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Nutritional epidemiology aims to link dietary exposures to chronic disease,
but theinstruments for evaluating dietary intake are inaccurate. One way to
identify unreliable data and the sources of errors is to compare estimated

intakes with the total energy expenditure (TEE). In this study, we used the
International Atomic Energy Agency Doubly Labeled Water Database to
derive a predictive equation for TEE using 6,497 measures of TEE inindividuals
aged 4 to 96 years. The resultant regression equation predicts expected TEE
from easily acquired variables, such as body weight, age and sex, with 95%
predictive limits that canbe used to screen for misreporting by participants
indietary studies. We applied the equation to two large datasets (National

Diet and Nutrition Survey and National Health and Nutrition Examination
Survey) and found that the level of misreporting was 27.4%. The macronutrient
composition from dietary reports in these studies was systematically biased
asthelevel of misreportingincreased, leading to potentially spurious
associations between diet components and body mass index.

Dietis amajor modifiable factorimplicated in many chronic diseases. A
persistent problem, however, is accurate quantification of what people
eat. Without thisinformation, it isimpossible to link nutritional expo-
sures to disease outcomes'. The commonest tool for assessing dietis the
foodfrequency questionnaire, whichasks individuals to recall frequen-
cies of intake of various foods over protracted periods. Shorter-term
instruments used to identify detailed dietary intake require individuals
to estimate and record the amount of food that they are eating (for
example, food intake diaries) or recall what they ate in the recent past
(for example, 24 hrecall)’. All these methods are prone to ‘misreport-
ing’ because people cannot accurately estimate the amount of food
they are eating, have fallible memories for their intake®* and may;, in
some cases, deliberately falsify reports*”. In addition, for food intake
diaries, people may react during the period of recording by changing
theirintake’. ‘Misreporting’ alsoincludes arange of other issues, such as
how dietary intake reported by participantsis converted into energy and

nutrients by the investigator, for example, by assuming that all apples
are the same size. Moreover, because food intake varies enormously
on a day-to-day basis®’, individuals may faithfully report what they
eat on a given day, but that day may be unrepresentative of what they
routinely eat (often called ‘under- or overeating’)'°. Making repeated
measures using the same instrument on different days may minimize
this last problem, but given the variability in daily intake, the number
of days that would be required to reduce the variation to a reasonable
levelis unrealistic for most population survey studies®". The problems
of misreporting and under- or overeating likely occur simultaneously in
many situations. Henceforth, for brevity, we will refer to the phenomena
of misreporting and under- or overeating as misreporting.
Misreporting has real negative consequences. For example, the
failure to recognize these problems led to decades of thinking that
people with obesity had very low energy intakes, and hence the posi-
tive energy balance leading to their obesity must be a defectin energy
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expenditure. It later turned out that measured energy expenditures
among people with obesity are notlow". The problem of misreporting
is so ubiquitous and severe that there have been calls for journals to
stop publishing studies based on methods that depend on participants
estimating their own dietary intake®. Yet, such studies continue to
proliferate in the literature. This popularity is perhaps because these
tools continue to be endorsed by various government bodies, such as
the National Cancer Institute (https://epi.grants.cancer.gov/asa24/
respondent/validation.html), people have been convinced by argu-
ments that they do have utility' and because there are no other feasible,
affordable and practical ways to assess total dietary intake.

When the problem of misreporting was first recognized inthe late
1980s"", an attempt was made to define cut-off limits by which intake
records could be screened for credibility’®. This was initially done by
predictingaperson’s basal energy expenditure (BEE) using prediction
equations based on height, body weight, sex and age. The estimated
BEE was then multiplied by 1.35 on the presumption that a daily total
energy expenditure (TEE) lower than1.35 x BEE would be incompatible
withsurvival. This limitis generally referred to as the ‘Goldberg cut-off".
However, this approach is susceptible to two major problems: error
inthe predicted resting metabolic rate and the arbitrary nature of the
1.35 multiplier. Accordingly, the method can only detect and exclude
very low reported intakes” and many other inaccurate estimates may
evadedetection. These problems were detailed by Black’, who modified
the cut-offtaking into account levels of physical activity and measure-
ment errors in the BEE. This led to the ‘modified Goldberg cut-off".
Nevertheless, despite these improvements, the method still relies on
the estimated BEE and requires some unverified assumption of the
expected physical activity level (PAL).

The doubly labelled water (DLW) technique measures energy
expenditure directly from the elimination of isotopes of oxygen and
hydrogen introduced into the body in water®. The method has an
analytical error of about 7% depending on the equation that is used?.
McCrory et al.”?introduced a new way to use measurements based on
DLW to screen dietary recalls. This method was based on predicting
TEE fromregression equations based on earlier DLW measurements
using age, sex, weight and height as predictors. The TEE estimate
used by McCrory et al.?employed the equation of Vinken et al.>. The
standard deviation (SD) of the prediction was then used to define
cut-offs (at1and 2 SDs) to identify under- and over-reporters of food
intake. Although the approach of McCrory et al.”> has many ben-
efits compared with the use of the Goldberg and modified Goldberg
cut-offs, it is hampered by its reliance on equations derived from a
relatively small sample of 93 individuals (44 males and 49 females),
which included no men between the ages of 28 and 60, and no chil-
dren or adolescents. Moreover, the cut-off limits of 1 and 2 SDs are
alsoarbitrary.

In this context, we have assembled a database of DLW measure-
ments of healthy individuals®*. The database includes measurements
of over 7,500 individuals of diverse ethnicity aged 8 days to 96 years.
Hence, energy demands through thelife course have been documented
inunrivalled detail® and other factors, such as ambient temperature,
that may influence TEE have been elucidated®. Although we previ-
ously published prediction equations for TEE using this database®,
these equations took as their inputs fat-free mass (FFM) and fat mass
(FM), measures that are routinely unavailable indietary surveys. In this
study, we derived prediction equations for TEE and confidence limits
based oneasily measured input parameters using 6,497 available data
dividedinto 5,899 individuals as the analysis set and 598 as the valida-
tion set. These equations allow the identification of individuals who
may be under-or over-reportingintake in dietary surveys. We demon-
strate their use in two publicly available dietary surveys, namely, the
National Diet and Nutrition Survey (NDNS)* and the National Health
and Nutrition Examination Survey (NHANES)*, which include a total
0f18,567 individuals, showing that the level of dietary under-reporting

is underestimated by previous tools and that this introduces bias in
evaluating dietary composition.

Results

Predictive models

We used two main approaches. The first was classical general linear
regression modelling including putatively important factors and their
two-way interactions as predictor variables. The variables included
were body weight, height, age, age x age (age?), self-reported ethnic-
ity, sex and elevation above sealevel of the measurement site. In the
second approach, we used three machine learning models (Random
Forest, XGBoost and Support Vector Regression) to derive predic-
tions. These machine learning models did notimprove on the classical
general linear regression modelling (Supplementary Information and
Supplementary Table 1), probably because the predictorsin question
were linearly related to the output variable. Hence, further treatment
was based on only the general linear regression modelling.

The derived significant predictors and their regression coeffi-
cients are reported in Table 1. The most significant predictor was the
natural logarithm of body weight (In(BW)). The other primary vari-
ables, that is, height, age, age?, elevation and sex, were all highly sig-
nificant (P<10%in all cases). Females had lower TEE than males. White
(non-Hispanic) participants tended to have slightly higher TEE and
African participantsliving outside Africa (AA) slightly lower, and both
were highly significant effects (P <107). The effects of other groups,
however, did not reach significance. The final model explained 69.8%
of the variation in In(TEE).

Inthisanalysis, wewereabletoderiveapredictive equationwitheach
coefficientreduced to four significant figures. The difference between
the calculations conducted using this equation and an equation using full
precision (10 decimal places) for the coefficientsin Table 1forarandom
sample of250 measurements was 0.03%. Reducing the significant figures
tothreeincreased the discrepancy by afactor of ten (0.4%).

In(TEE) =
—0.2172 + 0.4167 x In (BW) + 0.006565 x Height
—0.02054 x Age + 0.0003308Age2 —0.000001852
xAge’ + 0.09126 x In (Elevation) — 0.04092 x Sex
+0.01940 x A — 0.03899 x AA + 0.006238 x AS
+0.02626 x W — 0.0155 x H + 0.003589 x NA
—0.0006759 x Height x In (Elevation) + 0.002018
xAge x In (Elevation) — 0.00002262 x Age’
xIn (Elevation) — 0.006947 x Sex x In(Elevation)

Here, TEE isin megajoules per day, BWisin kilograms, heightisin cen-
timetres, age is in years, sex is coded -1 for males and +1 for females,
and the elevation of the measurement location is in metres. For the
self-reported ethnicity codes, for African, Awas 1and O otherwise, for
Africanindividualsliving outside Africa, AAwas1and O otherwise, for
Asian, AS was 1and O otherwise, for white, W was 1and O otherwise,
for Hispanic, Hwas 1and O otherwise, for not available, NA was 1and
0 otherwise. Mixed race individuals were coded as NA (see Methods).
Two worked examples for the calculation of TEE for two different indi-
viduals are provided in Supplementary Table 7.

Theresiduals of the prediction were well distributed with respect
tothe major predictors, suggesting that the prediction was not biased
(Supplementary Fig. 1). In addition, there was no significant relation-
ship between the residual of the prediction and weight change during
the measurement period (n = 3,088 with reported weight change,
F=0.19 and P=0.665; Supplementary Fig. 2a), suggesting that the
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Table 1] Significant terms in the general linear model analysis (10 decimal places) predicting TEE

Term Coefficient SE coefficient Tvalue Pvalue
Constant -0.21723930921 0.0757 -2.87 0.0041
In[BW (kg)] 0.41666419569 0.00958 43.51 <107°

Height (cm) 0.00656496388 0.000618 10.62 <107°

Age (yr) -0.02054339322 0.00218 -9.41 <107

Age? (yr?) 0.00033079019 0.000037 9.06 <10°°
In[Elevation (m)] 0.09126350903 0.0186 4.89 0.000001
Sex -0.04091711710 0.00769 -5.32 0.000000M
Ethnicity®

A 0.01939639976 0.00749 2.59 0.0096

AA -0.03899332615 0.00544 =717 <10°°

AS 0.00623768257 0.00808 0.77 0.44

W 0.02625775059 0.00397 6.62 <10°°

H -0.01554772302 0.00982 -1.58 omn

NA 0.00358921276 0.00636 0.56 0.57
HeightxIn[Elevation (m)] (cm) -0.00067594646 0.000136 -4.98 0.00000066
AgexAge? (yr’) -0.00000185178 0.000000 -8.93 <10°°
AgexIn[Elevation (m)] (yr) 0.00201815477 0.000383 5.28 0.00000014
Age?xIn[Elevation (m)] (yr?) -0.00002262281 0.000004 -5.89 0.0000000041
In[Elevation (m)]xSex -0.00694699228 0.00179 -3.87 0.0001

A, African; AA, African living outside Africa; AS, Asian; W, White; H, Hispanic; NA, not available. SE, standard deviation.

energy expenditure from this predictive model is a good proxy for
intake in individuals that are not attempting to lose or gain weight or
sufferingloss of appetite duetoillness. That is because the metabolic
rate generally declines when individuals are engaged in deliberate
weight loss, and the opposite happens during overfeeding. Hence,
ifindividuals were not in energy balance, we would expect a positive
relationship between weight change and residual energy expenditure.
Ninety-five per cent predictive intervals (95% PI) are the range of values
that are 95% likely to contain the true value for a single new observa-
tion based on specific values of the predictor variables. The predic-
tive interval depends on the T-critical value for the given confidence,
the estimated mean and the standard error of the response variable,
the sum of squares and the specific and mean values of the predictor
variables, and the total sample size on which the prediction equationis
based. For all of the test samples, we used standard statistical software
(Minitab v19, https://www.minitab.com) to calculate the upper and
lower predictiveintervals and then defined two additional equations to
identify the 95% Pl around the predictions.
This gave

Lower 95% Pl = ( pTEE x 0.7466) — 1.5405

Upper 95% Pl = ( pTEE x 1.3395) + 2.7668

where pTEE is the predicted mean TEE (MJ d™). This interval provides
an objective evaluation of the confidence that can be placed in any
given prediction using the derived regression equation. Using this
predictive interval to screen observations is a superior approach to
previous attempts to screen dietary reports, which were all based on
arbitrary cut-off points.

For the 598 individuals in the validation set, we derived the pre-
dicted TEE and the upper and lower 95% Pl for the mean estimates using
the equations derived above (Supplementary Fig. 2). We then counted
the number of actual measurements of TEE in the validation set that
fell outside the predictive interval for TEE (Supplementary Fig. 2b).In

total, from 598 measurements in the validation set, 14 fell below the
lower predictiveinterval (2.3%) and 20 were above the upper predicted
limit (3.3%). The validation dataset confirmed that 94.6% of independ-
ent TEE measurements were within these 95% predictive limits (Sup-
plementary Fig. 2b). We then explored whether the equations could
produce credible predictions for groups that were not included in
the original derivation but whose data were available in the database,
specifically 246 athletes and individuals engaged in unusual levels of
physical activity and 176 females during reproduction. The predictions
significantly underestimated the observed expenditures of all these
groups (Supplementary Information, Supplementary Fig. 3 and Sup-
plementary Table 6). Therefore, the prediction equation derived here
cannot be used for these populations.

Application to exemplary survey data

Demographicstatistics for the individuals used in the comparison are
presented in Supplementary Table 2. In total, there were 12,694 records
availablein NDNS and 5,873 in NHANES. On average, the individualsin
NHANES were around 6-10 years older than those in NDNS. Twenty-five
per cent of the sample in NHANES self-reported as African living out-
side Africa and 22% as Hispanic. In contrast, 94% of the participants
in NDNS self-reported as white. We compared the net energy intake
with the predicted TEE from the above equation. Using the predictive
equations developed above, the number and percentage of individuals
that fell outside the predicted limits (both over and under) and within
the predicted limits are shownin Table 2, stratified by data source, age
(adults versus children) and sex.

For adults in NHANES, approximately 67.9% of dietary reports
were within the predictive interval (65.1% for males and 70.7% for
females). For children, the percentage within range was considerably
higher (by13-14%) than for adults. A similar pattern was noted for the
NDNS data. For adults, 61.9% of males and 70.3% of females were within
the predictioninterval. The percentage of childrenin range was about
20% higher than for adults. This means that alarge percentage of data
fell below the lower predictive interval due to either undereating or
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Table 2| Summary of observations inside and outside the tolerance limits in the NDNS and NHANES datasets

Number Percentage of Number within Percentage of Number Percentage of Total
underestimated  total range total overestimated total
NDNS
Male children 436 17.40 2,067 82.48 3 0.12 2,506
Female children 37 15.64 2,000 84.32 1 0.04 2,372
Male adults 1,250 37.96 2,039 61.92 4 0.12 3,293
Female adults 1,341 29.65 3,180 70.31 2 0.04 4,523
Male all 1,686 29.07 4,106 70.81 7 0.12 5,799
Female all 1,712 24.83 5,180 7513 3 0.04 6,895
NHANES
Male children 135 19.01 562 7915 13 1.83 710
Female children 108 14.32 634 84.08 12 1.59 754
Male adults 691 32.76 1,372 65.05 46 218 2,109
Female adults 654 28.43 1,625 70.65 21 0.9 2,300
Male all 826 29.30 1,934 68.61 59 2.09 2,819
Female all 762 24.95 2,259 73.97 33 1.08 3,054

The data show the numbers and percentages of participants that fall inside and outside the tolerance limits in the NDNS dataset (years 1-11) and the NHANES dataset (2017-2018).

misreporting. For NHANES, the figures for adults were 32.8% in males
and 28.4%in females. For NDNS, the overall values for adults were 38%
inmales and 29.7% in females. In both surveys, children were less likely
to under-report/undereat by 14-21%. We compared the detection of
under-reporting using our equation with the previous models pro-
posed by Goldbergetal.”, Black’ and McCrory et al.”> (Supplementary
Table 3). On average, the Goldberg cut-off indicated 16.7% and the
Black cut-off 23.4% under-reporting, both far less than is indicated
here. The level of under-reportingidentified using the McCrory et al.”
equation depended very heavily on whether 1 or 2 SDs were used as
the cut-off. With 1SD, the level of under-reporting was greater than
we predicted (47-63%), but it was much less using 2 SDs (10.7-21.4%).

Effects of age and body mass index on under-reporting

We plotted the difference between the survey estimate of daily energy
intake and the predicted TEE as a function of age and body mass index
(BMI) for both the NDNS and NHANES datasets (Fig. 1). In adults, the
extentof under-reporting was almostindependent of age in both data-
sets, although there was a slight improvement with age in the NDNS
dataset (P<0.001). The average discrepancy in the NDNS was 3.5 M)
for both females and males. In NHANES, the average discrepancy for
maleswas1.8 MJ and for females it was 2.8 MJ. Inboth the NHANES and
NDNS surveys, the data for the very young, whose surveys were generally
completed by their care providers, were at or slightly above the expected
intakes. There was a strong deterioration in the number of plausible
estimates through childhood as the children started to complete their
ownsurveys, until, by age 16, the discrepancies matched the adultlevels
(Fig.1a). The deficitbetweenreportedintake and predicted expenditure
was strongly negatively correlated withindividual BMI (Fig. 1b). Inboth
surveys, there was no discrepancy between what adults and children
withaBMIl of around 15-20 kg m2reported eating and their predicted
expenditure. However, the discrepancy got larger as the BMlincreased
in both adults and children. The effect in children was greater thanin
adults. Hence, in NDNS, a child witha BMI of 40 kg m?had adiscrepancy
of 9 MJ d!, while an adult with a BMI of 40 kg m~had a discrepancy on
average of only 5 MJ d . InNHANES, for aBMI of 40 kg m, the discrep-
ancies were 8 MJ d* for children and 4 M) d* for adults.

Under-reportinginrelation to macronutrient intake
Next, we explored the relationship between the discrepancy in
energy intake and the proportional macronutrient composition

(percentage energy) of the reported diet (Table 3). If there was no bias
in the under-reporting, then we would expect no differences in the
coefficients with respect to the different macronutrients. Contrasting
this prediction in the data that were not screened, there was a strong
relationship between the reported percentage of energy as proteinin
the dietand the absolute size of the energy discrepancy (Fig.2). Asthe
level of protein in the diet increased, the discrepancy became more
negative. Foreach1.0%increase in reported protein energy, the differ-
ence between reported energy intake and actual intake decreased by
around 200 kJ d'inboth NDNS and NHANES (Table 3). Note that as most
data fall below the line of equality, this negative relationship means
that as the self-reported percentage of protein in the diet increased,
thediscrepancy between the self-reported total energyintake and the
predicted total energy expenditure got larger (Fig. 2). In contrast, asthe
percentage of fatenergy in the dietincreased, the discrepancy between
the reported and predicted intake became more positive and the dis-
crepancy got smaller (Fig. 2). The effect was smaller than the impact
of protein and was different between surveys. The effectin NDNS was
approximately twice as large as thatin NHANES. InNDNS, there was no
significant effect of the percentage of carbohydrate energy in the diet
onthediscrepancy, butin NHANES, carbohydrates had asimilar direc-
tion of effect as protein, but the effect size was about a tenth as large
(Fig.2and Table 3). These differences indicate that the assumptionin
dietary surveys that diet composition is independent of the extent of
misreporting s likely to be false. Individuals who under-reported their
totalenergy intake alsoreported agreater percentage of proteinenergy
and areduced percentage of fat in their diets (Fig. 2). These effects
are unlikely to be limited to macronutrients as the total energy and
macronutrient composition are derived from the self-reported list of
food items consumed. The bias in macronutrient reporting found in
this study strongly suggests corresponding recall bias in the types of
food recalled and thus micronutrient intakes as well. The magnitude
of this effect may well depend on the food and nutrient examined.
Screening the data using the tool presented here toremove those
outside the predictive interval (that is, under- and over-reporters)
massively attenuated these bias effects (Fig. 2 and Table 3). However,
this course of action necessitates the removal of a large percentage
of the collected dietary records and this is wasteful of the effort to
collect such data. There are several possible alternative approaches.
One potential method is to conduct the analysis including or exclud-
ingthe dataoutside the predictiveinterval. Ifthere are no biases, then
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the outcomes should be the same and in such a case reverting to the
full dataset would be appropriate. Another alternative is to model the
factors that influence the differences between the data identified as
implausible and attempt some form of correction of the problematical
dietary records. Whatever the adopted approach, we suggest that by
using the tool that we provide here, nutritional epidemiologists may
enhance the quality of their work and have greater confidence in their
conclusions.

Asthereis a systematic trend between macronutrient intake and
the extent of under-reporting and because under-reporting is related
to BMI, there was a strong positive relationship between the reported
dietary intakes of protein and BMIinboth surveys (Fig. 3 and Table 4).
In contrast, there was a strong negative effect for carbohydrate intake
(Fig.3and Table 4), while the relationship of fat intake to BMI differed
betweenthesurveys, being positivein NHANES and negative in NDNS.
Thestrengths and gradients of these effects were significantlyimpacted
by restricting the analysis to only those data within the acceptable
range. The gradient and R? values of the relationship between BMI
and protein were both strongly reduced (Fig. 3 and Table 4), while
the negative gradient for the relationship between BMI and carbohy-
drates became more negative and the R*value approximately doubled.
Higher carbohydrate intake was therefore strongly associated with a
lower BML. The relationship for fat content also became stronger (R?
increased) and the gradients, previously showing different trends for
the two surveys, were both positive. Higher reported fat and protein
intakes were both strongly associated with a higher BMI. All the rela-
tionships were highly significant (P<10™*, Table 4).

Discussion

Impact of repeated recalls on survey validity

Ifthe problem with misreportedintakesreflects undereating rather than
under-reporting, then making repeated surveys should alleviate the
issue, unless the undereating is a direct response to the survey instru-
ment. This could be anissue for food diaries, but should not be anissue
with 24 h recall. However, if participants developed reporting fatigue,
one might anticipate that the accuracy of reporting would decline as
the number of surveys wasincreased. InNDNS, some participants com-
pleted four surveys, while in NHANES, some participants completed
two. The number of individuals who fell within the expected range was
independent of the day of survey in NDNS (Supplementary Table 4a).
This suggested that there was no survey fatigue across the 4 days. When
theaverageintakes were taken across multiple days, this did notimprove
the percentage that fell within the predicted range (Supplementary
Table 4b). This indicates that the general problem of misreporting is

Table 3 | Relationships between the discrepancy of intake
to expenditure and self-reported dietary macronutrient
composition

NDNS (full data)

Term Coefficient SE coefficient  Pvalue
Constant -1,360.8 366.3 0.0002
Percentage carbohydrate 0.64 3.86 0.87
Percentage protein -207.3 6.42 <0.0001
Percentage fat 53.40 4.49 <0.0001
R? (%) 12.24
NDNS (screened)

Term Coefficient SE coefficient ~ Pvalue
Constant -2,184.56 302.94 <0.0001
Percentage carbohydrate 17.25 316 <0.0001
Percentage protein -105.67 5.96 <0.0001
Percentage fat 35.97 3.79 <0.0001
R? (%) 6.23
NHANES (full data)

Term Coefficient SE coefficient ~ Pvalue
Constant 1,025.15 936.0 0.27
Percentage carbohydrate -20.94 9.61 0.03
Percentage protein -207.65 13.77 <0.0001
Percentage fat 25.27 10.47 0.02

R? (%) 5.85
NHANES

(screened)

Term Coefficient SE coefficient P value
Constant 633.72 734.47 0.39
Percentage carbohydrate -11.62 7.53 012
Percentage protein -112.42 .74 <0.0001
Percentage fat 16.42 8.29 0.048
R? (%) 316

Multiple regression analysis of the discrepancy between intake and predicted expenditure
and the self-reported macronutrient composition of the diet in the NDNS and NHANES
surveys. In both cases, ‘full data’ refers to the analysis of the whole dataset and ‘screened’
relates to the analysis of the screened data.
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Fig. 2| Misreporting and macronutrient intake. a-c, The discrepancy between
the predicted TEE and the reported energy intake in the NHANES and NDNS
surveys plotted against the self-reported intakes of fat (a), protein (b) and
carbohydrates (c) as a percentage of the total energy. For each macronutrient,
the top two plots show data from the whole sample (full data) and the bottom two

plots show the data from the sample screened to include only those individuals
within the predictive interval of the equation (screened). Significant effects in the
whole sample were severely attenuated in the screened sample (see Table 3 for
regression details).

not undereating but under-reporting, and that such under-reporting
was consistent across days. The consistent magnitude of misreporting
suggests that there is little benefit of completing multiple surveys as
amechanism to eliminate misreporting. Similar patterns were found
for the NHANES analysis, where the percentage of individuals in the
expected range was not different between the two surveys and accuracy
was not improved by taking the average (Supplementary Table 5).

The predictive equation based on general linear modelling
explained >69% of the variation in TEE. This is less than was achieved
with anequation based on fat-free mass, fat mass and age derived from
the same dataset®, which explained 83% of the variation (butinasample
restricted only to adults). The significant effects of additional variables
beyond body weight, such as height, sex and self-reported ethnicity,
therefore likely exert their effects because these traits alsoimpact FFM as
acomponent ofbody weight. For example, females of agiven height and
weight tend to have greater fat mass and lower FFM than males. Thus,
whenbody weight rather than FFMis used as a predictor, sex also enters

asasignificant term; conversely, when FFMis used asa predictor, sexis
no longer significant*. The effects of elevation were unanticipated and
their numerousinteractions with other variables suggest that this may
alsoberelated totrendsin FFM with elevation. On average, it gets colder
astheelevationincreases. However, it is unlikely that the elevation effect
isdue to decliningambient temperature, asin asubset of the same data
(restricted to the USA), we found no effect of ambient temperature on
TEE*.Independent of body composition, it is established that elevation
affects BEE, whichisamajor component of TEE”. The age effectincluded
squared and cubed terms, also consistent with previous work suggesting
nonlinear impacts of age on metabolic rate”*°.

If FFM and FM explain more of the variation in TEE, then a valid
question is why not use that equation on which to base the screen-
ing? The problem with such an approach, however, is the accuracy
of the estimates of FFM and FM. In the equations derived previously,
the percentage FFM and FM came from isotope dilution estimates of
body water, which derive from the DLW method. Performing isotope
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Fig. 3| Relationships between the reported dietary intakes of macronutrients

and BMI. a-f, Relationships between BMI and the intakes of fat (a,b), protein
(c,d) and carbohydrate (e,f) for the NHANES and NDNS surveys. Panels a, cand
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eshow the data for the whole sample and panels b, d and fshow the data for those
individuals whose total energy intake was within the predictive interval (that s,
excluding under- and over-reporters).

dilution onall survey participantsinlarge surveys would be challenging
and costly. Alternative approaches to measuring FFM in survey set-
tings, however, are less accurate. Thus, the extra predictability of TEE
afforded by having estimates of FFM and FMis negated by the reduced
accuracy of cheap FFM and FM assessments. A second question is
how do the equations take into account different levels of physical
activity? The modified Goldberg approach accounts for this by using
differentlevels of PAL (the ratio of TEE to BEE). The main problem with
this is equating the PAL level to a level of physical activity® and the
inaccuracies involved in people self-reporting how active they are. In
the current approach, we included a large sample of individuals who
haveadiversity of PAL levels that make up the total TEE. By predicting
TEE directly, we automatically account for the diverse effects that
other factors may have on PAL and hence TEE, such as age, sex and
ethnicity. The 95% prediction limits therefore cover the vast majority
ofindividuals. The exceptions are groups who have particularly active
lifestyles. We showed that the equations significantly underestimate
the expenditure of such groups (Supplementary Fig. 3). In addition,
the equations significantly underestimated TEE in pregnant and
lactating females.

Detection of under- or over-reporting and under- or overeating
Therewasvery little change in the level of undereating/under-reporting
withage.Incontrast, age has previously beenidentified asastrong factor
forunder-reporting energy intake*>*. Ina previous study, 36% of women
and 34% men aged 40-69 years underestimated energy intake®. Simi-
larly,in a different study,among women and men (n = 28) aged between
35and 67 years, the discrepancy was19% (ref. 36). There was noincrease
inthelevel of under-reporting in individuals who were aged >70 years,
where one might anticipate that memory functions mightimpair recall
fidelity. In contrast, for young children, where intake diaries are gener-
ally completed by an adult, the agreement between expectation from
the equationand the estimates from the survey report was much better.

Itis often claimed that instruments in dietary survey work were
designed to assess the types of food being consumed and not the total
energy intake. Hence, reported total energy intake could be incorrect,
but that does not necessarily mean that the percentage macronutri-
ent compositions are erroneous because the error may be unbiased.
If so, it would mean that dietary survey work might not be as flawed as
is often claimed®. If misreporting was unbiased, then the discrepancy
between the survey intake and the DLW prediction would be unrelated
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Table 4 | Relationships between macronutrient intake and BMI in both datasets

Macronutrient Survey Whole data Within 95% PI
Gradient R? P Gradient R? P

NHANES +0.118 0.0109 <10™® +0.156 0.019 <10
Percentage fat

NDNS -0.0376 0.00M 0.000099 +0.0355 0.00M 0.0014

NHANES -0.1498 0.0276 <10 -0.1763 0.038 <10™
Percentage carbohydrate

NDNS -0.2306 0.0709 <10 -0.2966 0.123 <10™

NHANES +0.2309 0.0142 <10 +0.1591 0.006 <10®
Percentage protein

NDNS +0.4227 0.0578 <10™® +0.3328 0.030 <10™®

Multiple regression analysis of macronutrient intake and BMI in the NHANES and NDNS datasets using the whole data and only the observations where the total dietary intake was within the
predictive interval of the regression model. Gradient represents the change in BMI for each 1% change in macronutrient intake.

to the macronutrient composition of the reported diet. In other words,
each macronutrient would have the same relationship to the level of
misreporting. Thiswas not the case. The level of reporting was strongly
related to the reported protein intake, with lesser and opposite effects
for fat. Carbohydrate had lower and contrasting effects across surveys.
When people under-reported their intake, they tended to also report
an elevated percentage of protein intake and a lower percentage of fat
intake. Therelationship between misreporting and macronutrient com-
positionis consistent with previous work showing that under-reporters
oftotalintake also report consumingagreater percentage of protein” .
In these previous studies, only Cook et al.”, Bel-Serrat et al.* and Pre-
videlli et al.”* observed a contrasting effect for fat consistent with the
magnitude of the different fat effects between surveys observed here*.
Because under-reporting is also strongly linked to BMI (Fig. 1), there is
enormous potential to misinterpret associations between dietary survey
reports of macronutrient intake and BMI (Fig. 2). BMI-related biases in
reporting could affect other analyses as well, for example, the relation-
ship between particular food types and markers of inflammation. We
show here that using our tool to identify misreporting individuals, the
associations between dietary self-reported macronutrient intake and
BMlIwere significantly modified, indicating the utility of the tool.

Limitations

We used estimates of TEE derived from the DLW method to infer food
energy intake. There are several assumptions in this procedure. Con-
verting CO, productioninto energy expenditure depends on knowledge
of the respiratory quotient (RQ). In general, the RQ was not known in
the studies submitted to the database and an assumed value of 0.83
was used. Deviations from that value due, for example, to having adiet
particularly richin fat or carbohydrates adds errorinto the estimated
TEE. That might then complicate comparing the extent of misreporting
with dietary composition. For example, if an individual had an RQ of
0.78, reflecting high fatintake, and we assumed an RQ of 0.83, then we
would overestimate TEE and make under-reporting more likely to be
detected. However, the difference in TEE in this instance would only be
4.5%, and hence this would have only a marginal impact on the detec-
tion of misreporting in relation to fat intake. In addition, converting
energy expenditure into an estimate of food intake assumes that the
individuals arein energy balance over the time course of the measure-
ment. We consider that the individuals in the sample used to derive
the equation were likely to be in energy balance because the residual
TEE values were not related to weight change over the interval of the
measurement. Thisis not necessarily the case forindividualsinvolved
indietary surveys and one should always be cautious that deviations
from the predictions are not due to misreporting, but because the
person was under- or overeating. Although we had a large sample of
TEE data, the predictive model explained only 69% of the variationin
TEEand theresultantabsolute errorin the predicted values of the test
set averaged 11.2%. Because we used the 95% Pl around the average to
define implausible records, then by definition 5% of such records will

beerroneouslyidentified andin fact be valid reports. In the future, this
prediction may be improved by integrating independent measures
of physical activity, for example, by accelerometry, into the model.
However, the utility of this extra information in terms of detecting
erroneous food intake reports in dietary survey work may be limited
because few such surveys have objective measures of physical activity
collected by, for example, accelerometry.

Implications and future directions

Accurately measuring what people eat is essential for understand-
ing the consequences of components of food intake for health. It also
contributesto our understanding of many other areas, including food
security and quantifying food waste. The main tools that we currently
use to do this were developed more than 50 years ago, they depend
on self-report and are widely acknowledged to provide inaccurate
information. Tools to identify misreported data already exist. In this
study, we developed an enhanced approach to identify potentially
erroneous and implausible reports. The tool is not perfect and it will
itself misidentify about 5% of reports aswrong when they arein fact cor-
rect, butitimproves on previous approaches toidentify problematical
data. Applying the tool to two large surveys suggested that 27.4% of the
dietary reports had implausible energy intakes and probably therefore
erroneous intake of macro- and micronutrients. Ultimately, the main
benefitof this toolis thatit may highlight the true level of dietary misre-
porting when using existing methods and drive us towards innovating
radical approaches that do not rely so much (or at all) on self-report.

Methods

Thisisaretrospective analysis of cross-sectional data. Data collection
started before establishment of the clinical trials registry. The goals of
this analysis were pre-registered on the International Atomic Energy
Agency (IAEA) DLW Database site in 2020. The original data on which
itisbased were subject to ethical review at diverse institutions.

Developing the prediction algorithm

The predictive algorithm was derived from ananalysis of measurements
submitted to the IAEA DLW Database (version 3.6; dlwdatabase.org).
Thisincluded dataderived from DLW studies in 32 countries with 7,646
male and female participants, compiled from 128 different published
and unpublished studies. The measurements relate to individuals who
were not engaged in dietary or exercise interventions. The component
studies have generally screened out people who have specific diseases,
suchastype2diabetes or cancer, intheir recruitment processes. There-
fore, thesegroupsare notrepresented in the dataand may have different
levels of energy expenditure and food intake from those predicted here.
Inaddition, we further eliminated datarelating toindividuals engagedin
unusual levels of physical activity (for example, participantsin the Race
Across America® or individuals climbing Mount Everest*®), measure-
ments of amateur or professional athletes (for example, professional
footballers* and jockeys*®) and females who were pregnant or lactating.
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We did not eliminate measurements of hunter-gatherer*’ and subsist-
ence agriculture populations™ as evidence suggests that these do not
differ fromwesternized populationsintheir energy expenditures, once
normalized for body weight. However, such measurements comprised
lessthan1% of the total and their inclusion or exclusion does not materi-
ally alter the predictive equations. In total, we had measurements for
7441individuals that met all the inclusion criteria.

The data in the database were all recalculated using a common
equation that was shown in validation against chamber calorimetry
to provide the most accurate and precise measure of CO, produc-
tion”. These estimates were converted to TEE using the modified Weir
equation® with either aknown food quotient, ameasured respiratory
quotient derived from 24 h chamber calorimetry or, in the absence of
otherinformation, anassumed RQ of 0.85. Aninitial analysis suggested
thatderivingacommon equation that covered all age classeshad ahigh
level of residual error. The structure of the residuals showed that most
error was incurred among the youngest participants. We therefore
restricted the final analysis to individuals aged >4 years. In total, for
this age group, we had 6,497 measurements available. We assigned
random numbers between 0 and 10,000 to the measurements and then
sorted themin order of increasing random number. We then selected
the first 90% of measures (n =5,899) as the analysis set and retained
the remainder as a validation set (n = 598). These data were derived
principally from the USA and Western Europe (87.8%), measured mostly
since 2000, with lesser contributions from other countries. They are
dominated by white (56.5%) and African American (15%) ethnicgroups,
withlesser contributions by Hispanic, African and Asian ethnic groups
(all ethnicities by self-report). We included the elevation of the study
location, but did not include ambient temperature during the meas-
urement period because a previous analysis has shown that this is not
asignificant predictor, atleast for data from the USA*. Moreover, this is
notgenerally available for survey work. We did not use date of measure-
ment despite recently showing that TEE has declined over time in the
USA and Europe in adults® because the current data include children
between the ages of 4 and 16 as well as data from additional countries
where this relationship to time does not necessarily apply. Moreover,
we cannot be sure that this trend will continue into the future.

We combined the TEE measurements with additional information
that can be routinely measured in survey work without the need for
complex equipment. These extra variables (with the measurement
units) were body mass (kg), height without shoes (cm), self-identified
sex (m/f), age (yr) and self-reported ethnicity. Ethnicity included
African, African living outside Afirca, Asian, white, Hispanic and
not-available (10.4%). A small number of individuals identified as
mixed race or ‘other’ (2.9%) and these were all coded as ‘not available’
as there were insufficient data to include different combinations
separately. We are aware of the discussions regarding the inclusion of
ethnicity into analyses of this type and of the history of their misuse
in medicine and biology. By including self-reported ethnicity, we do
not intend to imply that there is any fundamental physiological or
genetic basis to these differences, or that any particular group has
‘superior metabolism’ compared to others. We emphasize that these
areself-declared ethnicities and not attributed. If self-declared ethnic-
ity was unavailable in a particular survey or if there were objections
for whatever reason to the use of ethnicity as part of the prediction
model, then the default was to use ‘not available’, which has a coef-
ficient approximatingto O.

Because the relationship between body mass and TEE follows a
power law”, we log-converted TEE and body weight before analysis. We
log-transformed other variables such as elevation because they were not
normally distributed. Moreover, as thereis a curvilinear relationship of
the normalized TEE with age, we included both age and age? as predic-
tors. We then fitted a generalized linear model to the data using the
statistical program Minitab (v19), including all of the primary variables
and all of theinteraction terms (up to three way). We refined the model

by retrospectively deleting non-significant terms, starting with the
three-way interactions, and then non-significant two-way interactions.
Seventy sets of data were eliminated because of incomplete predictor
data (all missing the elevation of the measurement site). We plotted the
residual variation against the original predictors to assess whether there
was any bias in the predictions (Supplementary Fig. 1). This suggested
that the predictors were not biased. Predicted TEE might notbe agood
estimator of energy intake if individuals are changing weight during
the measurement period. Thatis because whenindividuals are gaining
weight they may be consuming more than they expend, and vice versa
when they are losing weight. However, there was also no significant
relationship between weight change during the measurement period
andthe TEE (Supplementary Fig. 2a), suggesting that this did not com-
promise the predictions. This could be because the majority of weight
difference over the 2-week measurement period is not stored energy
(forexample, most of it is water and perhaps differences in gut fill) and
thatthe remainingenergy storage is relatively small compared with total
expenditure over a 2-week interval. We did not have information on
weight change over longer periods to evaluate whether thatinfluenced
the measurements. A recent study found that eliminating individuals
who had greater than 5% weight change over the 6 months preceding
the TEE measure attenuated therelationship between TEE and all-cause
mortality*>. Childhood growth might also affect the assumption that
TEEisequal to energy intake. If we take the extreme example of arapidly
growing adolescent gaining 10 kg per year, that would be equivalent
to 0.38 kg over a typical 14-day DLW measurement. If we assume that
this mass comprised 65% water, 20% lean tissue and 15% fat, then the
extraenergy intake above expenditure to deposit this tissue would be
about 0.3 MJ, or about 3% of energy expenditure. The direction of this
discrepancy would push participants towards over-reporting.

Validation

We compared the predicted TEE with the observed TEE for the randomly
selected 598 data in the validation dataset (Supplementary Fig. 2a).
There was a strong correspondence between the observations and
the predictions (R*=0.67), and 94.6% of the observations were within
the 95% PI of the corresponding predictions. The average absolute
deviation between the predictionand observationinthis validation set
was 11.2%. In addition, we explored whether the predictions from the
equation might be valid for other groups notinvolved in the derivation
of the equations, specifically athletes, individuals engaged in unusual
activity and reproductive females. In all cases, the observed expendi-
tures of these special groups exceeded the predictions. The average dis-
crepancy across all of the athletes was 8.9 M) d* (SD =1.59) and acrossaall
of the reproductive females was 8.04 MJ d™ (SD =1.50). A more detailed
breakdownis provided in Supplementary Table 6. This confirms that the
prediction equation cannot be used in these unusual cases.

Sensitivity analysis

Survey work may not always have all the data available on which to
make a prediction. We considered the impact of not having the eleva-
tion of the person’slocationand not having the person’s self-reported
ethnicity. For the sensitivity to elevation effects, we compared the pre-
dicted TEE in the validation set with the predicted TEE using a‘dummy’
elevation of 100 m. The absolute errorin the predicted TEE by using the
dummy elevationin the validation dataset was 2.3%. We also explored
theimpact of not knowing the ethnicity on the predicted total energy
expenditure (TEE). The ethnic category ‘not available’ was used as a
standard to calculate theimpact of knowing or not a person’s ethnic-
ity. The change in predicted TEE by knowing the person’s ethnicity
compared with ‘not available’ was 2.29% for white, -4.17% for African
livingin Africa, 1.59% for African living outside Africa, 0.27% for Asian,
-1.9% for Hispanicand -0.36% for ‘other’. In general, these errors were
smallrelative to the predictive interval, but clearly having acomplete
predictor dataset provides abetter prediction thanincomplete data.
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Machine learning approaches

We used three different machine learning approaches to analyse the
data using the same predictor variables: Random Forest, XGBoost
and Support Vector Regression. Random Forest is a model that uses
multiple trees to train and predict samples. It builds multiple unrelated
decision trees by randomly drawing samples and features to obtain
predictions in parallel. Each decision tree yields a prediction from
the samples and features drawn, and the regression prediction for
the whole forest is obtained by combining the results of all the trees
and taking the average. Features are randomly selected as the subset
of features to be selected when building the tree. Random forests are
resistant to overfitting and do not require feature selection. However,
as Random Forest does not give continuous output values, it may not
be as effective in solving regression problems as it is for solving clas-
sification problems. Moreover, if the noise level in the data is high,
the performance of Random Forest may decay. XGBoost is amachine
learning library that focuses on gradient-boosting algorithms. It was
created in 2014 and has attracted much attention for its excellent
learning results and efficient training speed. The XGBoost regres-
sion that we used is an optimization algorithm for Gradient Boosting
Decision Tree (GBDT) regression. GBDT works by training a tree using
the training set and the true values, then using this tree to predict the
training set and obtain the predicted values for each sample. Hence,
we obtained the residual, which was the difference between the true
values and prediction. We can then train a second tree, at which point
thetruevalueisnolongerused, buttheresidualis used asthe standard
answer. Once the two trees are trained, the residuals can be obtained
againforeachsample, thenathirdtreeis furthertrained,andsoon.In
short, the GBDT will learn the residual based on previously built trees
in each step. We can artificially specify the total number of trees or
monitor certain parameters to stop the training procedure. XGBoost
improves the GBDT by adding regularization, parallel processing and
built-in cross-validation. XGBoost can automatically handle missing
values of samples and it is much more stable than Random Forest. It
also has the advantages of being highly flexible, efficient in execution
and less proneto overfitting. One of its more significant disadvantages
fromour point of view is the very large number of parameters that can
be tuned, making it more challenging to tune parameters in practice
to activate the full potential of XGBoost. Support Vector Regression
(SVR)isavitalapplication branch of Support Vector Machines (SVMs)
and the basicideabehinditis to find the line of best fit. Here, we used
the epsilon Support Vector Regression (Epsilon-SVR) to do the predic-
tion. The advantages of SVR are its low computational complexity,
robustness tooutliers and excellent generalization ability. However, its
disadvantages are thatitis not suitable for large datasets and we found
in experiments that the preprocessing procedures, such as standard-
izing, strongly influenced its performance. This makes SVR less easy to
use thanother methods. See the Code availability statement for details
ofthe source code for the analyses.

Validation of the machine learning approaches

As detailed above, we used a randomly selected 10% of the original
dataset as a validation set. We plotted the predicted energy expendi-
ture from the three machine learning approaches against the actual
measured energy expenditure and calculated the summed deviations
to evaluate the performance of the different models (Supplementary
Fig.4).Inall cases, there was a strong correlation between the predic-
tionsand the observations. The summed deviations were very similar
between the different approaches, with the average absolute per-
centage error in the prediction being 11.6% for Random Forest, 11.4%
for XGBoost and 11.5% for SVR. These are all very similar to the mean
absolute error derived using the classical general linear modelling
(11.2%). We then looked at the correlation of the deviations between
predicted and actual datafor all of the methods (the correlation matrix
in Supplementary Table 1). This showed that all the approaches had

correlations with the observation that were almostidentical (R = 0.82)
and the deviations between each method and the observation were
very strongly correlated with each other (R = 0.96-0.99). In effect,
the approaches were all extracting the same predictive information
from the data. The error of around 11% independent of the approach
exceeds the analytical errorin the DLW method using the equation that
we employed, which is 7.7% (ref. 21). There is consequently a gap of
unexplained variation that may be possible to explain and refine the
predictions. However, the similarities in the different analytical mod-
els suggest that additional predictor variables would be required to
improve the model predictions.

Application to previous survey work

The NDNS is a UK government-commissioned rolling programme
funded by PublicHealth England and the UK Food Standards Agency. The
rolling programme from 2008 to 2019 is a continuous cross-sectional
survey that assesses the diet, nutritional status and nutrient intake of
individualsin the UK (England, Scotland, Wales and Northern Ireland)
living in private households. The survey aims to collect around 1,000
samples each year, equally divided into 500 children and 500 adults,
childrenaged1.5-18 years and adults aged 19 years and over. There are
two mainstages of the survey, namely, interviewer visits and a nurse visit;
allnutritional dataare collected during the interviewer visits. This study
used datafromyears1-11(2008-2009 to 2018-2019) for the population
aged 4 and over between April2008 and August 2019. The total number
of eligible individuals included in this study was 12,694.

The NHANES database, used by the Centers for Disease Control and
Prevention, contains datafromarange of surveys on healthand nutrition
conducted since the1960s. These surveys were initially carried out peri-
odically between1971and 1994, but since 1999 the surveys have been con-
tinuous. Around 5,000 non-institutionalized US civilians are interviewed
in their own homes each year and then complete a health examination.
The participants fill in a questionnaire regarding their socio-economic,
demographic, health-related and dietary information and are then subject
to a medical examination that assesses anthropometric and laboratory
measurements. A total of 5,873 participants in the NHANES (2017-2018)
aged 4-80 were eligible for inclusion inthe current study.

In the NDNS, the dietary intake of each participant was assessed
through a 4-day food diary that measured their consumption of all
foods and beverages during the study period. The respondents filled
ininformation on their diets, including the brands of foods and drinks
consumed, portionsizes, ingredients, leftovers, cooking methods and
any dietary supplements that they may have taken. A parent or carer was
asked tofillinthediaryfor childrenunder12 years. Sex refers to the sex
of the person eating the food rather than the parent doing the coding.
Older children completed the food diary themselves. Editors and coders
fromthe NDNS team were trained to code the dietary intakeinformation
and portionsizes, and the 4-day food diaries were analysed using Diet In
Nutrient Out, anintegrated dietary assessment system, and the Public
Health England NDNS Nutrient Databank food composition data***.

The NHANES nutritional assessment included a 24-hour dietary
recall interview with respondents across a range of ages. The assess-
ments were carried out by a trained interviewer who was fluent in
English and Spanish. A private room that contained a standard set of
measurement guides was used for this first interview. These guides
were used to assist the participants in estimating and reporting the
portion sizes of their consumed foods. The measuring guides were
specially designed to be used in the NHANES setting with a sample
population of US civilian participants. A second dietary interview was
carried out withall participants viaa phone call within 3-10 days of the
firstinterview. Spoons, measuring cups, rulers and food model book-
lets containing drawings of the measurement guides were provided
for the participants to help them more accurately report their portion
sizes during the telephone interview. Participants aged 12 years and
olderwere abletorecord theirintake without an assistant. For younger
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persons, sex refers to the sex of the person eating the food rather than
the assistant doing the coding. Food and beverages consumed were
coded using the US Department of Agriculture’s Food and Nutrient
Database for Dietary Studies to process individuals intake (http:/www.
ars.usda.gov/nea/bhnrc/fsrg and https://www.cdc.gov).

Both nutritional datasets were screened to remove incomplete
participant data and entered into the master spreadsheet so that the
DLW equation could be applied. Children under the age of 4 were
excluded and the cut-off age for classification as children was 16 years.
Ethnicity data were classified according to specific categories: white,
African, African living outside Africa, Asian, Hispanic, other and not
available. The elevation of location was set as the average of datain the
DLW dataset (158.5 m). The equation to calculate predicted TEE was
applied. Thetoleranceinterval was determined to calculate the upper
and lower level of TEE to provide the accepted range within which
daily energy intake must fall. Moreover, differences between energy
intake and predicted energy expenditure were calculated and com-
pared with the age and BMI of participants. Data on macronutrients
(carbohydrate, protein, fat and alcohol) were converted to kilojoules
and percentage of the total energy intake to compare individuals’
consumption with the value of differences between energy intake
and expenditure. Dietary intake from NHANES for both the first and
second 24-hrecall were used separately to determine whether there
was animprovementinreporting with greater familiarity of the survey
protocol. Then an average for both recalls was calculated and com-
pared with the estimated energy intake. In addition, the participants
of NDNS who completed all 4 days of the dietary intake survey were
used to assess whether there was an improvement with time when
repeating their energy intake survey.

Statistical analysis of the NDNS and NHANES datasets

Descriptive statistics for socio-demographic variables such asthe mean
and SD were conducted to describe both included males and females
fromthe NDNS and NHANES participants. Data were further splitinto
adults and children with a cut-off age of 16 years. The full DEE predic-
tionequation will notbe disclosed until publication. We calculated the
number of participants whose energy intake fell within the expected
variation around predicted energy expenditure. We then assessed
whether there were differences in the ability to self-report energy
intake withincreasing age and BMIusing linear regression. In addition,
multiple regression was used to determine whether different dietary
macronutrients (carbohydrate, proteinand fat) were more likely tobe
under-reported. Statistical analyses were conducted using R (v4.1.3)*
and Minitab (v19) and p < 0.05was considered statistically significant.

Data availability

All of the data used in the derivation of the regression model
are freely available via the IAEA DLW Database at https://
doubly-labelled-water-database.iaea.org/home and www.dlwdatabase.
org. Accessto the full database must be made viaan online application,
but a subsample is available without restriction for free download.
The NDNS data are subject to restrictions and are not available to
the public. Requests to access these datasets should be directed to
https://ukdataservice.ac.uk/. The NHANES data are freely available
at https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.
aspx?BeginYear=2017.

Code availability
The source code for the Python analysis is available in the Supplemen-
tary Information.
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Assessing dietin epidemiologic studies
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M Check for updates

Studies of diet and disease risk require assessments of long-termintake
that inevitably have measurement error and typically underestimate
energy intake. Using doubly labelled water (DLW) methodology to
develop predictive equations for energy intake and cross-sectional cor-
relations between macronutrients and body massindex (BMI), Bajunaid
etal.! conclude that “radical approaches” are needed in epidemiologic
studies of diet. However, they confuse requirements for estimation of
metabolicneeds, population surveys and epidemiologic studies, which
was the stated focus of their report. Their predictive equations are not
amajor advance, and their cross-sectional associations may them-
selvesbebiased and do notinvalidate widely used dietary assessment
in nutritional epidemiology.

Using DLW measurements, Bajunaid et al." confirm previously
described under-reporting of total energy intake, and they provide new
prediction equations for total energy intake based on body weight, age
and sex. They also suggest that cross-sectional correlations between
macronutrientintakes and BMl are biased by misreported energy intake
andsuggest thatexcluding participants withmisreportingmay reduce this
bias. Because their estimates of misreportingand BMlare both functions
of body weight, such exclusions may induce bias in these correlations.

Bajunaid et al. assert the superiority of their prediction
equations over the widely used Goldberg and Black equations without
evidence for their added value in epidemiologic studies. In the lifestyle
validationstudy, age-adjusted correlations for predicted energy intake
among the three methods were high (0.85-0.96 among women and
0.83-0.98 among men), driven mainly by body weight (correlations
withthe three methods=0.89-0.97) (Table 1). Correlations of predicted
energy intake from these equations with energy intake assessed by DLW
were similar (Table 1). Bajunaid et al. also assert that their equations are
asuperior basis for excluding study participants from epidemiologic
analyses because they provide 95% confidence limits, but these limits
are no less arbitrary for this purpose than other cut points, such as
one standard deviation or a specific percentile. In their corrected
publication?, the prevalence of under-reporting was only about half
of what they originally reported, and the modest difference between
their revised arbitrary prevalence of misreporting (27.4%) and that
estimated using the Black equations seems inconsistent with their
description: “On average, the Goldberg cut-off indicated 16.7% and
the Black cut-off 23.4% under-reporting, both far less than is indi-
cated here.” Furthermore, because the DLW method assesses energy
expenditure over several weeks while reported intakes are based on

ARISING FROM R. Bajunaid et al. Nature Food https://doi.org/10.1038/
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justone or asmall number of days, part of the “misreporting” is likely
toreflect true day-to-day variation, leading to an over-estimate of the
prevalence of misreporting.

The potential for misreporting of energy intake to bias associa-
tions between macronutrient intake and health outcomes was raised
previously by Mendez et al.’. These cross-sectional analyses are inher-
ently dubious due to strong potential for reverse causationand uncer-
tainty about when excess weight was gained or lost. Like Bajunaid etal.,
Mendez et al. found that the associations betweenintakes of dietary fac-
torsand BMIwere strongly affected by the exclusions for misreported
energy intake (primarily under-reporting defined by DLW). However,
inboth examples, such exclusions can induce selection bias because
both predicted energy intake and BMI are primarily functions of body
weight, whichis also likely to be correlated with the exposure (dietary
fat and other components)*.

Short of randomized trials, effects of dietary factors on body
weight are better studied in longitudinal analyses of change in diet
versus concurrent change in weight®. This better emulates a rand-
omized trial, and change in weight is much less strongly correlated
with attained weight (and thus energy intake) than in cross-sectional
analyses. As we described in response to Mendez et al., in longitudi-
nal analyses, associations of changes in dietary fat or other dietary
components with changes in body weight were minimally affected by
exclusions for under-reporting’. Thus, the cross-sectional associations
reported by Bajunaid et al. are probably influenced by selection bias.

In further response to issues related to misreporting of energy
intakeraised by Mendez et al., and now by Bajunaid et al., we conducted
aseries of analyses examining correlations between dietary intakes of
specific fatty acids and micronutrients and their corresponding blood
biomarkers*. Again, we found that these correlations were not sensitive
to exclusions based on DLW criteria or by Goldberg equations. Using
another strategy suggested by Prentice®, we found that the overall null
association between dietary fatand risk of breast cancer was also seen
among women with aBMlless than25 kg m™, agroup inwhom energy
intake is less likely to be under-reported’.

The broader issues of measurement errors in self-reported diet,
the only currently feasible way to measure most aspects of dietin large
prospective studies, have been the focus of many studies and meth-
odological developments over the past few decades®. Measurement
errors are not unique to diet; similar issues apply to physical activity
and most behavioural, environmental and biological variables, and
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Table 1| Age-adjusted partial correlation coefficients
among total energy intakes estimated using different
prediction equations, DLW and body weight

Goldberg Black Bajunaid DLW Body weight

Women (n=677)

Goldberg 1.00 0.94 0.85 0.59 0.97
Black 1.00 0.96 0.62 0.97
Bajunaid 1.00 0.61 0.89
DLW 1.00 0.61
Body weight 1.00
Men (n=644)

Goldberg 1.00 0.90 0.83 0.37 0.94
Black 1.00 0.98 0.43 0.97
Bajunaid 1.00 0.44 0.89
DLW 1.00 o.M
Body weight 1.00

Data are from lifestyle validation studies'®"? and physical activity was estimated as 1.55 times

basal metabolic rate using Schofield equations (Goldberg) and Mifflin equations (Black).

to outcomes such as depression and dementia. The dietary question-
naires used in most large cohort studies have demonstrated substantial
validity, as documented by correlations with biomarkers of intake,
carefully weighed recording of intake and reproducible prediction
of many health outcomes’ ' Because of variation over time in food
choices, the availability of foods, the composition of these foods and
updates in food composition databases, even perfect assessments
of diet over periods of months or a year will not represent diet over
the years or decades during which most non-communicable diseases
develop. Repeated measures with long-term follow-up are needed to
better representlong-term diets. Calibration of questionnaires to more
detailed quantitative methods canreduce effects of measurement error
further®. The most critical type of error to avoid s that associated with
the outcome, which is the reason to conduct cohort studies because
dietis assessed before the outcome.

Although useful, the DLW method, considered by Bujunaid et al.
as the gold standard, also has substantial error as an estimate of indi-
vidual usual energy intake, as recognized by Speakman et al.”. These
measurements are not standardized, and in a blinded reproducibility
study among 18 differentlaboratories, the estimates of energy expendi-
ture show large variation'*. Among participants of similar age and sex,
repeated measurements over several monthsyielded anintraclass cor-
rection of approximately 0.7 (ref.15), whichis surprisingly low because
body weight, the primary determinant of energy expenditure, hasafar
stronger correlation over this period. The reasons for errorsin estimates
of energy intake by DLW remain unclear, but presumably include a
combination of short-term differences in energy balance, variation in
dietary macronutrient composition and technical measurementerrors.

We appreciate the efforts of Bajunaid et al.' to quantify errors in
measuring energy intake and their suggestions of methods toaccount
for this in epidemiological analyses. However, their cross-sectional
analyses suggesting spurious associations may themselves be
spurious. Caution is suggested in the use of exclusions based on
weight-dependent prediction equations of energy intake in studies
with weight-dependent outcomes such as BMI. We appreciate con-
tinued efforts to enhance methods for dietary assessment, including
use of biomarkers, but biomarkers have their own limitations and they
are likely to complement rather than replace reported intakes. In the
meantime, their findings do not provide justification for unspecified
“radical approaches” for dietary assessment or to discard what has
beenlearned about diet and health thus far.

Data availability

Further information, including the procedures to obtain and access
data from the Nurses’ Health Study (NHS), Nurses’ Health Study Il
(NHSII) and Health Professionals Follow-Up Study (HPFS), is described
at https://www.nurseshealthstudy.org/researchers (contact email:
nhsaccess@channing.harvard.edu) and https://hsph.harvard.edu/
research/health-professionals/resources/for-external-collaborators/.
Owingto participant confidentiality and privacy concerns, data cannot
beshared publicly and requests to access NHS/NHSII/HPFS data must
be submitted in writing. According to standard access procedures,
applications to use NHS/NHSII/HPFS resources will be reviewed by our
External Collaborations Committee to verify that the proposed use
maintains the protection of the privacy of participants and the con-
fidentiality of the data. Investigators wishing to use NHS/NHSII/HPFS
data are asked to submit a brief description of the proposed project
to the email address above.
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