

This case study outlines the ideal capabilities of cognitive AI in a 
dynamic decision-making context, using the example of a major 
urban flood. These capabilities demonstrate how cognitive AI 
could support human–AI complementarity through autonomy, 
communication, adaptation and social understanding.

Autonomous operations and self-directed behaviour
	• Monitor environmental and sensor data (such as rainfall, river 
levels and road closures) to detect flood risks in real time

	• Assess the vulnerability of affected areas and predict the effect  
on infrastructure and population

	• Develop evacuation plans and direct autonomous vehicles to 
transport at-risk residents

	• Coordinate drone and robot deployment to distribute emergency 
supplies such as water, medical kits and food to stranded 
populations

	• Initiate structural assessments and coordinate robotic repairs 
to critical infrastructure, such as bridges or levees, when human 
access is unsafe

Human-like communication with diverse users
	• Communicate with the public using multimodal methods, 
including spoken language, text messages, visual displays 
and social media updates

	• Provide clear and adaptive messaging that varies in technical 
detail depending on the audience (for instance, for emergency 
responders, government officials or local residents)

	• Broadcast evacuation updates across multiple platforms (such as 
mobile alerts, radio and social media) to maximize reach

	• Engage in two-way communication, enabling residents to report 
their locations, health status or access needs, which cognitive 
AI uses to adjust evacuation routes and supply distribution in 
real time

Social intelligence, personalization and shared 
mental models

	• Personalize evacuation instructions by accounting for 
household characteristics (such as age, mobility and access 
to transportation)

	• Tailor alerts and resources for vulnerable groups (such as older 
people, people with disabilities or non-native language speakers)

	• Prioritize the deployment of emergency services to densely 
populated or high-need areas based on social, geographic and 
economic data

	• Plan infrastructure recovery efforts by estimating the social 
and economic impact of damage, and scheduling repairs 
accordingly

Real-time adaptation to a changing environment
	• Dynamically update its mental model of the disaster as new 
information (such as weather forecasts or floodwater movements) 
becomes available

	• Reassign response resources, such as drones or rescue teams, 
based on shifting conditions, such as a levee breach or newly 
flooded area

	• Generate detailed, up-to-date damage assessments using aerial 
drone footage and sensor data, supporting rapid decision-making 
by emergency planners

http://www.nature.com/nrpsychol


Nature Reviews Psychology

Perspective

retrieving information themselves, this process could weaken memory 
retention and recall abilities over time193. Furthermore, as cognitive AI 
requires the maintenance of an accurate model of humans, these sys-
tems will need to monitor human decision-makers in real time, leading 
to increased surveillance, micromanagement and potentially manipu-
lation. Over time, human decision-makers might feel a loss of control or 
agency in their work, leading to disengagement and dissatisfaction194.

Researchers and developers of cognitive AI must be cognizant of 
the above issues and proactively seek to mitigate them to ensure that 
their work serves humanity in the long term and does not create such 
unintended, yet serious, risks. Accounting for the ethical and long-term 
societal implications of developing highly capable AI is particularly 
critical if it is to be deployed at scale in high-stakes domains. In addi-
tion to the widely applicable issues discussed here, real-world evalu-
ation and deployment requires domain-specific ethical and societal 
considerations to be accounted for. For instance, in dynamic disaster 
management scenarios, cognitive AI systems that assist with evacua-
tion planning or resource allocation must be designed to avoid rein-
forcing pre-existing social inequities, for example, by ensuring that 
marginalized communities are not deprioritized owing to biased data 
or assumptions embedded in the model. Researchers must pay special 
attention to justifying any claims of generalizability of their findings 
to other domains.

In conclusion, although this Perspective focuses primarily on 
the computational and cognitive foundations required to enable 
human–AI complementarity, we acknowledge that the development 
of autonomous cognitive AI systems raises important ethical ques-
tions. The increasing sophistication of AI systems that aim to emulate 
aspects of human cognition, such as reasoning, memory and learning, 
blurs the boundaries between tool and collaborator and demands 
careful ethical scrutiny195. Questions about accountability, agency 
and the moral status of AI systems arise when these systems operate 
with high autonomy and social intelligence, particularly in high-stakes 
domains. Although our goal is not to replicate human consciousness or 
identity, but to functionally model cognition for collaborative utility, 
we recognize that such capabilities might elicit anthropomorphic 
perceptions and expectations that have real social and psychological 
implications45,46. A comprehensive ethical analysis of these issues is 
beyond the scope of this paper, but cognitive AI development should 
be accompanied by ongoing, interdisciplinary discussions that include 
cognitive scientists, ethicists and policymakers. We hope that our work 
contributes to grounding those discussions in both technical feasibility 
and theoretical clarity, expanding the space of ethical inquiry around 
human–AI interactions.

Conclusions
We have described a path towards human–AI complementarity in 
dynamic decision-making environments, where cognitively grounded 
AI is critical to enhancing human capability through integration with 
data-driven AI technologies. Realizing this vision will require sustained 
collaborative efforts across disciplines. We identify four key areas for 
immediate action: developing infrastructure, advancing cognitive AI 
capabilities, empirically evaluating of human–AI complementarity, 
and addressing the ethical and societal implications of cognitive AI.

First, there is an urgent need for open-source simulation platforms 
that support cognitive AI research and evaluation of human–AI teams 
in varied, interactive decision-making contexts. Existing platforms 
often lack support for multi-agent hybrid human–AI interaction or 
are tailored to narrow use cases196–198. More flexible, general-purpose 

environments are needed to test, refine and compare cognitive AI 
models in dynamic, team-based scenarios199,200.

Second, research must continue to enhance both the cognitive 
plausibility and adaptive functionality of cognitive AI systems. This 
includes progress in cognitive architectures, computational theories 
of human decision-making and hybrid models that combine symbolic 
reasoning with data-driven learning. Especially promising are adaptive 
mechanisms that infer human mental models and tailor AI behaviour 
accordingly in real time65,66,71,155.

Third, experimental studies are needed to assess how cognitive AI 
systems function in team settings with human collaborators. Current 
research often relies on ‘Wizard of Oz’ methods, in which a human 
secretly controls the AI behind the scenes to simulate advanced capa-
bilities that AI does not yet fully possess, or uses very simplified sce-
narios with clearly defined options and static decision options that do 
not reflect the ambiguity, time pressure and interdependence typical 
of real-world settings4,31,201,202. Although such methods have enabled 
researchers to study human responses to future AI behaviour and are 
valuable for isolating variables or testing early hypotheses, they might 
not capture the full range of challenges and dynamics that emerge in 
authentic human–AI collaboration. As a consequence, there remains 
a critical gap in understanding how cognitive AI systems perform in 
complex, high-stakes and evolving team environments. Future studies 
should test real cognitive AI agents across tasks, measuring outcomes 
such as decision quality, user confidence and collaborative fluency, 
particularly in high-stakes, dynamic environments.

Fourth, as cognitive AI systems grow more capable, understand-
ing their social and ethical effects has become vital. Although existing 
research has begun to explore trust, acceptance and moral tradeoffs 
within human–AI interactions180,183,203, the field lacks solid research 
on how cognitive AI might influence ethical reasoning or long-term 
human wellbeing. For instance, a cognitive AI system used in healthcare 
resource allocation could influence an emergency manager’s ethi-
cal decisions by consistently framing allocation choices in ways that 
prioritize efficiency over fairness, potentially reshaping the human’s 
moral reasoning over time. These dimensions — such as influence on 
human values, fairness and long-term dependence — must be integral 
to system design and evaluation.

By addressing the above challenges, the field can move towards truly 
complementary human–AI teams that can improve decision-making 
while upholding human values. The ultimate goal should not only be 
more effective decisions, but also systems that protect, enhance and 
empower human agency and wellbeing in complex environments.

Published online: xx xx xxxx
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