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As artificial intelligence (Al) becomes increasingly integrated into
complex decision-making environments, there is agrowing need to
develop Al systems that complement human capabilities. Aland humans
offer distinct strengths: Al excels at processing large datasets, identifying
statistical patterns and optimizing predefined objectives, whereas
humans are skilled at navigating uncertainty, novelty and interpersonal
challenges. The synergy between humans and Al is particularly vital

in dynamic decision-making domains — such as disaster response
situations — in which rapid analysis of Al results must be balanced with
humanjudgement and ethical considerations. In this Perspective, we
provide a conceptual framework to integrate human decision-making
with Al, focusing on cognitive Al: acomputational approach that models
human cognitive processes to create Al systems thatlearn and make
decisions in ways similar to those of humans. We discuss the elements
and necessary capabilities of cognitive Aland how to realize human-Al
complementarity in decision-making while considering ethical risks.

By advancing these areas, researchers can lay the groundwork for
adaptive and cognitively grounded human-Al teamwork thatis aligned
with humanvalues and goals.
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Perspective

Introduction

Humans make thousands of decisions per day, from trivial choices — like
what movie to watch — to very complex and consequential choices —
like what cancer treatment to take. Some of those decisions are static,
meaning that the individual needs to make asingle decisionin a steady
environment. Examples of such decisions are picking a name for a
newly born child or an insurance plan from a fixed set of options.
However, many decisions are dynamic in nature: the environment
changes autonomously over time, the decision-making task itself
might evolve — possibly in response to previous decisions — and the
decision-maker can learn from and adapt to previous observations.
For example, during an emergency response operation, a firefighter
conducts real-time assessment of the situation and adjusts their actions
based on rapidly changing conditions in the world'. As in this exam-
ple, dynamic decision-making involves making a sequence of interde-
pendent decisions in a constantly evolving environment®. In dynamic
decision-making, humans often face multiple practical constraints —
suchastime pressure, workload and limited resource availability — that
complicate decision-making’.

Data-driven Al systems play an essential part in supporting
dynamic decision-making in many domains*°. These computational
models leverage vast amounts of data to learn and make predictions
by identifying key patterns through statistical modelling®’. Some-
times, full automation (systems that operate without humaninterven-
tion) of decision-making is feasible and effective with data-driven Al.
Forinstance, data-driven Al systems can make autonomous decisions
inonline advertising or by finding and displaying the shortest path to
a destination on a virtual map. However, in many dynamic tasks, full
automationis not possible or appropriate because data-driven Al can
fail when faced with novel, rapidly changing conditions, ambiguity or
incomplete information — in such cases, human input and oversight
are necessary®. For example, human oversight is often necessary to
ensure quality control and compliance with legal requirements, espe-
ciallyincritical tasks like medical diagnosis®'°. Additionally, tasks that
involve societal tradeoffs — such as pre-trial criminal risk assessments
of defendants — require human professionals to adhere to ethical
norms and involve complex judgements that are currently beyond the
reach of Al predictions™ ™,

Thus, indynamic decision-making tasks, data-driven Alis mostly
used as a tool that takes advantage of the power of computing and
data-driven automation to provide recommendations and advice to
humans, who make the final decisions™. Examplesinclude Al-powered
socially assistive robots for elderly care, nursing and healthcare',
Current data-driven Al systems have major difficulties in adapting
to dynamic environments, accounting for human input in real time,
and automatically adjusting their recommendations on the basis of
changing goals, shifting contexts, user feedback and evolving patterns
in the environment”.

Despite these limitations, there is a vision of a future in which
Al is not a mere tool or assistant but a member of a team including
human decision-makers?* . In this vision, humans and Al form a syn-
ergistic relationship known as human-Al complementarity, in which
both can operate at comparable levels of autonomy and complement
each other’s strengths and weaknesses so that they arrive at a more
informed and balanced decision together than either could alone.
Autonomy refers to the capacity of an agent (human or artificial) to
make and act on decisions independently, without external control.
Levels of autonomy describe the extent to which an agent acts with
external intervention, ranging from full intervention (no autonomy)

tono external intervention (fullautonomy). For example, inamedical
decisionsituation, a physician and a diagnostic Al system might oper-
ate at comparable levels of autonomy during the diagnosis and treat-
ment of a patient. The Al systemindependently analyses the patient’s
medical history, laboratory results and imaging scans to identify a
potential diagnosis and treatment recommendations, while the physi-
cian evaluates the patient’s symptomes, asks clarifying questions and
weighs up the emotional and social factors. Together, they arrive at a
more informed decision than either could alone.

The goal of human-Al complementarity is to combine human
strengths with the computational power of Al to produce better deci-
sions than either the humans or Al could achieve independently®*°,
However, current human-Al systems often fail to achieve true comple-
mentarity, and the reasons for this shortfall remain unclear®. Achieving
human-Al complementarity will require addressing a complex set of
factors, andintegrating different perspectives and potential alternative
approachess,lé,zo,sl—ss‘

Ofthe possibleapproachestoachieve human-Alcomplementarity,
one with great promise is cognitive Al. Cognitive Al aims to emulate
and simulate the human mind as an information-processing system.
Toemulate meanstoreplicate the cognitive process thatled to human
decisions, whereas to simulate means to model these processes compu-
tationally tounderstand better how decisions emerge. Thus, cognitive
Alfunctions similarly to early Alsystems, which simulate human beings
to emulate the way humans’ minds work**. Cognitive Al, in combination
with data-driven Al, has the potential to enable effective complemen-
tarity during dynamic decision-making. Cognitive Al aims to model
human-like reasoning, memory and decision-making to mimic how
people perceive, interpret and respond to complex tasks. By contrast,
data-driven Alrelies onlarge-scale statistical patterns in data toidentify
correlations and make predictions, without necessarily modelling how
humans think. Although the two approaches are distinct, together they
canenable human-Al complementarity by combining human-aligned
reasoning with powerful data-driven insights.

In this Perspective, we outline a cognitive approach to human-Al
complementarity in dynamic decision-making tasks. We begin by pre-
senting the notion of cognitive Al and the role that it would have in
supporting humandecisions and fostering seamless collaboration with
humansinteams. Then we discuss the need to develop dynamic models
ofthe environment, the cognitive Al capabilities needed to advance Al,
and how to realize the vision of cognitive Al for human-Al complemen-
tarity. Next, we highlight the broader societal and ethical implications of
advancing cognitive Al and conclude with concrete recommendations
to guide future work towards achieving human-Al complementarity.

We use the term human-Al complementarity here to describe
systems that enable interactions at the cognitive level rather than
interactions with the physical world®. Similarly, although work on
human-robot interaction is discussed throughout the Perspective,
the discussions of challenges regarding a physical environment or a
robot’s sensing capabilities® are outside the scope of cognitive Al

Cognitive Al for human-Al complementarity

Our vision is to develop cognitive Al systems that emulate humans’
cognitive information processing. Such cognitive Al systems would
not only assist humans but would also be able to simulate human
beings and act as teammates alongside humans. Cognitive Al would
be capable of understanding and responding to human actions and
engaging in meaningful interactions with humans, thus revolution-
izing how humans communicate and collaborate with technology.
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Cognitive Al aims to emulate and simulate the human mind as an
information-processing system, similar to what was envisioned in the
origins of AI***”*%, unified theories of cognition® and the beginnings
of human-computer interaction*®*. This design enables Al systems to
reason, adapt and interact in ways that align with how humans think,
enablinggreater transparency and interpretability. Unlike data-driven
Al, cognitive Al seeks to explain and replicate how and why decisions
are made, mirroring human mental functions rather than just match-
ing outputs. Furthermore, cognitive Almust mimic human limitations
and constraints, because doing so will allow us to interpret human
behaviour and to predict (and prevent) human error.

Although this idea might appear anthropomorphic*** inasmuch
asitinvolves attributing human-like characteristics to Al, itisimportant
to clarify that cognitive Al does not aim to replicate humanidentity or
appearance. Rather, it draws on formal models of cognition to enhance
reasoning, learning and decision-making in ways that are aligned with
human cognitive processes. Although anthropomorphism can emerge
inhumanusers’ perceptions of Al, especially in contexts where systems
behave autonomously or use natural language***, the goal of cognitive
Alis not to elicit social attribution or human-likeness, but to support
complementaryrolesinjoint tasks. As such, the use of termslike ‘team-
mate’ or ‘collaboration’ refers to functional integration and shared
goals, not to metaphorical or emotional resemblance. This distinction
is critical to avoid conflating cognitively grounded modelling with
anthropomorphic design intent*.

Whereas the origins of Al and human-computer interaction
are focused on a broad set of problems and the full range of capaci-
ties of the human mind, here we focus on cognitive Al as applied to
dynamic decision-making. For example, managing resources dur-
ing the real-time evolution of disasters like wildfires, hurricanes
and floods is an extremely complex task. These situations demand
decision-makers to evaluate tradeoffs among multiple alternatives
and make choices under high uncertainty and with many constraints,
such as limited time and resources* . It is critical to balance speed
and accuracy (rapid decisions can save lives but acting too quickly on
incomplete information canlead to misguided responses), to consider
resource trade-offs (immediate solutions like temporary shelters can
address short-term needs but be unsustainable in the long term), and
to balance human safety against economic costs (evacuations can
be necessary to save lives but disrupt communities and economies).
These decisions oftenrequire coordination and collaborationamong
multiple decision-makers and poor teamwork can result in conflicts
and inconsistencies across efforts.

In such decisions, data-driven Al acts as an assistant to human
decision-makers, often by providing recommendations or aid through
synthesis or explanations (Fig.1a). For example, algorithms can analyse
and synthesize large amounts of data such as weather forecasts and
satellite images in real time***'. Autonomous vehicles, such as drones
and ground robots, can assist in search-and-rescue operations and
access hard-to-reach and dangerous areas, reducing the risk to human
rescuers™. Disaster robotics canbe used to assist disaster managers and
search-and-rescue missions>* ¢, Data-driven Al has been used to assess
flood mapping and project impact and to verify inundation models, as
well as to aid human decision-makers to optimize resource allocation
and support logistics, and to help with long-term recovery efforts® .
Although using data-driven Al as an assistant to human decisions has
proved veryvaluable, it does not achieve human-Al complementarity*-*°.
Inthis Al-as-assistant approach, the Aldoes not need to fully representa
dynamicenvironment, nor need it have adynamic mental model of the

human. Instead, humans are tasked with maintaining amental model of
the environment and a mental model of the Al (for instance, how likely
itis to err on specific cases) in order to use the Al's recommendations
effectively®’. Because the human s tasked withinterpreting the outputs
of the Al, the Al designers need to consider transparency, trustworthi-
ness, accuracy, confidence and the interpretability of Al explanations.
These aspects are critical to the adoption of Al-as-assistant®>®,

In our approach to human-Al complementarity, cognitive Al
serves as a dynamic computational representation of the mental
model of the human, which can be used by data-driven Al for decision
support (Fig.1b), or to simulate a human partner in a human-Al team
(Fig.1c). Although both decision support and assistance involve helping
users, they differ in purpose and complexity. Assistance helps humans
to execute their own decisions, often by simplifying tasks or offering
convenient options. By contrast, decision support enhances the quality
of decision-making by providing relevant insights, interpreting data,
evaluating alternatives and predicting outcomes.

Both of these aspects of our approach rely on the possibility of
knowledge tracing using cognitive Al. Knowledge tracing isamethod
of estimating and updating ahuman’s knowledge state over time based
on their observable behaviours and responses in sequential tasks.
This method®* has now been used in multiple dynamic decision-making
tasks to predict the decision a human will make at a given point in
time, based on a history of actions taken previously®>*. Tracing indi-
vidual human actions is similar to how intelligent tutoring systems
support student learning, by mimicking the strategies and knowl-
edge of human tutors and optimizing them for interaction with the
learner®”®%, In dynamic decision-making, cognitive Al provides amodel
of the human’s mental state, which can then enable data-driven Al to
fine-tune its use of large datasets and deliver more accurate, timely
and personalized decision support.

Embedding human-like cognitive processes of cognitive Al into
human-Alinteractions enables data-driven Al to reason in ways that
are aligned with human thought, facilitating mutual understanding
and true complementarity. Because cognitive Al explicitly models
the steps and constraints of human decision-making, it enhances the
transparency and interpretability of Al behaviour. This alignment
fosters trustworthiness, as the system’s outputs can be traced back to
human-relevant reasoning patterns, rather than to opaque statistical
associations. In turn, users are more likely to have confidence in the
Al's recommendations, and the ability to simulate individual mental
models enables personalized decision support thatimproves both the
accuracy and the relevance of Al assistance.

Data-driven Al can also use the mental model of the human pro-
vided by cognitive Al to change the choice architecture of a dynamic
decision-making task (Fig. 1b). Choice architecture interventions
involve re-structuring or altering the descriptions or other aspects of
the choice options to influence decision-making®’°. Data-driven Al can
adjust the choice options that are available to the decision-maker or
alter the way the choice options are presented to the decision-maker”.
It canalso adjust the time and mode of presentation of those options,
by using the model of the human provided by cognitive Al.

Thus, using cognitive Al for decision support enables human-Al
complementarity by aidinghuman reasoning and judgement in cogni-
tively demanding tasks, with the aim not just to help the humantoact
butto think along with them. Thisidea of using cognitive Al for decision
support has been illustrated in cognitively demanding tasks, includ-
ing specific applications like cyber deception training for detecting
phishing emails®>**”2, However, substantially more researchis needed
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team and canalso apply knowledge tracing to generate mental models of specific
humansinateam or of the team as awhole. Cognitive Al provides data-driven
Alwith amodel of the human and amodel of collective human and cognitive Al
teamwork. Data-driven Al can calibrate its decision support towards the team as
awhole orjust to individual members of the team. It can also adjust the choice
architecture in the environment for humans to improve future decisions.

to demonstrate its broader utility and to establish its role in enabling
effective human-Al complementarity.

Cognitive Al canalso emulate human cognitive decision processes
and function as a human-like partner within ateam (Fig. 1c). Teams are
typically composed of heterogeneous agents, each with distinctroles,
responsibilities and capabilities, who work interdependently towards
ashared goal®. Interdependence s critical, creating the need for coor-
dination, communication and joint activity among team members’.

Indynamic decision-making tasks, outcomes are often achieved not by
asingleindividual but through collaboration within a team of agents.
Collaboration is the process by which agents — human or artificial —
work together in a team to achieve a common goal. In this context,
cognitive Al, like human teammates, can be designed to specialize in
particular tasks or to operate effectively under specific conditions.
Different cognitive Al teammates might take different roles, contrib-
uting their strengths when relevant, and stepping back when not,
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thereby enhancing collective performance and enabling more adap-
tive, flexible and intelligent team behaviour’ ¢, To achieve human-Al
collaborationinateam, cognitive Alwould need not only the ability to
actautonomously, to make decisions, to adapt to the environmentand
toimprove its own performance over time*-”’. It will also need to have
the capability to engage ininterdependent processes with other agents
in the team to draw the allocation, update and retrieval of cognitive
resources from other team members™”’,

Using Alas ateammateis currently onlyanemergingidea and
its future development will require advanced definitions, formaliza-
tions, experiments and research progress in multiple disciplines as
theyrelate tothe design of Aland the study of teamwork and emergent
collaboration and adaptationin hybrid teams. A central vision for this
emerging area is to achieve effective human-Al complementarity in
dynamic decision-making environments by advancing cognitive Al,
notonly for decision support, butalso asa capable and adaptive team-
mate. Although cognitive Al can contribute in various ways, its ability to
model humanreasoning and adapt to adynamic environment makes it
especially well suited to collaborative roles that require coordination,
shared understanding and mutual responsiveness.

20,21,31
’

Al models of dynamic environments

Todeliver decisionsupport, adapt the choice architecture and/or influ-
encethe behaviour of agentsinateam, any Al (cognitive or data-driven)
must maintain accurate representations of the changing environ-
ment. Dynamic decision-making environments are characterized by
complexity, uncertainty and continuous change over time. In such
settings, decisions must often be made withincomplete information,
under time pressure, and in response to evolving goals or external con-
ditions. The environment might be only partially observable, require
multi-step planning and involve feedback loops in which earlier deci-
sionsinfluence future states. Amodel of the environment must there-
fore capture temporal dynamics and causal relationships, and the Al
must be able to adapt to new or unforeseen information. Thus, Al sys-
tems must be updated inreal time, accounting for human actions and
changesinenvironmental demands. Here we review these capabilities
in existing Al systems.

Reinforcement learning Al is designed to operate in dynamic
environments and it is relatively well suited to maintaining a repre-
sentation of such environments. For example, reinforcement learn-
ing agents learn to make decisions by interacting repeatedly with
an environment®. Reinforcement learning agents take actions and
observe the outcomes of those actions (in the form of rewards or
penalties) and maintain a goal to maximize cumulative rewards over
time. Tothis end, reinforcement learning agents learn about the reward
correspondingto different courses of actioninthe environment (which
necessitates acertain level of exploration or trial and error), while tak-
ingactions that guarantee high rewards (which necessitates exploita-
tion, or using the information obtained so far to take the action that
leads to high rewards). Using techniques like Q-learning®-*, reinforce-
ment learning agents gradually improve both their understanding
of the environment and their decision-making strategy, aiming to
find an optimal policy that leads to high long-term rewards in the
environment. These agents maintain a model of the environment
including the humaninitand canadapt their behaviour onthe basis of
the feedback received from human users (through satisfaction scores
or the rate at which a human follows their recommendations), which
over time improves their ability to respond appropriately to human
collaborators. For example, reinforcement learning agents are used

to help robots to learn to perform tasks while interacting with their
physical environment, to learn complex behaviours or to adapt to
changing conditions. These agents enable robots to acquire new skills
autonomously, such as walking, grasping objects or navigating through
environments®. Thus, reinforcement learning agents are particularly
suitable for dynamic, complex environments, including those that
involve human interactions®!, with some important caveats.

Atleast three factors need tobe addressed to achieve competent
reinforcement learning models of dynamic decision environments.
Onefactoristhatreinforcement learning agents oftenrequire substan-
tialamounts of training data (humaninteractions and interactions with
the environment) to learn effectively. In environments in which each
action hasareal-world cost (forinstance, resource allocationin disaster
management), learning from real-world data can beimpractical (if the
data are scarce or expensive), which limits reinforcement learning
speed and reliability. Second, training reinforcement learning agents
inhigh-dimensional environments is exceedingly resource-intensive,
requiring substantial computational power and time. Third, effective
dynamic decision-making demands long-term planning: the ability
to act under uncertainty and to perform well even when rewards are
delayed orinfrequent. Insuch settings, reinforcement learning agents
often struggle to learn optimal decision-making policies, because
theirlearningis highly dependent on the design, timing and structure
of the reward function®*¢, Crafting effective reward functions typi-
cally requires substantial domain knowledge: an expert understand-
ing of the task, of the environment and of what constitutes desirable
behaviour®. This domain knowledge is distinct from the knowledge
intraining data, which consists of statistical patterns observed during
interaction or simulation. Even when domain knowledge is available,
convertingitintorewards thatareinforcementlearning agent canlearn
fromis often a complex and non-trivial task.

Inaddition to reinforcement learning, systems that use Bayesian
inference offer a promising framework for learning in dynamic
decision-making environments. By continuously updating beliefs
about the state of the world based on incoming evidence, Bayesian
methods enable agents to represent uncertainty, adapt to change
and refine their understanding of the environment over time. For
example, Bayesian learning from demonstration enables an agent
to generalize from limited human demonstrations and dynamically
incorporate new information to improve task performance®*. This
probabilistic, data-efficient approach is well suited to dynamic set-
tings, because it supports ongoing learning, targeted information
gathering by querying the human for the most informative data points,
and the construction of flexible models of the environment that evolve
from experience.

However, Bayesian models also face practical challenges, par-
ticularly in specifying prior distributions. A well known issue is that
poorly chosen priors can lead to biased or unstable inferences, espe-
ciallyin complex or uncertainenvironments. Although some existing
models use humaninput to calibrate priors, developing a principled,
generalizable method for doing so remains difficult. This challenge
is particularly relevant in the context of human-Al complementarity
in dynamic decision-making, where priors must not only reflect the
structure of the changing environment, but also align with human
reasoning and adapt to evolving human inputs. The need for priors
that are both context-sensitive and cognitively compatible makes
this an open problem at the intersection of statistical learning and
human-centred Al. Some models aim to integrate Bayesian approaches
with reinforcement learning to enhance adaptability and uncertainty
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indynamic environments. For instance, techniques like dropout-based
Bayesian approximationin deep learning demonstrate how uncertainty
estimates canbeincorporated into generative models, enabling more
robustand calibrated predictions’. Similarly, Bayesian reinforcement
learning methods emphasize the role of structured priorsandinductive
biasesin learning and generalization®*",

In summary, some data-driven Al systems are appropriate for
maintaining a dynamic representation of the changing environment.
But these systems must advance their capabilities to achieve a rep-
resentation of dynamic environments, including reducing the num-
ber of human interactions with the environment required to learn
about the environment effectively, improving their ability to perform
long-term dynamic planning in the absence ofimmediate observations
ofrewards, and defining atheoretical approach for generalizing priors
for dynamic decision-making tasks.

Necessary Al capabilities

Beyond a model of the dynamic environment, there are other capabili-
ties that cognitive Aland data-driven Almust have to achieve human-Al
complementarity. Regardless of whether cognitive Alis used for deci-
sion support or as a teammate, cognitive Al must be competent and
reliable; capable of human-accessible communication; and enable
flexible interactions with humans and with data-driven Al (Table 1).
These capabilities are discussed below, where we draw examples and
implications from research across different types of Al.

Competence and reliability
Data-driven Al can demonstrate competence (the ability to perform
a task effectively and accurately) and reliability (the consistency of
performance over time and across tasks) in domains in which decision
accuracy is easily quantified and optimal solutions are well defined.
For example, data-driven Al typically performs well in static decision
tasks that are well structured, have clear objectives and offer large
datasets for pattern recognition’. These include applications such as
image classification, optimization problems and data analytics, where
Al systems can process large amounts of data to identify patterns that
are often not evident to humans®*®,

However, indynamic decision-making environments, where accu-
racy is difficult to measure and optimal solutions might not exist, it

becomes more challenging to assess these qualities. Data-driven Al
demonstrates low competence in the absence of large amounts of
data and in dynamic decision-making tasks that involve uncertainty,
ambiguity, rapidly changing environments, delayed decision effects
and time constraints®. In such cases, it is especially important for Al
systemsto recognize the limits of their knowledge and determine when
to defer to humanjudgement.

Cognitive Al can support the competence and reliability of Al
systems by applying metrics that are often used to evaluate human
decision-making in dynamic tasks. These metrics include bench-
marks or comparisons to expert judgements, calculated for each deci-
sion within a sequence®. In addition to outcome-based measures,
studies emphasize the importance of process metrics, such as the
sequence and timing of decisions, and the ability to adapt to changing
circumstances®®?”’. Similar metrics could be applied to evaluate the
competence and reliability of cognitive Al itself and to help to deter-
mine when humanintervention might be necessary. Determining the
competence and reliability of Al in dynamic tasks is essential for pro-
motingitsadoptionindecisionsupportand for ensuring the effective
use of cognitive Alin team collaboration under dynamic conditions'*,

Although some Al systems have been created to be competentin
specific dynamic — and somewhat ambiguous — tasks, they are often
applicable only to those specific tasks. For example, Al is highly com-
petent in dynamic tasks such as board games’”'%°, the game Go'"'*
and computer games'®. However, an Al system that performs well
in one task (such as Go) does not perform well in other tasks (such as
search and rescue operations)'®, Al systems are currently created to
be competent in a particular task configuration but they are not reli-
able, because they cannot easily generalize to new tasks or to changing
configurations of the same task.

Some cognitive Al systems have aimed to address the character-
istics of dynamic decision-making tasks, demonstrating human-like
competence in their capability to maintain performance under chang-
ing configurations of the same task'”. However, research is required
to advance the competence of cognitive Al in combination with
data-driven Al, and to achieve reliability across different tasks'**'”",

Insummary, current Al systems lack the competence and reliability
needed for effective human-Al complementarity indynamic decision-
making. Whereas data-driven Al excels in static, well defined tasks, it

Table 1| Requirements for cognitive Al in dynamic environments

Property Description Flooding disaster scenario
Competence and Cognitive Al must maintain high and predictable During a severe flood with disrupted communications, cognitive Al helps
reliability performance in the presence of uncertainty and emergency managers to prioritize evacuation zones despite gaps in sensor data

ambiguity, especially when decision rules or metrics
are not clearly defined, and when data are sparse or

unavailable. It must also support the development of
tractable notions of decision quality in dynamic tasks

and rapidly shifting water levels. It adapts to limited information by using human
inputs and learned patterns to make consistent recommendations and evaluates
decision quality based on reducing exposure risk rather than fixed optimization
targets

Human-accessible
communication
capabilities

Cognitive Al must communicate effectively with
humans through understandable, transparent
formats. Effective communication includes improving
uncertainty quantification, enhancing interpretability,
reducing misleading outputs and tailoring
communication to different users

In coordinating flood relief, cognitive Al conveys projected inundation

zones through interactive maps, provides confidence estimates for shelter
accessibility, and communicates resource deployment options in plain
language. It gives field responders concise visual cues while offering technical
justification and uncertainty levels to command centre staff

Flexible interactions Cognitive Al must represent and update models of
human mental states, predict likely human actions,
collaborate with data-driven Al systems, and support
flexible team configurations. It should incorporate
meta-cognitive processes and enable shared

decision-making across human-Al teams

When responding to flooding in an urban area, cognitive Al monitors responder
fatigue and task load, dynamically adjusting its support (for example, by
proposing reassignment of personnel or shifting from autonomous decision-
making to human oversight). It integrates with drone-based data-driven Al,
anticipating human goals (like rescue priority) and adjusting its recommendations
accordingly to fit evolving team roles
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struggles with uncertainty, with changing conditions and with tasks in
which optimal solutions are unclear. Cognitive Al offers apromising path
byincorporating human-centred metrics of competence and reliability,
but further development is needed to investigate how to generalize
across tasks and to determine when to defer to human judgement.

Human-accessible communication

To achieve human-Al complementarity in dynamic decision-making
environments, cognitive Al also needs to provide accessible ways to com-
municate with humans. Effective communicationis essential for coor-
dinating actions, sharingintentions and resolving misunderstandings,
especially in environments in which decisions must be made quickly
and under conditions of uncertainty. Without clear communication,
humans might misinterpret or fail to trust Al recommendations, ulti-
mately reducing team performance'*®. Prior work has proposed various
approaches to close the communication gap between humans and Al,
including uncertainty quantification'”’, explanations"*'", visualizations,
and other media for communication (such as natural language).

Bayesian approaches™?, ensemble methods™ and other tech-
niques™* quantify model uncertainty and are used to represent epis-
temic uncertainty — the uncertainty stemming from limited knowledge
or information about the system or process in question. Although
these methods offer a rigorous way to estimate confidence in model
predictions, they are often computationally expensive and rely on ad
hocassumptions (such as the choice of prior distributions), which can
make their outputs difficult for human decision-makers to interpret
and rely on'”. Al must be capable of conveying uncertainty in ways
that are understandable to users, providing intuitive explanations or
calibrated confidence estimates'®. Research shows that communicat-
ing uncertainty clearly (through confidence intervals or probabilistic
forecasts) canimprove human trust, calibration and decision quality,
particularly in high-stakes or ambiguous environments'. Thus, effec-
tive uncertainty representation might notonly supporttransparency
but also enhance Aladoption in human-Al teams.

Another approach to human-accessible communication is algo-
rithmic transparency, including explainability and interpretability®*®.
Explainability refers to the ability of Al to make its internal processes
anddecisionlogic understandable to human users, and especially how
specificinputsinfluence outputs. Doingsois particularly importantin
complexmodels like deep neural networks, where the reasoning behind
predictions is often opaque'”. Explainability enables users to assess
howand why amodelarrived atadecision, whichinturnsupportstrust,
accountability and appropriate reliance on Al systems. Interpretability
refers to the degree to which a human can understand the cause of a
decision made by an Almodel®. Although related, explainability goes
astep further by providing a post hoc explanation that helps users to
understand the reasoning behind the model’s output, even when the
modelitselfis too complex to interpret directly.

Given the black-box nature of many modern Al models (such as
deep learning models with millions of parameters), a substantial body
of research has proposed approaches for explainability s,
For instance, local explanations aim to explain how an Al model
arrived at a specific decision or prediction, identifying which fea-
tures contributed most to an individual decision, making complex
models more transparent'>*'?, Such techniques can improve human
understanding of Al predictions and foster trust, which in turn sup-
ports better decision-making in collaborative human-Al settings™%'*",
Forexample,in medical diagnosis, local explanations can show why an
Alpredicted aspecific disease for a specific patient by highlighting the

most influential clinical features. However, the fidelity and useability
of explainability methods have not been adequately established and
they are being actively researched'*.

Other research suggests that it is important to create mod-
els that are interpretable in the first place and avoid the need for
explainability"®. Creating interpretable Al may involve incorporating
human feedback to help to adapt and improve Al behaviour in ways
that better align with human expectations and support trust over
time®*. Moreover, cognitive Alisinherently interpretable becauseit s
built on transparent, theory-driven models of human reasoning and
decision-making processes. These structured representations make it
easier to trace how inputs lead to outputs, and they can be integrated
with data-driven Alto enhance both explainability and interpretability.

Visualizations are an important form of structured explanations
that make complex model behaviour more accessible to human users'®,
Visualizations like heat maps, feature importance graphs and decision
trees help users to understand how input features influence model
outputs?*. For example, sensitivity analysis shows how model pre-
dictions change in response to variations in the input features, high-
lighting which variables matter most'*. These visual tools support
communication by making model reasoning more transparent, which
inturnhelpsuserstointerpret, evaluate and trust Alrecommendations.

Natural language is another human-accessible form of commu-
nication, which can be tailored to the needs of different human users.
For example, a doctor might need a detailed, technical explanation
of an Al-provided diagnosis including citations to reputable sources,
whereas a patient might only need a simplified version (without tech-
nical jargon) to understand the diagnosis. Large language models
(LLMs), aform of generative Al, can engage in natural language com-
munication, providing asmoothintegration withhumans'”. However,
LLM agents can produce content that is factually incorrect, irrelevant,
incoherent or misleading'?*'?’. Because LLMs generate content based
on statistical patterns rather than true understanding, they can pro-
duce outputs that seem plausible but are not appropriate’?®. Human
over-reliance on such outputs can lead to costly mistakes. Moreover,
itis often challenging for humanteammates to understand why agen-
erative Al agent makes certain decisions or reccommendations owing
to the opacity of the agent’s decision-making process and internal
models of the environment®. This lack of interpretability can pose
challenges for human communication, in cases where understanding
the rationale behind the teammates’ decisions is critical for trust and
appropriate reliance. These issues are specific to current LLMs and
other generative Al approaches; and it might be possible to develop
other forms of Al that communicate in natural language using struc-
tured, rule-based or cognitively grounded models that provide more
reliable and interpretable outputs (for example, ref. 129).

In summary, cognitive Al needs to communicate in ways that are
accessible to humans to enable human-Al complementarity. Doing so
will require reduced computational costs and ad hoc assumptions for
uncertainty quantification, improved approaches for explainability
and transparency, and approaches thatinclude humaninputtoadapt
and meet human expectations. In particular, LLMs must become more
reliable in the accuracy of their responses and more adaptive to indi-
vidual users, tailoring their communication style, content and level of
detail to suit different users and contexts.

Flexible interactions
Humans, cognitive Al and data-driven Al must interact to reach deci-
sions, and the nature of these interactions depends on how cognitive
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Alis configured within the team. Cognitive Al can take on different
roles, such as functioning as a decision-support tool or asa collabora-
tive teammate, depending on the task demands and level of autonomy
assigned. These are distinct use cases, but they do not necessarily
require entirely separate systems; rather, a well designed cognitive Al
system should be flexible enough to support both roles, adapting its
level of engagement, communication and autonomy to fit the needs
of the human team and the decision context.

A common configuration of human-Alinteractioninvolvesasin-
gle human working with a single Al agent. Even in this configuration,
there are multiple ways in which humans and Al (whether cognitive
or data-driven) can interact. Cognitive Al can be configured to act
either for decision support, by using knowledge tracing and providing
data-driven Alwith amodel of the human’s mental state, or as a collabo-
rative teammate alongside the human. Ineither role, there are multiple
ways in which humans and Al (whether cognitive or data-driven) can
interact™. First, Al can act as an advisor to the human, and the human
then makes the final decision'®. Second, humans can provide oversight
of the Aldecision™*"*, Third, the human and the Al can make their own
decisionsindependently and rely on a predefined aggregation function
(forinstance, asimple average, anuncertainty-weighted average, or an
independent human referee) to combine those decisions into a final
call’*?®, Fourth, the human and the Al make their own decisions inde-
pendently, but the Al additionally produces some auxiliary material
characterizing its decision for the human (such as through explana-
tions or uncertainty quantifications)' This list is not an exhaustive
set of possibilities even if we limit our attention to a single Al and a
single human. In more complex human-Al teaming scenarios (Fig.1c)
that involve multiple humans and multiple cognitive Al agents col-
laborating on dynamic decision tasks, these interactions demand
even greater flexibility. They require the team to continuously adapt
roles, communication patterns and decision strategies to changing
conditions and task requirements.

Insummary, effective human-Al complementarity requires flex-
ible interaction among humans, cognitive Al and data-driven Al, with
cognitive Al configured to serve either as a decision-support tool or
as a collaborative teammate. The structure of these interactions can
vary widely, even within simple setups such as asingle human working
with a single Al agent. Interaction modes include advisory roles from
Al without deciding, human oversight of Al decisions, independent
decisions with aggregated outputs, and explanation-based support
to inform human judgement. In more complex team settings that
involve multiple humans and cognitive Al agents, these interactions
must be more flexible and adaptive, requiring the teamto adjustroles,
communication styles and coordination strategies in real time as task
demands evolve.

Realizing complementarity with cognitive Al

Initial efforts to develop cognitive Al for human-Al complementarity
are ongoing and there is much work to build on. Existing efforts can
begroupedbroadlyintothree areas. First, researchers areintegrating
cognitive architectures with machine learning to create systems that
are both human-aligned and computationally adaptive. Socio-cognitive
frameworks model humanroles, mental states and team structures to
enable Al to functionas collaborative teammates*"**; resource-rational
approaches account for cognitive limitations by linking high-level
goals to algorithmic constraints'. Second, a growing body of work
focuses on fusing cognitive models with generative Al to combine the
interpretability of human-like reasoning with the scalability of modern

machine learning. These efforts include embedding generative mod-
elsinto cognitive architectures to support complex socio-cultural
reasoning"*, enhancing cognitive models of decision-making with
data-efficient generative techniques', and developing systems
capable of integrating structured mental representations and adap-
tive generative mechanisms'®, Third, cognitive Al is being applied
to real-world tasks such as cyber defence, user training and behav-
ioural intervention™. These systems simulate human responses to
threats, anticipate behaviour in social-engineering scenarios, and
design effective decision environments, which demonstrates their
potential to enhance decision-making and collaboration in dynamic,
high-stakes contexts'. Collectively, these efforts mark foundational
steps towards building cognitive Al systems that support effective and
adaptive human-Al teaming.

Despite these promising initial efforts, current approaches to
developing Al for human-Al complementarity remain limited in sev-
eral critical ways. Many systems focus narrowly on either emulating
human behaviour or on optimizing task performance, without fully
capturing the dynamic, individualized and context-sensitive nature of
human cognition. Thereis often alack of integration between cognitive
representations and adaptive capabilities, resultingin Al systems that
are eithertoorigid to generalize or too opaque to support effective col-
laboration. The vision for realizing human-Al complementarity with
cognitive Al will address the ability to represent, adapt and reason
with a human’s mental model over time, which can be used either
to emulate human behaviour or to perform knowledge tracing of a
user’s decisions over time to predict their future actions”. To serve
this purpose, cognitive Almustbe grounded in cognitive science prin-
ciples, incorporate a certain amount of flexibility for variability in
human behaviour, and have some level of autonomy in representing
and updating models of the human and environment.

Cognitive science fundamentals

Cognitive Al cannot be developed simply by scaling up data-driven Al
with more computing power or larger datasets'**. Instead, cognitive
Alrequires fundamentally different architectures, which are grounded
incognitive science and aim tomodel the processes underlying human
memory, learning and decision-making””**, Building cognitive Al
systemsisafirst step towards human-Al complementarity for dynamic
decision-making®*”".

Aninitialapproach to generate cognitive Alis using cognitive archi-
tectures thatintend to simulate human thought processesin a unified
approach*. Forinstance, ACT-R (adaptive control of thought-rational)
and SOAR (state, operator and result) are two cognitive architectures
that represent human perception and action, memory, learning,
problem-solving, decision-making and other capabilities'**'**, The goal
of cognitivearchitecturesis to provideacomprehensive computational
model of the human mind* and can inform the development of com-
putational systems that align with human information processing by
modellingkey cognitive functions. When integrated with data-driven
Alsuch as generative models or deep learning, these cognitive systems
can be enhanced with greater scalability, pattern recognition and
adaptability to complex environments””"**, This hybrid approach
combines the structured reasoning and interpretability of cognitive
architectures with the flexibility and data efficiency of data-driven Al.

Existing cognitive science approaches to modelling aspects of
human cognition — particularly human decision-making in dynamic,
uncertain environments — can be broadly classified into heuristic-
based and learning-based systems. In dynamic decision-making
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environments, humans often rely on cognitive heuristics: simplified
decision rules that allow for efficient decisions without requiring full
exploration of the environment. Heuristics reduce cognitive load
by simplifying the processing of large amounts of information and by
offering practical strategies for managing uncertainty in complex
tasks'”. Examples include heuristics like ‘win-stay, lose-shift’, the
‘hot-stove effect’ or ‘probability matching’, which guide behaviour on
the basis of recent outcomes or the frequency of observed events'**'*,
However, heuristics are inherently imprecise and are often described
descriptively rather than formalized computationally™®. To evaluate
their effectiveness in dynamic decision-making tasks, formal com-
putational models of these heuristics must be developed and tested
for complex, evolving tasks'*. Although many researchers have pro-
posed formal models of heuristics, such as lexicographic rules'*’, or
elimination-by-aspect™’, these models are relatively rare in psychology,
especially in applications to complex, dynamic environments where
human decision-making unfolds over time™"**, For the development of
cognitive Al, heuristics offer valuable insights into human-like strate-
gies, making themanimportant foundation for building interpretable
and adaptive Al systems.

Cognitive learning agents are intended to learn sequential deci-
sions from experience by updating their behaviour based on feedback
over time. These agents are often grounded in reinforcement learning
orBayesian learning frameworks, which provide mechanisms for adapt-
ing to dynamic environments®*'. For example, akey distinctioninrein-
forcement learning between model-free and model-based approaches
illustrates two different strategies for dynamic decision-making'>.
Model-free agents learn action values directly from experience with-
out constructing an internal model of the environment, whereas
model-based agents build and update such a model to simulate
future outcomes, so that in this way their process resembles deliber-
ate decision-making. This distinction captures important aspects of
human cognition and serves as a foundation for developing cogni-
tively plausible learning agents. Other cognitive learning agents aim
to explain the cognitive process by which humans make decisions in
dynamic tasks’®. For example, instance-based learning theory is an
approach thataims to mimic human decision-making in dynamic tasks
by using past experiences to inform current decisions””*. It posits that
people rely on a combination of specific instances or examples from
memory, rather than on abstract rules or generalized knowledge, to
make decisionsin dynamic and uncertain environments. This approach
aligns with how humans often recall and use past experiencesin real life
to solve new problems™*. Cognitive Al systems can rely on these com-
putational learning models of human-like cognition to represent the
human’s mental model of the dynamic environment and the human’s
ownintentions with regard to decision-making. Taken together, these
learning-based approaches offer apromising foundation for building
adaptive, interpretable and human-aligned cognitive Al systems that
canfunctionin dynamic decision settings.

Role flexibility

Cognitive Al can take definite roles in a team and interdependencies
with other team members can be clearly defined, in order to pursue
collaboration towards a common goal. Cognitive Al can be used by
powerful data-driven Al to personalize and time the decision support
to the human®*®'>>, Furthermore, cognitive Al canalso be ateammate
to humans, contributing to dynamic tasks as part of a team in which
creativity, collaborationand diverse actions lead to better outcomes.
Ateam configuration defines the roles and interdependencies of the

human and the Al in a collaborative team, and it should leverage the
complementary strengths of humans and Al to optimize the team
decision process.

Althatis optimal forindependent decision-making might not be
the best teammate”"°, To use cognitive Al as a teammate, Al systems
need to adjust their decision supporttoalignwith bothindividualand
collective human mental models. To ensure effective collaborationin
the team, there must also be a clear mechanism for identifying and
resolving conflicts or discrepancies between human judgements
and cognitive Al decisions. For example, human-Al complementa-
rity can emerge when cognitive Al approaches a task using a differ-
ent strategy than the human teammate'’. In such cases, rather than
requiring perfect agreement, the system can flag the divergence,
explain the reasoning in human-understandable terms, and support
the human in reevaluating their assumptions. Doing so enables both
agents to benefit from their distinct perspectives, whichleadsto more
robust decisions that reflect both experience-based intuition and
systematic reasoning.

Given the high uncertainty and unpredictability of dynamic
decision-making tasks, it is important that interactions between
humans and Al are flexible, so that humans canadapt roles or override
Alwhenneeded. A flexible configuration will also enable the human to
adjustthe Alrole astheir trustimproves or assign tasks to the teammate
thatis best equipped to handle the task.

Autonomy and mental models
High levels of autonomy and self-directed behaviour are desirable in
cognitive Al. Autonomy is needed to enable the Al to act asateammate
and collaborate with human partners in complex, rapidly changing
scenarios. Cognitive Al would complement human capabilities by
adaptingtonewinformation asitarrives fromthe environment thanks
toits dynamic model of the environment and the dynamic human-Al
mental model. When workingin ateam, cognitive Al should be capable
of acting autonomously and working in capacities similar to those of
their human partners to collaborate towards acommon goal.
Cognitive Alwould maintain amental model of the human’s desires
and preferences that could be used to anticipate the human’s needs and
challenges, interpret their intentions, and explain human behaviours.
Shared mental models are the knowledge structures that are com-
mon to all members of human teams. These shared mental models
enable humans to collaborate and coordinate effectively in dynamic
environments"®, Humans create, store and manipulate the internal
models of the dynamic systems with which they interact — such as
flight operations inaviation, command and control systems in military
settings, or emergency response procedures in crisis management —
as team members must continuously update their understanding of
goals, roles and environmental conditions to act effectively as a unit™.
Humansalso developamental model of their Al partners, how they work
and the expectations regarding their behaviour”. These human-Al
shared mental models are not static, but rather evolve dynamically
asteam members interact and adapt to change with technology'*°.
However, the shared mental model formed between humans and
Al, which encompasses the dynamic system, team structure, team
roles, individual capabilities and other relevant features, can have a
crucial role in enabling collaboration with cognitive Al in team set-
tings (Fig. 1c). To function effectively within a human-Al team, cog-
nitive Al will need to understand the shared team goals and its own
role within the team. One formulation of this concept originates in
studies of collective intelligence and is captured by the transactive
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systems framework, which can be formalized for computational
implementation’®’"**,In this framework, team members (human or
artificial) maintain awareness not only of their own knowledge and
capabilities but also of what others in the team know and can do. This
‘who knows what’ structure enables efficient information sharing, task
allocation and coordination. Applying this framework to Al systems
means designing themto represent and update knowledge about their
teammates’ expertise, responsibilities and roles. For cognitive Al, doing
socouldinvolve creating internal models of human teammates’ mental
states and capabilities, enabling the system to anticipate when to offer
support, when to defer and how to contribute more effectively to col-
lective goals. Embedding such transactive memory mechanisms into
cognitive Alwould enhanceits ability toact asanintegrated, adaptive
member of human-Al teams.

The concept of ashared mentalmodelis related to theory of mind:
the human capability of understanding the beliefs and desires of others.
Computational models of theory of mind have been of great interestin
the computational cognitive sciences, where they have been used to
predict humanactions and assistin collaborative tasks™* ¢, Models
such as Bayesian theory of mind'*"'**'** aim to infer a human’s mental
state from observed behaviour, enabling artificial agents to adapt their
responsesinsocially and contextually appropriate ways. Bayesianmod-
els have also been extended to support sequential decision-making
by incorporating hierarchical structures that reflect how knowledge
mightbe organized across levels of abstraction. In hierarchical Bayesian
models, the learning process occurs at multiple levels of abstraction,
such as estimating low-level task parameters for specific actions
and higher-level strategies. This layered representation enables the
model to adapt flexibly to new and rapidly changing environments
by generalizing from past experience while remaining sensitive to
context-specific variations'®,

Human theory of mind involves multiple cognitive and social
capacities and further specificity and formalization of these capacities
are needed to develop them effectively in Al systems. For example,
social intelligence capabilities can be designed to enable Al to
engage human users in more natural and contextually appropriate
conversations™®. Similarly, techniques such as affective computing
and sentimentanalysis can help to advance cognitive Al by enabling it
to detect human emotional states fromtext, voice or facial expressions
and adjustits responses accordingly to support more empathetic and
effective interaction'?’.

Cognitive Al should help to maintain a dynamic mental model
of the environment that reflects how humans perceive, interpret and
reason about complex environments over time. Unlike data-driven
Al models that often represent the environment statistically or algo-
rithmically, a cognitive Al system must capture the mental model as
experienced by the human, including key decision-making variables,
perceived cause-and-effect relationships, feedback loops that repre-
sent causality, and emergent dynamics within the environment'®*'*’,
Moreover, cognitive Al should be capable of adapting to novel tasks and
personalizing its reasoning and supportaccording toits understanding
of each human teammate’s goals, prior experiences and preferences.
This personalization enables more effective and context-sensitive col-
laboration within human-Al teams, by providing data-driven Al with
predictions about human decisions so that it can adjust the recom-
mendations, environment and interventions according to the chang-
ing preferences of humans over time®>*¢'>'"°, This capability could be
realized through techniques such as reinforcement learning, in which
the system learns optimal actions by receiving feedback from human

users, and meta-learning, in which the system learns to learn from a
variety of tasks'”*. However, in contrast to reinforcement learning and
other data-drivenapproaches, cognitive Al can generate theory-driven
predictions even in the absence of empirical training data”>'”*, These
predictions are possible because cognitive models are grounded in
formal theories of human cognition that describe how decisions are
made on the basis of mechanisms such as memory retrieval, similarity
and experience-based reasoning. For example, instance-based learning
models can make accurate predictions about human decision-making
without being trained on human data, and use cognitive principles to
simulate sequential decisions'”.

In summary, the development of cognitive Al represents a trans-
formative step towards creating systems that can either emulate
human decision-making or function as teammates alongside humans.
By integrating insights from cognitive science and leveraging advanced
data-driven Al, these systems will be able to emulate human-like
thought processes, adapt dynamically to changing environments,
and maintain the shared mental models that are critical for effective
collaboration. Beyond merely responding to commands, cognitive Al
will predict human needs, engage in meaningful interactions, and assist
in decision-making, all while fostering trust and transparency. This
ambitious vision seeks to merge theoretical foundations with practical
innovations, ensuring that cognitive Al enhances human capabilities
and complements humanjudgementin complex, dynamic scenarios.
These ideal features of cognitive Al are applicable to any dynamic
decision-making tasks', such as disaster management (Box 1).

Ethical considerations and risks

The development of cognitive Al for human-Al complementarity
requires careful consideration of human values. Data-driven Al sys-
tems lack the ability to reason about ethical and societal implications
of their decisions in novel environments, but this ability is key to the
trustworthiness of Al teammates”>"°. Moreover, cognitive Al systems
can have major long-term ramifications for society; therefore, responsi-
ble conduct of researchinthis field requires careful consideration of the
societal effect of deploying such Al at scale in consequential domains.

Ethical competence

Some of the key ethical principles that are usually invoked when Al
is used to make or assist high-stakes decisions are beneficence, fair-
ness and justice, transparency and privacy'”’. Accounting for these
principles is the minimum requirement for ethical competence — the
ability toidentify and understand relevant values and ethical principles,
recognize ethical conflicts and make decisions that align with those
principles and values. Data-driven Al agents lack capabilities for moral
agency and responsibility and cannot take intentional action®, but our
vision of cognitive Al requires ethical competence.

Beneficence requires establishing that cognitive Al contributes
positively tothelife plans and wellbeing of individuals and communities
who are affected by it while upholding their fundamental rights'’57°,
For example, beneficent cognitive Al should have an accurate mental
model of their teammates—including what contributes to the wellbeing
of their human teammates and how the Al can benefit the teammates.

Fairness and justice prohibit discrimination againstindividuals or
groups based on characteristics such as race, gender, age, socioeco-
nomicstatus or other protected attributes’**''. To be considered fair,
cognitive Alshould have anaccurate model of the decision-making envi-
ronment inwhichit operates, including the social and political context
thatrenders certainindividuals and communities disadvantaged.
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Box 1| Human-Al complementarity in a disaster management scenario

This case study outlines the ideal capabilities of cognitive Al in a
dynamic decision-making context, using the example of a major
urban flood. These capabilities demonstrate how cognitive Al
could support human-Al complementarity through autonomy,
communication, adaptation and social understanding.

Autonomous operations and self-directed behaviour

e Monitor environmental and sensor data (such as rainfall, river
levels and road closures) to detect flood risks in real time
Assess the vulnerability of affected areas and predict the effect
on infrastructure and population
Develop evacuation plans and direct autonomous vehicles to
transport at-risk residents
Coordinate drone and robot deployment to distribute emergency
supplies such as water, medical kits and food to stranded
populations
Initiate structural assessments and coordinate robotic repairs
to critical infrastructure, such as bridges or levees, when human
access is unsafe

Human-like communication with diverse users

e Communicate with the public using multimodal methods,
including spoken language, text messages, visual displays
and social media updates

e Provide clear and adaptive messaging that varies in technical
detail depending on the audience (for instance, for emergency
responders, government officials or local residents)

e Broadcast evacuation updates across multiple platforms (such as
mobile alerts, radio and social media) to maximize reach

Transparency requires clarity and openness surrounding decisions
andrequires that thisinformationis providedin anaccessible manner
to Al stakeholders, including developers, users and regulators™'$%,
Human-accessible communication and flexible interactions with
human teammates are a hallmark of ethically competent cognitive Al.

Finally, developing ethically competent cognitive Al requires
vast amounts of personal and sensitive data from human teammates
and the environment. Privacy requires that these data are protected
in compliance with privacy rights and to maintain confidentiality,
security and appropriate use'®. Trustworthy cognitive Al agents
must be able to identify and protect sensitive data in a contextually
appropriate manner.

Researchers have attempted to design data-driven Al that is
compliant with the above values, although different stakeholders
might prioritize these values differently depending on the context'®*.
For example, Al developerstend to prioritize values like transparency
and technical robustness, whereas members of the public are more
likely to emphasize fairness and protection from harm'*. Furthermore,
there are several barriers to operationalizing these values in prac-
tice, including a lack of organizational incentives and accountability
structures, misalignment between ethical goals and business metrics,
limited resources and tooling for ethical Al development, and insuffi-
cientcross-functional collaboration. Even when practitioners are moti-
vated to build responsible Al, these structural and cultural challenges
within organizations often prevent meaningful change. Addressing

e Engage in two-way communication, enabling residents to report
their locations, health status or access needs, which cognitive
Al uses to adjust evacuation routes and supply distribution in
real time

Social intelligence, personalization and shared
mental models
e Personalize evacuation instructions by accounting for
household characteristics (such as age, mobility and access
to transportation)
o Tailor alerts and resources for vulnerable groups (such as older
people, people with disabilities or non-native language speakers)
o Prioritize the deployment of emergency services to densely
populated or high-need areas based on social, geographic and
economic data
o Plan infrastructure recovery efforts by estimating the social
and economic impact of damage, and scheduling repairs
accordingly

Real-time adaptation to a changing environment

o Dynamically update its mental model of the disaster as new
information (such as weather forecasts or floodwater movements)
becomes available

e Reassign response resources, such as drones or rescue teams,
based on shifting conditions, such as a levee breach or newly
flooded area

o Generate detailed, up-to-date damage assessments using aerial
drone footage and sensor data, supporting rapid decision-making
by emergency planners

these barriers is essential before ethically competent cognitive Al
systems can be developed'.

Long-term ramifications
Ifnot designed and deployed carefully, cognitive Al presents substantial
long-termrisks and ramifications for human society. Many of these con-
cernsarerelevant for data-driven Al agents, evenifthey donotemulate
human cognition””*>, But cognitive Al that closely emulates human
capabilities exacerbates these risks because such systems might be
perceived as more trustworthy, leading to overreliance, misinterpreta-
tion of intent and diminished human oversight when cognitive Alactsin
afully autonomous manner. Moreover, the ability to mimic human-like
reasoning can obscure accountability and raise more acute ethical
concerns around manipulation, bias replication and decision opacity.
Training and deploying all kinds of Al consumes vast amounts of
energy and the increased demand for powerful processors and data
centres could resultin substantial environmental degradation, includ-
ing deforestation, water pollution and habitat destruction’®*'¥”, Also,
Al that is capable of performing many complex tasks as efficiently
as humans without suffering from the same physiological limita-
tions and psychological biases could reduce the demand for human
labour and change the nature of work'*'®’, Itis also possible that human
decision-makers could become overly dependent on cognitive AI**",
leading to a decline in human critical thinking and problem-solving
skills'?. Forinstance, as people become less accustomed to storing and
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retrieving information themselves, this process could weaken memory
retention and recall abilities over time'*>. Furthermore, as cognitive Al
requires the maintenance of an accurate model of humans, these sys-
tems will need to monitor human decision-makersinreal time, leading
toincreased surveillance, micromanagement and potentially manipu-
lation. Over time, human decision-makers might feel aloss of control or
agency in their work, leading to disengagement and dissatisfaction'*.

Researchers and developers of cognitive Al must be cognizant of
the above issues and proactively seek to mitigate them to ensure that
their work serves humanity in the long term and does not create such
unintended, yet serious, risks. Accounting for the ethical and long-term
societal implications of developing highly capable Al is particularly
critical if it is to be deployed at scale in high-stakes domains. In addi-
tion to the widely applicable issues discussed here, real-world evalu-
ation and deployment requires domain-specific ethical and societal
considerations to be accounted for. For instance, in dynamic disaster
management scenarios, cognitive Al systems that assist with evacua-
tion planning or resource allocation must be designed to avoid rein-
forcing pre-existing social inequities, for example, by ensuring that
marginalized communities are not deprioritized owing to biased data
or assumptions embeddedin the model. Researchers must pay special
attention to justifying any claims of generalizability of their findings
to other domains.

In conclusion, although this Perspective focuses primarily on
the computational and cognitive foundations required to enable
human-Al complementarity, we acknowledge that the development
of autonomous cognitive Al systems raises important ethical ques-
tions. Theincreasing sophistication of Al systems that aim to emulate
aspects of human cognition, such as reasoning, memory and learning,
blurs the boundaries between tool and collaborator and demands
careful ethical scrutiny’®. Questions about accountability, agency
and the moral status of Al systems arise when these systems operate
with high autonomy and social intelligence, particularly in high-stakes
domains. Although our goal is not to replicate human consciousness or
identity, but to functionally model cognition for collaborative utility,
we recognize that such capabilities might elicit anthropomorphic
perceptions and expectations that have real social and psychological
implications**. A comprehensive ethical analysis of these issues is
beyond the scope of this paper, but cognitive Al development should
be accompanied by ongoing, interdisciplinary discussions thatinclude
cognitive scientists, ethicists and policymakers. We hope that our work
contributes to grounding those discussions in both technical feasibility
and theoretical clarity, expanding the space of ethical inquiry around
human-Alinteractions.

Conclusions
We have described a path towards human-Al complementarity in
dynamic decision-making environments, where cognitively grounded
Alis critical to enhancing human capability through integration with
data-driven Altechnologies. Realizing this vision will require sustained
collaborative efforts across disciplines. We identify four key areas for
immediate action: developing infrastructure, advancing cognitive Al
capabilities, empirically evaluating of human-Al complementarity,
and addressing the ethical and societal implications of cognitive Al.
First, thereis anurgent need for open-source simulation platforms
that support cognitive Al research and evaluation of human-Alteams
in varied, interactive decision-making contexts. Existing platforms
often lack support for multi-agent hybrid human-Al interaction or
are tailored to narrow use cases”* "%, More flexible, general-purpose

environments are needed to test, refine and compare cognitive Al
modelsin dynamic, team-based scenarios'*?°°.

Second, research must continue to enhance both the cognitive
plausibility and adaptive functionality of cognitive Al systems. This
includes progressin cognitive architectures, computational theories
of human decision-making and hybrid models that combine symbolic
reasoning with data-driven learning. Especially promising are adaptive
mechanisms that infer human mental models and tailor Al behaviour
accordingly in real time® 7%,

Third, experimental studies are needed to assess how cognitive Al
systems function in team settings with human collaborators. Current
research often relies on ‘Wizard of Oz’ methods, in which a human
secretly controls the Albehind the scenes to simulate advanced capa-
bilities that Al does not yet fully possess, or uses very simplified sce-
narios with clearly defined options and static decision options that do
not reflect the ambiguity, time pressure and interdependence typical
of real-world settings**"?*°"?°2, Although such methods have enabled
researchers to study human responses to future Al behaviour and are
valuable forisolating variables or testing early hypotheses, they might
not capture the full range of challenges and dynamics that emerge in
authentic human-Al collaboration. As a consequence, there remains
a critical gap in understanding how cognitive Al systems perform in
complex, high-stakes and evolving team environments. Future studies
should test real cognitive Al agents across tasks, measuring outcomes
such as decision quality, user confidence and collaborative fluency,
particularly in high-stakes, dynamic environments.

Fourth, as cognitive Al systems grow more capable, understand-
ing their social and ethical effects hasbecome vital. Although existing
research has begun to explore trust, acceptance and moral tradeoffs
within human-Al interactions'®**%3?%, the field lacks solid research
on how cognitive Al might influence ethical reasoning or long-term
humanwellbeing. Forinstance, a cognitive Al systemusedin healthcare
resource allocation could influence an emergency manager’s ethi-
cal decisions by consistently framing allocation choices in ways that
prioritize efficiency over fairness, potentially reshaping the human’s
moral reasoning over time. These dimensions — such as influence on
humanvalues, fairness and long-term dependence — must be integral
to system design and evaluation.

Byaddressing the above challenges, the field can move towards truly
complementary human-Al teams that can improve decision-making
while upholding human values. The ultimate goal should not only be
more effective decisions, but also systems that protect, enhance and
empower human agency and wellbeing in complex environments.

Published online: 17 October 2025
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