

Clinical relevance of extracellular vesicles in cancer — therapeutic and diagnostic potential

David W. Greening © 1,2,3,9 , Rong Xu © 4,9, Alin Rai^{1,2,3}, Wittaya Suwakulsiri⁵, Maoshan Chen^{6,7} & Richard J. Simpson © 8

Abstract

Extracellular vesicles (EVs) encompass a multitude of lipid bilayer-delimited particles, of which exosomes are the most widely studied. Bidirectional cell-cell communications via EVs have a pivotal role in the physiology of multicellular organisms. EVs carry biological cargoes (including proteins, RNA, DNA, lipids and metabolites) capable of mediating a range of pleiotropic cellular functions. Over the past decade, EVs released by cancer cells (onco-EVs) have been shown to promote cancer progression including tumour outgrowth and metastatic dissemination. Furthermore, the innate ability of EVs to protect vulnerable molecular cargoes (such as RNA, DNA or proteins) from enzymatic degradation, their presence in most biofluids and the ability to transverse biological barriers to reach distant organs make them ideal targeted drug delivery systems, including in patients with cancer. Many of these properties also support investigations of EVs as biomarkers with potential roles in both diagnosis and treatment monitoring. In this Review, we describe advances in the development of EVs as cancer therapeutics or biomarkers, including cancer vaccines, targeted drug delivery systems and immunotherapies, as well as potential roles in early cancer detection, diagnosis and clinical management. We also describe the potential of emerging technologies to support further discoveries as well as the clinical translation of EVs into diagnostic and therapeutic clinical tools. We highlight the potential of single-EV and onco-EV detection and discuss how advances in multi-omic and artificial intelligence-enabled integration are providing new biological insights and driving clinical translation.

Sections

Introduction

EV heterogeneity and complexity

Onco-EVs and their oncogenic cargoes drive cancer progression

EV isolation and purification for clinical applications

Engineering EVs for cancer therapy

EVs as a source of biomarkers

Clinical translation

Conclusions

A full list of affiliations appears at the end of the paper. Me-mail: david.greening@baker.edu.au; richard.simpson@latrobe.edu.au

Key points

- Extracellular vesicles (EVs) are directly released from cancer cells and thus provide a direct but accessible source of information on tumour biology with potential for implementation as biomarkers to guide the management of patients with cancer.
- EVs released from cancer cells are able to interact with the tumour microenvironment and with non-malignant cells at distant anatomical locations, thus enabling the progression and metastatic dissemination of cancer.
- EV-mediated cell-cell communication and cargo transfer between tumour and non-tumour cells are involved in all stages of cancer from development to metastatic dissemination and modulation of the host immune response.
- EVs can be engineered and have potential clinical utility as next-generation drug delivery platforms for cancer therapeutics as well as a potential role as cancer vaccines or for the delivery of immunotherapies.
- Thus far, the clinical development and implementation of EV-based biomarkers or therapeutics have been limited owing to various technical challenges.
- Technological advances and improved integration of omics and other technologies are expected to continue to advance the clinical implementation of therapeutics or diagnostics involving EVs.

Introduction

Extracellular vesicles (EVs) comprise a diverse range of membraneencapsulated organelles containing various molecular cargoes. Research from the past 20 years has demonstrated an important role of EVs as mediators of bidirectional communications between cells and their microenvironment, including in both non-pathological and pathological physiology¹⁻⁴. Although much progress has been made in EV biology, including our knowledge of the roles of EVs in various diseases, knowledge in other areas, such as the extent of EV subtype diversity (including morphology, size, biophysical properties, biogenesis and molecular cargoes) as well as functional traits remains limited 5.6. Since initial reports from the late 1990s and early 2000s describing EVs as potential cancer vaccines 7-10, we are now beginning to piece together the various roles of EVs including as drivers of tumour development and as mediators of metastatic dissemination (Fig. 1), described in detail elsewhere 3.11,12. This knowledge has led to considerable research interest in the development of biologically informed tools for the delivery of personalized cancer vaccines and anticancer drugs as well as various liquid biopsy biomarkers for the detection of early-stage cancers, as well as informing about risk stratification, and the management of patients with cancer treatment at various stages of their disease trajectory 13-16 (Fig. 1).

Two broad categories of extracellularly released particles are now recognized: membranous EVs (EVs encapsulated in lipid bilayers, such as exosomes and microparticles) and non-vesicular extracellular particles (NVEPs) (such as exomeres and supermeres). Here, we focus on membranous EVs, which are often abundant in biofluids and include several subtypes that differ markedly in their biogenesis, biophysical and biochemical properties (Table 1) (described in detail elsewhere¹⁷).

Membranous EVs include exosomes, microparticles, microvesicles, endosomes, ectosomes and apoptotic bodies. Exosomes (with diameters of 50-150 nm) originate from multivesicular bodies of late endosomal origin, which traffic to and fuse with the cell membrane followed by release into the extracellular environment either via endosomal sorting complex required for transport (ESCRT)-dependent or ESCRT-independent mechanisms^{3,18-23}. Conversely, microparticles whose size range extends to up to 1,500 nm in diameter form by direct outward budding and fission of the plasma membrane^{24,25}. Although microparticle biogenesis is still poorly understood, accruing evidence indicates that the required membrane blebbing involves protrusion of the plasma membrane, entailing changes in membrane lipid composition and cytoskeletal remodelling^{26,27}. Membrane-encapsulated midbody remnants (diameter of 200-600 nm) are a type of EV that can be generated during cytokinetic abscission followed by release into the extracellular space²⁸⁻³¹. Midbody remnants are molecularly distinct from exosomes and microparticles^{28,32}, although, similar to other EVs, they can be taken up by non-sister cells³³ and can elicit a phenotypic response. Over the past decade, different cell types have

Fig. 1 | Onco-extracellular vesicles as diagnostic and therapeutic

targets. Primary tumour cells secrete extracellular vesicles (EVs) capable of reprogramming resident cells in their microenvironment, including cancerassociated fibroblasts, endothelial cells and immune cells to drive the emergence of and regulate various hallmark effects of cancers (1). Activated fibroblasts then secrete extracellular matrix (ECM) and signalling factors capable of supporting the expansion of neoplastic cells, endothelial cells and forming new blood vessels that provide nutrients, while guiding the polarization of immune cells towards a pro-inflammatory phenotype. As cancer-related alterations accumulate and promote tumorigenesis, such alterations are also reflected in the molecular composition of EVs. enabling them to acquire de novo functions. such as transformation of the extracellular and cellular microenvironment, enabling further development in a malignant phenotype. During this invasive outgrowth, EVs can profoundly reprogramme the ECM and related cell-cell adhesion networks as well as enter the circulation or lymphatic systems. EVs from various cellular and organ sources have surface protein signatures (such as integrins or cytokines) that mediate their systemic dissemination to specific

target organs. For example, EVs might accumulate in the vascular beds of the lungs or disseminate to the liver (as often observed with EVs derived from primary pancreatic cancer). This dissemination results in the profound reprogramming of target tissues (towards increased vascular permeability and altered expression of ECM proteins for increased adhesion and chemotaxis), which enhances the seeding of circulating tumour cells. Cancer cell-derived EVs are also able to recruit and polarize immune cells to activate signalling pathways favouring tumour cell tissue invasion and metastatic dissemination. This priming precedes the arrival of disseminated tumour cells and is therefore referred to as pre-metastatic niche formation (2). These pre-metastatic niches promote not only seeding but also eventual outgrowth to establish metastatic foci in distant organs. Circulating EVs can also migrate to bone marrow, in which they mobilize bone marrowderived cells (BMDCs) home to pre-metastatic niches and reprogramme stromal recipient cells at these sites and thus promote the development of metastases (3). Indeed, such reprogrammed BMDCs then mediate their ability to generate a premetastatic niche and influence other cells within the niche to create a permissive environment for cancer metastasis. NK, natural killer.

been shown to generate various other membranous protrusions; these include trailing retraction fibres of migrating cells (referred to as migrasomes^{34–37}), pearling and/or vesiculation of filopodia and retraction fibres^{27,38}, tips of filopodia or microvilli and tunnelling nanotubes³⁹ (for example, nanotubes between neuronal and microglial cells^{27,40,41}). Apoptotic bodies (-50–5,000 nmin diameter) are the products of cells undergoing apoptosis and are another distinct EV class arising from plasma membrane blebbing or actomyosin contraction (also referred to as apoptopodia)^{42–44}. Other EV subtypes include autophagy-linked secreted EVs^{45,46}, mitovesicles (and mitophers, which are enriched in mitochondria)⁴⁷, blebbisomes⁴⁸, oncosomes^{25,49}, cardiac or muscle exophers^{50,51}, mitochondrial enriched EVs^{52,53}, arrestin

domain-containing protein 1 (ARRDC1)-mediated microvesicles (ARMMs) 54,55 , and EVs derived from various non-apoptotic regulated cell death processes 56 .

For many studies investigating EVs, uncertainty exists within the nomenclature regarding the nature of the samples being investigated. Different opinions exist on the use of the term 'exosome' versus 'EV'. Nonetheless, the consensus recommendation of the International Society for Extracellular Vesicles on nomenclature is to apply EV as the 'generic term for particles naturally released from the cell that are delimited by a lipid bilayer and cannot replicate '57 and to further define EV on the basis of a set of clear, measurable characteristics, including cell and/or tissue of origin, molecular markers,

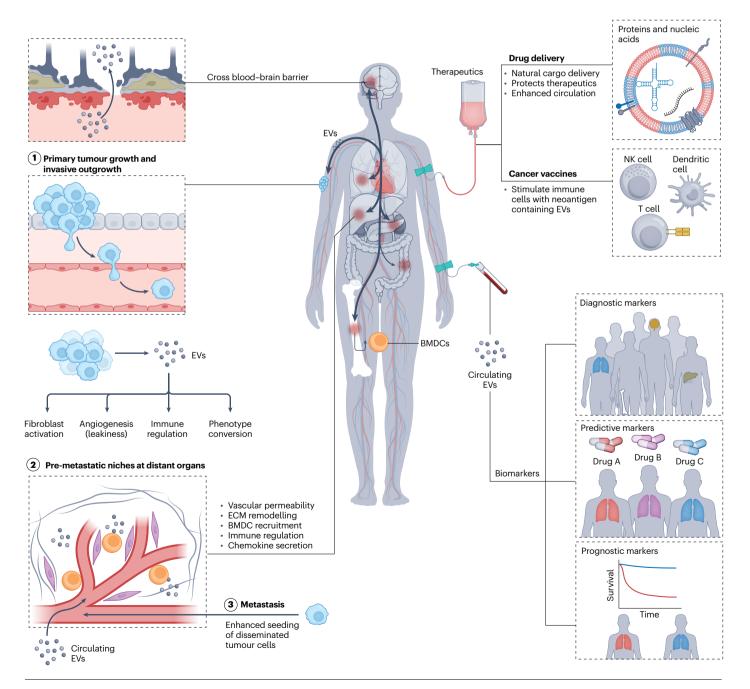


Table 1 | Diversity of extracellular vesicles and extracellular particles

Subtype	Mechanisms of biogenesis	Markers	Particle diameter	Buoyant density
Membranous EVs ^a				
Exosomes ^{22,89,102,121,403-405}	Endosomal pathway	CD63, CD81, SDCBP, ESCRT complex proteins: ALIX/PDCD6IP and TSG101	50-150 nm	1.08–1.14g/ml
Microparticles (also known as ectosomes and microvesicles) ^{24,89,119,406}	Plasma membrane budding	ANXA1, RPS7, ARF6	100-1,500 nm	1.08–1.14g/ml
Midbody remnants (MBRs) ²⁸	Cytokinesis (late-stage symmetrical cytokinetic abscission)	KIF23, RACGAP1 ^b	200-600nm	1.22-1.30g/ml
Exophers ⁴⁰⁷	Plasma membrane budding	Phosphatidylserine, LC3, Tom20	3.5-4µm	_
Blebbisomes ⁴⁸	Plasma membrane budding (cell motility)	Cellular organelle markers; VDAC2 (mitochondria), GM130 (Golgi), RPS8/10 (ribosome), EEF2 (nuclear), myosin IIA, actin (cytoskeleton)	5-20 µm	-
Large oncosomes ⁴⁰⁸	Plasma membrane budding	CK18, GOT1	1–10 µm	_
Migrasomes ^{34,35}	Plasma membrane budding (cell motility)	TSPAN4, ITGA5	0.5–3µm	-
Apoptotic bodies ⁴⁰⁹	Plasma membrane budding	Phosphatidylserine	50 nm-5 µm	_
NVEPs ^c				
Exomeres ¹¹¹	Unknown	HSP90-b, ENO1, GANAB	<50nm	-
Supermeres ⁴¹⁰	Unknown	TGFBI, HSPA13, ENO1, ENO2	<50nm	_

ALIX, ALG-2-interacting protein X; ANXA1, annexin A1; ARF6, ADP-ribosylation factor 6; CK18, cytokeratin 18; EEF2, elongation factor 2; ESCRT, endosomal sorting complex required for transport; EV, extracellular vesicle; GM130, Golgin subfamily A member 2; GOT1, glutamic-oxaloacetic transaminase 1; ITGA5, integrin c-5; KIF23, kinesin family member 23—also known as mitotic kinesin-like protein 1 (MKLP1); LC3, microtubule-associated protein 1 light chain 3; NVEP, non-vesicular extracellular particle; PDCD6IP, programmed cell death 6-interacting protein; RACGAP1, rac GTPase-activating protein 1; RPS7, RNA-binding protein ribosomal protein S7; RPS8/10, 40S ribosomal protein S8/S10; SDCBP, syndecan binding protein; Tom20, translocase of the outer membrane (TOM) complex in the outer mitochondrial membrane; TSG101, tumour susceptibility gene 101; TSPAN4, tetraspanin-4; VDAC2, voltage-dependent anion channel 2.

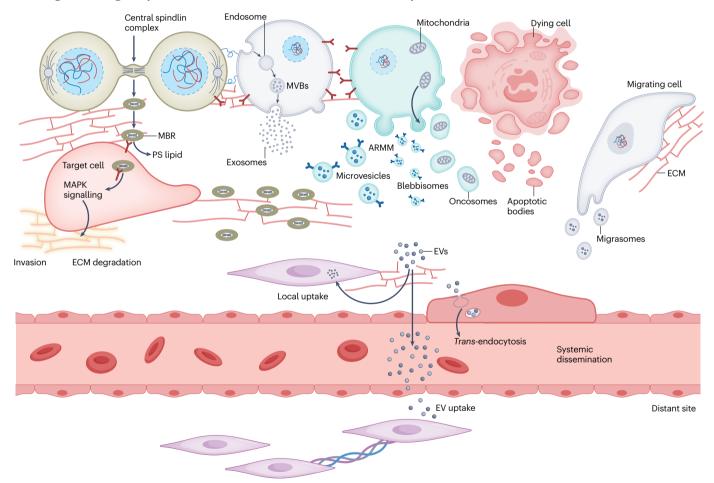
"Extracellular vesicles that are encapsulated in a membranous lipid bilayer." VEIF23 and RACGAP1 are uniquely expressed in midbodies and secreted midbody remnants. "Non-vesicular extracellular particles that do not have a membranous lipid bilayer (also known as nanoparticles).

size distribution, density and biological function⁵⁸. Accordingly, we use the all-encompassing term EVs to denote different vesicle types^{58,59}.

EVs are thought to be evolutionary conserved as they are released from cells across several different kingdoms, including Archaea, Bacteria (both Gram-positive and Gram-negative) as well as Eucharia (including animals, plants, fungi and protists)⁶⁰⁻⁶⁴. All cells are known to release EVs both as part of their physiological functions and when affected by specific pathologies; their attendant molecular cargoes can elicit phenotypic changes in target recipient cells, leading to pleiotropic functional capabilities^{3,65} (for example, pre-metastatic niche formation⁶⁶⁻⁷⁴ or non-malignant effects such as promotion of neurodegeneration or cardiac cell repair⁶⁵, as well as amelioration of immunosuppression in the tumour microenvironment (TME)¹⁵). EVs are also found in almost all biofluids and this opportunity for largely non-invasive sampling makes them prime candidates for cancer detection, staging, monitoring and identification of potential therapeutic targets⁷⁵⁻⁷⁸. EVs have now emerged as a focus for the development of nanotherapeutics⁶⁵, particularly by modulating mechanisms of biogenesis to curb TME formation⁷⁹ and the distribution of oncogenic programmes⁸⁰⁻⁸³.

In this Review, we discuss foundational applications of EVs as tools for therapeutic interventions in patients with cancer, including therapeutic EV-based cancer vaccines and the development of EVs as drug delivery systems. We summarize the utility of EVs for clinical translation as liquid biopsy analytes and for the potential early detection and prevention of cancer. We also describe how EVs can be utilized as technology platforms in cancer therapeutics and diagnostics and how this can be accomplished using various bioengineering strategies that target,

regulate and deliver various molecular and bioactive cargo molecules (described in detail elsewhere $^{13,65,84-86}$). We also illustrate how EV-based cancer therapeutic strategies are now informing late-phase clinical trials, including those testing cancer vaccines, immunotherapies and patient-tailored therapies.


EV heterogeneity and complexity

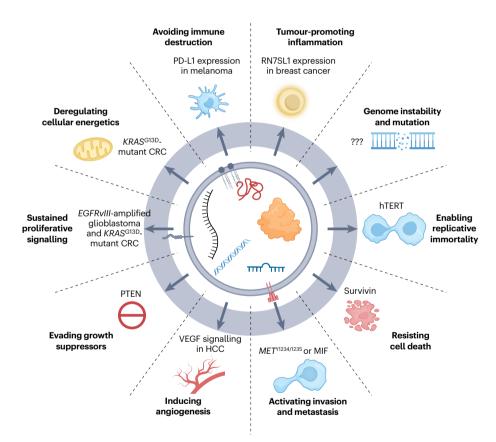
Despite the clinical potential of EVs, their detection and analysis are non-trivial. EVs comprise a heterogeneous group of vesicles that vary in size and molecular composition, potentially down to the single-cell secretome level^{87,88}. This subtype diversity is reflected in the range of molecular cargoes and distinct functionalities 28,48,89,90 (Table 1 and Fig. 2). Small EVs, owing to their small size, protective lipid bilayer and presence of surface receptors, can mediate paracrine signalling and interorgan systemic crosstalk^{5,28,79,91–95}, whereas larger-sized EVs (such as microparticles) function predominantly in local intercellular communication^{26,96,97}. The relative abundance of EV subtypes (and variations in cargoes) is selectively determined during biogenesis 24,26,98 and varies according to subtype and state or type (for example, differentiated cell $type^{99}$ or cell phenotype¹⁰⁰) of the producing $cell^{5,97,101-103}$ as well as the source (cells or tissues)^{4,93} (Table 1). Vesicular secretion of EV marker proteins in small EVs has been postulated to be dependent on an endocytosis-independent pathway, suggesting that EVs accumulate and are released along the plasma and endosome membranes¹⁰⁴. Small EVs contain a core protein signature comprising highly expressed vesicular proteins commonly shared between EVs of diverse parent cell origin (such as tetraspanins CD63, CD9 or CD81 (refs. 28,102,104-106)).

The molecular heterogeneity of EVs is the source of much controversy concerning the properties of different EVs⁸⁹, such as whether specific types of EV are capable of cell-specific uptake and whether their associated nucleic acid complexes (such as microRNA (miRNA) biogenesis machinery and RNA-induced silencing complex¹⁰⁷) are functional upon delivery^{4,108}. Studies are continuing with the aim to better understand the biomolecular content of EVs (and their subpopulations), including diversity of cargoes, the reasons for limited expression of extracellular RNA and double-stranded DNA⁸⁹ as well as the fate of other EV-delivered biomolecules¹⁰⁹ following transfer^{108,110}.

Further to EV molecular and functional heterogeneity, EV isolation and analytical methods are also highly heterogeneous, with vastly different isolation workflows and sample preparation methods used for EV isolation and characterization in various studies. Substantial biological heterogeneity stems from the variable content of EVs

secreted by a single cell type as well as differential packaging during $biogenesis {}^{89,104,111-113}. The cell-to-cell \, heterogeneity \, of \, tumour \, cells, which \,$ is evident at phenotypic and genetic levels, provides a further layer in the complexity affecting the development of clinical applications¹¹⁴. Tumour heterogeneity is probably a source of diversity in EV content, as demonstrated for various EV types¹¹⁵⁻¹¹⁸. At a single-EV level, heterogeneity might be attributed to differences in the chemical or physical traits ascribed to different types of EVs or within the same population. suggesting that all individual vesicles might not have all functional properties ascribed to a specific population. This subpopulation-level heterogeneity (for example, in EV secretion¹¹⁹, the EV transcriptome or proteome^{28,102,120,121}, cell-surface expression profile¹⁰⁶ and biodistribution⁷⁹) might have implications for the feasibility of both diagnostic and therapeutic clinical applications¹²². This heterogeneity in EV subpopulations might include differences in concentration and composition as well as variations in innate EV characteristics,

Fig. 2 | Extracellular vesicle biogenesis and heterogeneity. Extracellular vesicles (EVs) comprise a heterogeneous population of membrane-enclosed structures that are released into the extracellular environment. EV diversity arises from variations in their molecular composition, cells and/or tissues of origin as well as mechanisms of biogenesis. EV subtypes include exosomes, membrane-derived microvesicles (ectosomes), larger autophagosomes, secreted midbody remnants (MBRs) from dividing cells, released vesicles from migrating cells (migrasomes) and apoptotic bodies from dead or dying cells during apoptosis (Table 1). Endosomally derived exosomes are released through the maturation and exocytosis of multivesicular bodies (MVBs). Microvesicles,


including ectosomes, are formed via plasma membrane blebbing at specific actin-rich domains. EVs can induce localized signalling via receptor—ligand interaction or can be internalized by endocytosis and/or phagocytosis or even fuse with the membranes of target cells to deliver their content into its cytosol, thereby altering the cellular machinery and modifying the physiological state of the recipient cell. EVs can mediate intercellular signalling through localized uptake to target cells or through *trans*-endocytosis to mediate systemic dissemination and clearance. ARMM, arrestin domain-containing protein 1 (ARRDC1)-mediated microvesicles; ECM, extracellular matrix; MAPK, mitogen-activated protein kinase; PS, phosphatidylserine.

such as membrane structure, size and cargo and co-isolates, all of which might influence how EVs are isolated and processed for clinical applications ^{90,122,123}. Further implications in this heterogeneity include effects on the pharmacokinetic properties, distribution, cell-surface interactions and, importantly, therapeutic utility of EVs as well as affecting the approach to coverage analysis in biomarker discovery or diagnostic signatures (for example, the selection of affinity-based, global EV analysis versus analysis of predetermined mutational landscapes ^{115,124} and/or cancer-associated molecular cargoes ⁷⁸). Finally, research in this field requires higher standards of rigour and reproducibility to better understand, monitor and implement strategies to manage the challenges to clinical translation created by EV heterogeneity.

Onco-EVs and their oncogenic cargoes drive cancer progression

The role of EVs in cancer is highly dynamic as well as being specific to cancer type, genetic landscape, cancer stage and EV source (Fig. 3).

The cargoes of cancer cell-derived EVs (subsequently referred to as onco-EVs) comprise diverse oncogenic molecules, including neoantigens and oncoproteins (such as MET, MIF, epidermal growth factor receptor (EGFR)vIII, CD147, PCA3, GPC1, PIGR or PD-L1)^{10,125-127}, peptides, fusion proteins¹²⁸ and various nucleic acids including tumour-specific genetic sequence alterations ¹²⁹⁻¹³¹ as well as retrotransposon elements and amplified oncogene sequences^{11,12,132} (Fig. 3). These EVs not only promote the progression of primary tumours but also support the enrichment of pre-metastatic niches that enhance metastasis^{66,82,133}. Such cargoes can also influence various other cancer-associated functions including organotropism^{80,95,134}, cell invasiveness¹²⁷, metabolic reprogramming^{135,136}, regulation of apoptosis and gene expression¹³⁷, activation of receptor-induced intracellular signalling to regulate angiogenesis¹³⁸, macrophage^{131,139,140} and fibroblast transformation¹⁴¹⁻¹⁴³, cell survival¹⁴⁴, cell migration and invasion^{145,146}, cell polarity and transformation¹⁴⁷ (including epithelial-to-mesenchymal transformation 148,149), as well as immune cell modulation and immune

Fig. 3 | Cancer hallmarks of onco-extracellular vesicles. Cancer-derived extracellular vesicles (onco-EVs) are critical mediators of intercellular communication between tumour cells and stromal cells present in both local and distant microenvironments. Onco-EVs have a fundamental role in primary tumour growth and metastatic evolution, and orchestrate multiple systemic pathophysiological processes, such as coagulation, vascular leakiness and the reprogramming of stromal recipient cells to support pre-metastatic niche formation and/or metastatic dissemination. Onco-EVs carry various cancerrelated cargoes including proteins, genes, peptides or lipids, which have important functional roles in intercellular crosstalk during tumour progression. Onco-EVs can orchestrate the hallmarks of cancer, such as avoidance of immune destruction, tumour-promoting inflammation, genome instability

and mutation, enabling replicative immortality, resisting cell death, activating invasion and metastasis, inducing angiogenesis, drug resistance, evading growth suppressors, sustained proliferative signalling and deregulating cellular energetics. Moreover, an understanding of the synergy between onco-EVs and synthetic nanoparticles is emerging, whereby natural EVs can act as decoys for antibody-based therapeutics including binding with cancer therapeutics and shuttling them out of the tumour to the liver for destruction 228. The biological molecules, mechanisms and effects listed are intended as illustrative examples of onco-EVs in the development and maintenance of the hallmarks of cancer. CRC, colorectal cancer; HCC, hepatocellular carcinoma; hTERT, human telomerase reverse transcriptase; PTEN, phosphatase and tensin homologue; VEGF, vascular endothelial growth factor.

suppression^{13,15,86,150-152}. Onco-EVs mediate these changes in cell transformation through various signalling pathways and networks including Wnt signalling 153,154, SMAD-dependent signalling or activation 155, activation of HER signalling pathways including active EGFR complexes and oncogenic EGFRvIII¹⁵⁶⁻¹⁶⁰, VEGF¹⁶¹, MET⁶⁶ and various other cell activation networks141. Other oncogenic cargo components such as mitochondrial DNA have been linked with cellular stress responses and activation of inflammatory responses as well as the innate immune system 142-146.

The potential of onco-EVs as a source of clinically relevant biomarkers enabling the early detection of cancer as well as those providing an accurate indication of prognosis is an area of considerable research interest 78,124,147-152 (Fig. 3). EVs are stabilized in the circulatory system by their protective lipid bilayer; this, in turn, allows quantification of circulating EVs and their cargoes, providing an indicator of overall tumour burden¹²⁴. The heterogeneity of EV cargoes reflects the diversity of the cells of origin^{89,121,153}. Carcinomas in situ release a diverse range of soluble factors (including oncoproteins) and EVs into the circulatory system before the release of circulating tumour cells (CTCs)154. These EVs, along with those derived from stromal and immune cells, can use both the lymphatic system and vasculature to colonize distant organs and awaken dormant disseminated tumour cells or facilitate microvascular hyperpermeability to facilitate organ-specific metastatic dissemination ^{67,69,81} (Fig. 1: described in detail elsewhere 155). For example, miR-105 delivered by EVs from breast cancer cells dissociates vascular endothelial barriers in endothelial cell monolayers, facilitating the ability of CTCs to breach vascular barriers to entering the lung parenchyma by remodelling cellular adhesion networks⁶⁹. Furthermore, select integrins on onco-EVs are preferentially internalized by lung-resident cells owing to the laminin-rich lung microenvironment, thus regulating the expression of metastasis-promoting factors, such as \$100A4 (ref. 80). In 2024, the presence of onco-EVs containing S100A4 in peritoneal fluid was identified as a prognostic marker in patients with ovarian cancer, supporting a role of S100A4 in metastatic dissemination¹⁴⁸. PD-L1⁺ onco-EVs have also been shown to absorb the rapeutic anti-PD-L1 antibodies for subsequent transport to the liver for degradation, thereby acting as a decoy for systemic anti-PD-L1 antibodies in mouse models of colon and prostate cancers¹⁵⁶.

Encouragingly, DNA fragments and RNA species identified in preclinical models of metastatic prostate cancer reflect the genomic and transcriptomic features of the primary cancers and strongly correlate with matched patient biopsy samples and circulating tumour DNA (ctDNA) as well as being associated with disease progression¹⁵⁷. Evidence is also emerging that these circulating EV cargoes are not mere bystanders, but rather active drivers of cancer evolution¹⁷. For example, oncogenic RNAs (and RNA fusions, such as repeat RNAs or DNA-RNA fusions) in circulating EVs can mediate induction of the G2/M checkpoint, mitotic spindle and DNA damage programmes, in addition to innate immune signalling and inflammation at distant sites¹⁵⁸. Furthermore, surface-bound cytokines, RNAs and lipids on EV membranes have been shown to direct receptor-ligand interactions between tumour cells and distant organ microenvironments¹⁵⁹⁻¹⁶⁵ and have a crucial role in preparing pre-metastatic niches in an organ-specific manner (described in detail elsewhere 166). An even more complex interaction has emerged, whereby EVs are surrounded by a biomolecular corona consisting of components originating from the extracellular space or matrix¹⁶⁷, including other biological nanoparticles, such as lipoproteins¹⁶⁸. The protein corona (a concept from therapeutic nanomedicine^{169,170}) evolves on the surface of nanoscale materials when they are exposed to biological environments. This effect alters the physiochemical properties of the nanoparticle or EV and affects the behaviour of synthesized particulates in vivo, as well as subsequent interactions with biological systems including pharmacokinetic properties, cellular targeting, toxicities and immunoregulatory signalling as well as inducing errors in nano-based assays (described in detail elsewhere¹⁶⁷). Researchers in the EV field are beginning to assess the specific effects of the biomolecular corona absorbed to the surfaces of a vesicle or particle, which is associated with the biological identity of EVs¹⁷¹. This corona is involved in complement activation, opsonization and regulation of phagocytosis, including how the corona influences transport and biodistribution^{168,172}, EV stability (for example, tissue protease resistance¹⁷³) and uptake by target cells¹⁷². The EV surfaceome (the plasma membrane and surface-associated molecules of EVs) is recognized as a highly interactive and dynamic element that facilitates the interactions of EVs with the extracellular environment, target cell membranes and cell matrix¹⁰⁶. Further understanding of the mechanical, electrostatic and molecular properties of the EV surface that underlies interactions between EVs and their targets¹⁷⁴ is warranted. Considering such interactions is important, given that the EV corona is a highly dynamic interactome with substantial potential as a source of biomarkers¹⁷⁵.

EV isolation and purification for clinical applications **Potential EV therapeutics**

Despite the achievements of EV-based therapeutics in ongoing clinical trials¹³, numerous technological challenges remain including scalability

and yield, regulation and standardization. EVs have been isolated from various sources, including mammalian and prokaryotic cell cultures, blood plasma, blood cells, bovine milk and from plants. Various methods have been developed in an attempt to address the issues of low yield and thus improve the scalability of EV production, such as optimizing cell culture conditions, refining and modifying different cell types, use of bioreactors and enclosed cell systems and applying mechanical or chemical stimuli^{176–180}. The use of plant and microalgae-derived systems for hybrid EV generation has several important advantages including limited immunogenicity, scalable generation and fewer ethical and regulatory concerns, compared with systems involving mammalian cells, implying that EVs generated using these methods are more likely to be safe in clinical settings¹⁸¹.

Various diverse EV isolation strategies exist with variations in the optimal approach according to the type of biofluid, efficiency of isolation, differences in costs, sample volume and desired levels of purity^{90,182,183}. Several workflows have been used for isolating EVs from a diverse range of cell types including differential centrifugation or ultracentrifugation, density-based ultracentrifugation, microfluidics, charge-based isolation, size-based isolation, peptide, protein or oligonucleotide-based immunoaffinity capture, tangential-flow filtration and array/capture platforms 184-188. Given that EV subpopulations arise from distinct biogenesis pathways, and because their precise origins are difficult to ascertain in most scenarios, comprehensive characterization of the derived EVs is crucial. The heterogeneity of EVs encompasses a wide range of differences, including size, shape, composition and function¹²². The topology of EV surfaces includes various molecular features, such as proteins, polysaccharides and lipids, the composition of which varies depending on cell type and state, which provides a further layer of heterogeneity¹⁰⁶. This heterogeneity poses challenges for EV identification and capture methods that

Box 1 | Extracellular vesicle-based therapeutics in clinical trials

Over the past decade, substantial developments in the field of extracellular vesicle (EV)-associated cancer therapeutics have occurred, progressing from promising preclinical findings to clinical trials involving patients with cancer. Several approaches are now gaining commercial interests as they enter phase I/II and randomized phase III trials as immunoregulation or tissue repair and regeneration strategies for various non-malignant indications (NCT05413148, NCT05354141, NCT04761562 and NCT05774509 (ref. 422)) described in detail elsewhere 65. The initial groundbreaking application of EVs in antitumour immunotherapy⁷ led to clinical trials in which autologous dendritic cell-derived EVs and modified variants (featuring modified tumour antigens) conferred immune responses to tumour antigens^{219,220}. Since then, refinements in EV production and modification strategies have led to immunotherapies capable of inducing reductions in tumour size in various preclinical models²²¹⁻²²⁴ as well as additional early-phase trials attempting to leverage the immunomodulatory capabilities of such EVs in patients with cancer (NCT01550523, NCT01159288 and NCT02507583)423-425. The EV-based liquid biopsy assay ExosomeDx IntelliScore (EPI) test has been designated as an FDA Breakthrough Device for early risk stratification and biopsy-related decision-making in the management of patients with prostate cancer^{216,347}. The use of EVs as antigen delivery vehicles is an emerging approach^{221,426} and thus far the most successfully translated application^{234,288,427-429}. Such studies have established the clinical feasibility and tolerability of EV vaccines; however, although clinical trials are mostly phase I/II, an unmet need exists to leverage the available knowledge as a foundation for investigating the feasibility and safety of EV-based vaccines. Synergy with other fields and advances in bioengineering and biotechnology have led to the development of bivalent and potent EV vaccines that have contributed to robust T_H1-type immune responses against COVID-19, as well as supporting the development of platforms such as StealthX that combine the advantages of mRNA and recombinant protein vaccines for potent and broader immunity. Such strategies hold immense potential to revolutionize vaccine development.

Despite such preclinical data and the conceptual appeal of cell-free production, the lack of clinical momentum supporting the development of EV-based therapeutics broadly reflects several ongoing scientific, translational and commercial challenges, including:

- The heterogeneity of cargoes among EVs derived from single-cell or multiple cellular sources as well as the reproducibility-related challenges associated with donor variation and manufacturing conditions;
- (ii) An incomplete understanding of EV pharmacokinetics, including uptake kinetics, in vivo half-life and how cargo variability (RNA, protein and lipid) influences efficacy across different patients and disease settings;
- (iii) Complexities associated with manufacturing scale-up and the challenges related to consistently generating clinical-grade EVs while maintaining potency and purity and refining the associated and universally accepted assays for regulatory approval;
- (iv) The lack of defined regulatory frameworks for EV-based therapeutics, which creates ambiguity and might confer uncertainty;
- (v) The limited high-quality clinical data showing robust efficacy and a lack of long-term safety data specifically in the field of oncology;
- (vi) A lack of commercial interests and funding, with competing modalities (engineered proteins, mRNAs, chimeric antigen receptor T cells and novel small molecules) progressing rapidly through late-phase trials, thus focusing on industry attention and funding in other areas.

Translating the potential of EV-based therapeutics into clinically effective interventions will require standardized manufacturing, clear regulatory pathways, rational clinical trial design, universal assays, storage and stability metrics, protocols fulfilling good manufacturing practice criteria and implementation of cross-disciplinary expertise for such technologies and strategies for investment and translation.

involve surface engineering. Care needs to be taken that any EV surface modification strategies do not also have unintended effects such as altering the biophysical or biochemical characteristics of the EVs, their function and/or activity and other aspects of the co-isolates. Certain additives are often also required to stabilize EV content during isolation procedures (including RNAase-specific and/or DNAase-specific protease inhibitors) as well as broad recommendations on additives in formulations for short-term and extended storage ^{189–191}.

Standardization, reporting and key metrics affecting EV research have been identified in an attempt to improve our understanding of clinical sample requirements. Biological reference materials now exist 192-194 for the purpose of comparing and/or standardizing EV purity — which is essential for interlaboratory comparisons. However, a lack of appropriate reference materials for assessing EV separation methods for biofluids continues to exist. With this issue in mind, snorkel-tag (a CD81 fusion protein designed to display a series of tags on the EV surface) was developed, providing potential benefit for use as a reference material for assessments of the functionality and cargoes of specific subsets of affinity-purified EVs. From a therapeutic

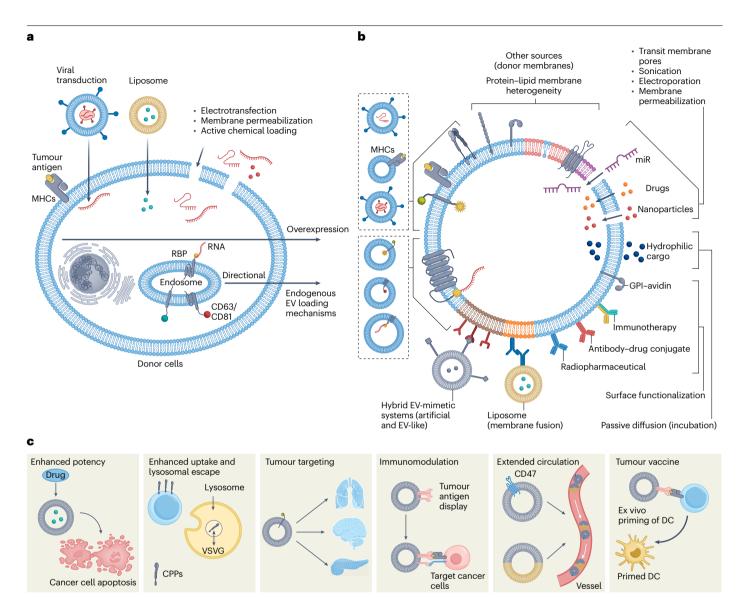
perspective, EVs are regulated as drugs and biological products and, hence, will require transparent reporting on manufacturing and characterization, suitable quality control and to provide evidence of both safety and efficacy in one or more rationally designed clinical trials, ideally with long-term follow-up monitoring 178,195,196 (Box 1). EVs intended for clinical use can be derived from either autologous (self) cells¹²⁷ or standardized, generic sources 197,198. The latter approach overcomes many of the challenges associated with autologous EVs in terms of the need to manufacture a custom product within a therapeutically relevant turnaround time, costs and scalability, as well as the potential to be derived from diverse cell sources while having a standardized, broad utility¹⁹⁹. Although industrial-scale manufacturing pipelines have already been established in areas such as cell therapy, manufacturing clinical-grade EVs entails a unique set of considerations and challenges⁶⁵. Currently, protocols fulfilling GMP criteria are sparse and regulators such as the FDA have yet to set guidelines for developing EV-based therapeutics. Furthermore, the development of therapeutic strategies for cancer-specific and EV-specific functions requires an important focus on how such products are isolated including selection

of the most appropriate source cells, ideally while also taking into account scalability, batch reproducibility, EV integrity and stability as well as safety and tolerability 65,178,200,201 .

EV-based diagnostics

Key challenges in the field of circulating biomarker discovery include a lack of clinical relevance and translation of findings, as most current EV isolation methods are low throughput and not yet suitable for translation into high-throughput clinical assays^{58,202}. Consistently detecting biomarkers in EVs presents difficulties given the often-low EV concentrations in samples from many patients, the need for highly sensitive detection technologies and the complexities of separating EVs from other proteins and non-vesicular components in biological fluids.

In a study published in 2020, investigators used ultracentrifugation workflows to define EVs and particles as diagnostic tools to analyse plasma samples and other bodily fluids from both patients and mouse models⁷⁸. These findings provide potential markers for cancer detection, and determining cancer type (such as VCAN, TNC and THBS2) that distinguishes tumours from non-malignant tissues with 90% sensitivity and 94% specificity, and through predictive modelling, enables the classification of tumours of unknown primary origin⁷⁸. However, such studies are limited in both the throughput and resolution of the isolation workflows, which enable only limited separation of vesicular and non-vesicular components, as well as a lack of cancer-specific isolation approaches. Novel tumour-specific EV isolation methods are urgently needed^{203,204}. Various studies have explored approaches designed to extract cancer-specific EVs from plasma using a combination of isolation methods including size exclusion chromatography and immunoaffinity (including for proteoglycan CSPG4 (ref. 185) and TNC²⁰⁵) through to surfaceome capture and/or profiling of specific EV proteins from both malignant and non-malignant cells (cancer and non-neoplastic cell lines) and plasma samples from patients²⁰⁴. For example, KRAS mutations in total EVs were detected in 44.1% of patients with pancreatic cancer of various stages receiving active therapy, with this percentage increasing to 73.0% following EV surface capture. Such EV-based enrichment pipelines also allow for additional molecular profiling of EV cargoes, for example, to identify known driver mutations (such as those in BRCA2) and to further our understanding of mechanisms of therapeutic resistance²⁰⁴. By applying EV-based capture strategies to circulating EVs (for example, the use of different antibody cocktails, such as monoclonal antibody 763.74, which is specific for the CSPG4 epitope), such assays have consistently shown higher yields when applied to circulating marker detection compared with single-antibody isolation platforms^{185,205}.


However, isolation systems involving several antibodies are not scalable owing to the need for multiple isolation and incubation procedures and are thus limited in the extent of their capture efficiency and sensitivity. Developments in antibody target–capture optimization and use of microfluidic conjugate systems can facilitate highly sensitive isolation from a limited volume of sample ^{184,206,207}. For example, a highly sensitive EV-capture chip (^{EV}HB-Chip) has been shown to isolate tumour-specific EV-RNAs from plasma within 3 h at 94% tumour-EV specificity and a 10-fold increase in tumour RNA enrichment in comparison to other methods (using either direct immunoaffinity isolation with cetuximab or ultracentrifugation to capture tumour EVs) ^{184,208}. Dual isolation of CTCs and EVs from the same source using immunoaffinity-based microfluidic interfaces has also been demonstrated using the cancer-specific antibodies MCAM and MCSP. Molecular profiling reveals that both antibodies can isolate EVs expressing

melanoma-associated cell-surface proteins²⁰⁶. Importantly, this dual isolation, high-throughput approach was able to differentiate patients with melanoma, with up to eightfold higher levels of CTCs and a four-fold increase in EV protein concentrations compared with individuals without cancer as well as having the potential to provide clinically relevant information on disease progression and/or the efficacy of ongoing treatment²⁰⁹. The use of alternating current electrokinetics has been highlighted as an EV-based method for rapid and accurate early detection of pancreatic, ovarian or bladder cancers²¹⁰. This lab-on-a-chip, scalable platform has the potential to be integrated into high-throughput, automated systems.

Various EV isolation strategies exist, including advanced sorting strategies²¹¹ and affinity enrichment approaches²¹², although these come with certain challenges including the need for extensive processing, co-isolation of similar-sized protein aggregates, a lack of biomolecular confirmation of EV identity, limited resolution for certain types of EVs and the co-isolation of non-vesicle, free proteins. Advances in EV multiplexing tools have led to new fundamental insights into EV biology and heterogeneity as well as the potential for increasing diagnostic specificity^{124,150,213}. For example, researchers developed a multichannel, fluorescence-based technique capable of profiling ~15 different EV markers, including core EV markers, and oncogene and tumour suppressor proteins to a near single-EV level²¹³. Such technologies highlight the clinical feasibility of rapid, multiplexed and highly sensitive EV-based analysis of cancer biomarkers that could potentially be extended to additional EV subtypes (including single EVs and mutated protein analyses^{124,212}). Developments in nanotechnology platforms might also support the clinical implementation of EV-biomarker assays. For example, templated plasmonics for exosomes (TPEX) technology²¹⁴ enables rapid (1 µl of sample in 15 min) and multiplexed analysis of EV protein targets (such as CD63, CD24, EpCAM and MUC1) with high levels of performance. Importantly, this technology could differentiate additional clinical characteristics (such as prognosis) over conventional singleplex enzyme-linked immunosorbent assay based on a TPEX signature with an improved sensitivity of >10³-fold and an area under the curve (AUC) of 0.97 for colorectal and gastric cancers, relative to 0.76 for analyses of total target proteins²¹⁴. These developments highlight the emergence of multiparametric EV diagnostic platforms capable of establishing distinct panel signatures based on the ability to simultaneously detect and quantify several EV biomarkers and validated in large-scale clinical studies 207,210,215,216.

Engineering EVs for cancer therapy

Considerable research interest exists in the development of EVs as cancer therapies. This interest has involved the direct targeting of cancer cells using EVs with antitumour payloads²¹⁷, as well as various less-direct approaches including: modulating innate immunity^{7,218–224}; targeting immune checkpoints^{225,226}; targeting specific cellular phenotypes (such as differentiation or cell quiescence^{217,227}); interactions with other particles, including therapeutic nanoparticles²²⁸; and to enhance the effectiveness of immunotherapies, especially as antigen-carrying vehicles^{226,229-234} in preclinical models (Fig. 4a-c). Selective depletion of circulating onco-EVs (or inhibition of secretion of onco-EVs) is another example of a preclinically effective anticancer strategy^{235,236}. Novel therapeutic approaches include the use of nanoparticles equipped with EGFR-targeting aptamers, which are able to redirect fluorescence-labelled EGFR-expressing exosomes derived from a non-small-cell lung cancer (NSCLC) cell line towards the gastrointestinal tract, followed by excretion with a concomitant reduction in

 $Fig.\,4\,|\,Engineering\,extracellular\,vesicles\,for\,cancer-targeted\,the rapy.$

a, A diverse range of extracellular vesicle (EV) engineering strategies have been developed for the preparation of therapeutic EVs. Genetic engineering approaches have been applied to regulate the donor cell sources of therapeutic EVs. These approaches include using an expression vector to deliver genes encoding the desired cargo into the genetic material of the host cell and to enable the production of EVs with various delivery proteins expressed on the membranes and/or specific luminal cargoes. These vectors can include plasmids, retroviruses, lentiviruses, adenoviruses and adeno-associated viruses.
 b, Direct cargo loading strategies include modifications of isolated EVs using chemical, physical and/or mechanical approaches, including click chemistry, cloaking, biocoupling, ultrasonography, extrusion and electroporation. Other loading strategies include chemical transfection and co-incubation, which is reliant on passive diffusion. The surfaces of EVs can be decorated with targeting molecules using aptamers, click chemistry and covalent binding interactions,

enzymatic conjugation, ligand–receptor binding or membrane fusion for more specific delivery to targeted cells. **c**, EVs can be modified using various innovative bioengineering strategies to enhance potency including via refined and more selective cargo-loading approaches, modulating donor cells to alter EV secretion, conferring responsiveness to stimuli (including those present within the tumour microenvironment), encapsulating anticancer drugs for delivery, delivery and/or display of tumour-specific antigens to directly engage the immune response (immunomodulation) and improved tumour targeting, and altered pharmacokinetic properties including extended circulation half-life, intracellular uptake, lysosomal escape and enhanced tumour penetrance. EVs have been further engineered to display tumour-specific antigens and engage therapeutic immunization, as anticancer vaccines. CPP, cell-penetrating peptide; DC, dendritic cell; GPI, glycosylphosphatidylinositol; RBP, RNA-binding protein; VSVG, vesicular stomatitis virus G glycoprotein.

the number of metastatic lung nodules in mouse xenograft models²³⁵. As drug delivery modalities, EVs have advantages over other delivery systems including their high levels of biocompatibility with limited

immunogenicity, stability against degradation and the ability to cross tissue barriers^{65,84,115,237,238}. EVs can also be modified using various bioengineering strategies to refine their luminal and surface cargo

(such as to improve their tumour targeting 239 and display tumour-specific antigens to directly engage the immune response 240) and to modulate secretion and/or production (to enhance yield) 241 . These EV engineering approaches can confer altered pharmacokinetic properties such as extended circulation time, intracellular uptake, lysosomal escape and enhanced penetration retention effect 65,84,242,243 (Fig. 4c).

EV bioengineering strategies include cellular nanoporation²³⁷, electroporation^{115,244,245}, electrotransfection²⁴⁶, membrane permeabilization²⁴⁷, genetic engineering (for example, modified donor cells^{127,146}, scaffold proteins for cargo loading¹⁸ or cell-penetrating peptides¹⁸), endogenous EV loading mechanisms²⁴⁸, extrusion²⁴², metabolic and chemical engineering (such as incorporation of ligands^{115,127,249,250} or therapeutic molecules²⁵¹) and physical engineering approaches (such as membrane fusion²⁵² and membrane coating^{253,254}) by using cross-disciplinary innovations including aptamer technology and click chemistry (Fig. 4a,b). Other approaches include the development of hybrid EV-mimetic systems that combine EVs with synthetic

nanoparticles. Such hybrid vesicles have an enhanced cargo-carrying capacity while also retaining the biocompatibility and targeting abilities of natural EVs^{225,255-257}. These various approaches have the potential to pave the way towards more effective EV-based diagnostic and/or therapeutic applications²⁵⁸ (Table 2 and Fig. 4).

Cargo loading strategies

Numerous strategies have been developed for loading of EVs with a desired specific cargo or 'payload'. Data from several preclinical studies demonstrate that EVs engineered to carry small-molecule chemotherapeutic drugs²⁵⁹ are able to suppress tumour growth^{256,260}. Furthermore, EV-based delivery vehicles incorporating antisense oligonucleotides^{250,261}, CRISPR-Cas9 (refs. 262–266), mRNAs or miRNAs^{267–269} and small interfering RNAs (siRNAs) targeting oncogenes and various oncoproteins^{81,115,270,271} have been used to elicit direct regulation of tumorigenesis in various preclinical models. Interestingly, EVs from a mouse pancreatic cancer cell line have been developed

Table 2 | Engineered extracellular vesicles as next-generation delivery platforms for cancer therapeutics

EV design and targeting	Outcomes	Ref.
Natural EVs		
EVs from human or mouse DCs exposed in vitro to tumour antigens for in vivo priming of T cell precursors	60% of tumour bearing xenograft mice were tumour-free at 60 days vs 0% of controls	7
EVs derived from various cancer cell lines were used to prime DCs for the presentation of cancer antigens for in vivo priming of T cell precursors	Immunization before injection of cancer cell lines significantly impaired tumour development in both syngeneic and allogeneic mouse models	10
Cell-based engineered EVs		
A DC-EV cancer vaccine expressing pMHC-I, anti-PD-1 antibody and B7 was engineered as a personalized cancer immunotherapy strategy to directly activate both native and exhausted T cells	Elicited 80% tumour regression in an LLC model, reflecting a robust CD8 ⁺ T cell response owing to proficient neoantigen presentation	411
EVs derived from M1 macrophages were engineered to express intracellular catalases to relieve hypoxia as well as an anti-PD-L1 nanobody and loaded with the DDR inhibitor nedisertib	Synergized with radiotherapy to reduce tumour growth markedly in mouse xenograft models, resulting in 100% survival in mice receiving the fully functional vaccine	412
CART cell-derived EVs carrying peptide antigen and RNAs encoding RN7SL1 selectively accumulate in endogenous intratumoural immune cells	Expansion of effector-memory and tumour-specific T cells, leading to tumour rejection in mouse xenograft models	413
EVs secreted from fibroblast-like mesenchymal cells loaded with siRNAs or shRNAs targeting <i>KRAS</i> ^{G12D} with enhanced retention in systemic circulation relative to liposomes, probably owing to CD47-mediated protection	Reduced tumour size in orthotopic mouse xenograft models of $\mathit{KRAS}^{\text{GIZD}}$ -mutant PDAC compared with siRNA-loaded or shRNA-loaded liposome controls	115
EVs derived from Expi293F cells engineered with cell-surface antibodies against CD3, EGFR, PD-1 and OX40L	Induced antitumour immunity with robust reductions in tumour size in mouse xenograft models of breast cancer	226
Post-isolation EV engineering		
HEK293 T cell-derived EVs loaded with siRNAs targeting survivin and coated with RNA-aptamer PSMA, EGFR or the folate receptor ligand 3WJ-cholesterol	Demonstrated tumour regression in mouse orthotopic xenograft models of various solid tumours	414
Hybrids		
Grapefruit-derived nanovesicles decorated with activated leukocyte cell membranes and loaded with doxorubicin	Demonstrated the ability to home to inflammatory tumour tissues with reductions in tumour growth and improved survival in mouse xenograft models	415
Artificial nanovesicles		
EV-like nanovesicles derived from neutrophils and decorated with SPIONs via transferrin receptor interactions and loaded with 5-fluorouracil	Enables the efficient and safe drug delivery with tumour shrinkage in mouse xenograft models	416

CAR, chimeric antigen receptor; DC, dendritic cell; DDR, DNA damage repair; EGFR, epidermal growth factor receptor; EV, extracellular vesicle; HEK, human embryonic kidney; LLC, Lewis lung carcinoma; PDAC, pancreatic ductal adenocarcinoma; pMHC-I, peptide-bound MHC class 1 antigen; PSMA, prostate-specific membrane antigen; shRNA, short hairpin RNA; siRNA, small interfering RNA; SPION, superparamagnetic iron oxide nanoparticle.

for targeted delivery of a CRISPR–Cas9 system designed to suppress *KRAS*^{G12D} (ref. 272), with a similar system developed for the suppression of PARP1 expression in mouse models of ovarian cancer²⁶³. Several versatile platforms have been developed for EV-based delivery of CRISPR–Cas9 genome editing components alongside single-stranded DNA, single-guide RNA and siRNA to specific cells and tissues²⁶⁴. These strategies have certain advantages such as their greater stability in circulation, enabling long distance transmission and reduced immunogenicity compared with conventional synthetic lipid nanoparticles. These cargo loading platforms signal key therapeutic developments for EV-based gene editing applications.

Several strategies exist to load therapeutic drug cargoes into EVs. These include electroporation, EV-liposome hybrids, genetic modification and chemical modification approaches, such as introducing surface ligands²⁵⁰, to functionalize EVs with topologically diverse macromolecules through luminal loading²⁶¹ (including cytokines, antibody fragments, RNA binding proteins, antigens, Cas9 and members of the tumour necrosis factor superfamily)²⁴⁸. Indeed, CD47-modified EVs loaded with short hairpin (sh) or siRNA-*KRAS*^{G12D} (including shRNA or siRNA targeting *KRAS*^{G12D}) have been shown to be more potent in inhibiting tumour progression compared with lipid nanoparticles loaded with the same cargo¹¹⁵.

A popular strategy for cargo loading involves passive diffusion of hydrophilic cargoes into EVs through the lipid bilayer. To overcome challenges in passive diffusion of hydrophilic cargo in EVs (owing to the need to cross highly hydrophobic cell membranes), various alternative loading strategies have been developed. For protein-based loading approaches, these include ubiquitination²⁷³, light or chemical-induced protein-protein interactions²⁷⁴ or protein-cleavable systems²⁴³ (Fig. 4a,b). Such strategies involve biological modifications of the source cells to promote the in situ encapsulation of RNA cargoes into EVs^{54,146}. For example, exosome-total-isolation-chip (EXOtic) devices create functionally modified EV-producing cells in vivo, enabling constitutive in situ production and delivery of mRNA-containing EVs¹⁴⁶. An alternative approach for targeted transcriptional manipulation and therapy involves the insertion of large mRNA molecules directly into cells via nanoporation to produce EVs containing high quantities of specific mRNAs (encoding PTEN)²³⁷. These modified EVs can also be engineered to display targeting peptides (such as CDX and CREKA) fused with CD47 via the N-terminus, which is typically localized on the external EV membrane surface²³⁷; this high-yield approach has been shown to increase the in vivo circulatory half-life of the modified EVs with no short-term effect on CD47 function (either in vivo toxicities or immunogenicity in mouse models) relative to EVs loaded via electroporation compared with non-targeted EVs and liposomes. Elsewhere, an 18-amino acid exosome-binding peptide sequence was identified through structure-function deletion analysis of Wnt proteins and was found to mediate localization to the EV surface²⁷⁵. Notably, linking of the exosome-binding peptide sequence to other proteins also resulted in their localization to the EV surface, creating opportunities for innovative therapeutic targeting strategies and systemic protein delivery²⁷⁵. Electroporation strategies designed to directly load EVs with antitumour miRNAs²⁷⁶, enzymes and/or immunomodulators (such as immunogenic cell death inducers such as human neutrophil elastase (ELANE) and Toll-like receptor agonists (hiltonol)) have been shown to result in a higher vesicle loading capacity²⁷⁷. These latter EVs have also been demonstrated to form a long-term, stable in situ cancer vaccine capable of activating dendritic cells and resulting in select T cell responses in an in vivo model of triple-negative breast cancer²⁷⁷.

The bioavailability of the cargoes in target cells is an important consideration for EV cargo selection and loading. In this regard, the engineered EV system, exosomes for protein loading via optically reversible protein-protein interactions (EXPLORs), has been developed. This strategy is based on a reversible protein-protein interaction module^{274,278,279} that enables the in situ production of regulatory EV delivery systems in live cells (acting as a live cell-based EV cargo loading factory)²⁷⁴. By leveraging the innate machinery of the cell to load therapeutic agents into EVs, this approach overcomes the limitations associated with exogenous loading methods, such as cytoplasmic loading and delivery of soluble proteins, as well as the often limited encapsulation efficiency of such methods, in addition to providing an inherently biocompatible autologous source of EVs that is less likely to trigger an immune response compared with allogeneic EVs or synthetic nanoparticles²⁸⁰. Similarly, another system using the conjugation of rapamycin-sensitive fusion domains to specific target proteins has been shown to promote the incorporation of such proteins into EVs in the presence of rapamycin²⁸¹. This fusion cargo loading approach packaged Cas9 proteins plus single-guide RNAs into EVs to induce the rapeutic exon skipping in reporter mice and cells²⁸². Further systems designed to incorporate target proteins into EVs include a ubiquitin-based technique, which involves Nedd4-mediated ubiquitination of the target protein, which confers subsequent preferential loading into EVs²⁷³.

However, vesicle loading strategies involving electroporation can induce concomitant siRNA aggregation and thus impair EV pharmacokinetics, including cellular uptake, tissue permeability and in vivo biodistribution²⁸³. Other direct approaches that can be utilized in various cell types include active chemical loading (such as the use of saponin surfactants²⁸⁴) and cellular-nanoparticle biochips (such as prepolymer moulds or predesigned microfluidic channels combined with electronic apertures)²⁸⁵ or silicon nanochannel array devices modified to generate nanopores²³⁷, which enable the production of EVs containing therapeutic nucleotides. This nanoporation process has been reported to enhance the endosomal secretion of EVs containing bioactive RNA transcripts, with mRNA cargoes resulting in restoration of tumour-suppressive functionality in orthotopic in vivo models²³⁷.

The optimization of EV loading strategies for selective delivery to the lumen and/or surfaces of EVs offers the potential for the development of therapeutic applications, although several key challenges need to be considered (described in detail elsewhere 65,84,122). These approaches include modifying EV cargoes to account for the effects of the cargo on donor cells (including implications for phenotype and viability) or the pharmacokinetic properties of the derived EVs (such as stability or bioavailability), the efficiency of encapsulation, extent of biocompatibility and programmability, the molecular orientation of the cargo and ultimately therapeutic activity 286.

Tuning donor cell sources for therapeutic EVs

Ensuring efficient loading of the therapeutic cargo into EVs is a key consideration for engineering of therapeutic EVs, regardless of the primary source of the EVs (Table 2). To this end, researchers are now considering modifications of proteins with a role in EV biogenesis ^{261,287,288}. Specific therapeutic cargoes can be expressed as fusions with EV sorting proteins (such as LAMP2B, PTGFRN, CD63 and CD81) in donor cells, thereby promoting endogenous EV cargo loading and overcoming challenges relating to the efficiency of EV cargo loading associated with non-selective genetic strategies ^{248,289} (Fig. 4a). Other methods for loading therapeutic RNAs into EVs include Targeted And Modular

EV Loading (TAMEL)²⁹⁰ and EXOmotif recognition sequences²⁹¹. These approaches are based on the existence of several RNA sequence motifs that are thought to enrich specific RNA species in EVs, including in a cell-type-specific manner. Two examples are provided by the RNA-binding proteins Alyref and Fus (which are involved in the export of cell-type-specific miRNAs) incorporating the EXOmotif CGGGAC²⁹²; this sequence links the type of EV miRNAs with their tissue of origin and modifying miRNAs to include these trafficking and targeting sequences improves the extent of miRNA uptake by small EVs²⁹². Various proteins (associated with RNA-binding proteins) have been shown to mediate the loading of miRNAs into EVs, including various heterogeneous nuclear ribonucleoproteins (such as USP7-mediated loading of miR-522 (ref. 293)) and Y-box-binding protein-1 (YBX-1)²⁹⁴.

EVs can also be engineered to display therapeutically active specific protein receptors or surface molecules, which are also considered to be therapeutic cargoes including surface signalling factors such as antibodies and peptides, immune cell receptors and lipids capable of cellular priming and promoting antitumour immunity as well as stabilizing surface molecular cargoes that extends the circulation half-life and limits the extent of protein turnover and membrane recycling. For example, glycosylphosphatidylinositol (GPI), platelet-derived growth factor receptors and lactadherin (via the C1 or C2 domain) can all localize to EV membranes and can be modified to display specific proteins of interest on the EV surface^{295,296}. Donor cells can also be genetically engineered to promote the expression of oligomerized EV sorting domains as well as N-terminal fragments of syntenin²⁹⁷, resulting in the display of specific cytokine decoys on the EV surface. This strategy provides a highly effective method of functionally ameliorating the inflammatory phenotype in mouse models of systemic or more-localized inflammation compared with clinically approved agents targeting these pathways, such as tocilizumab and etanercept²⁹⁷. The ability to display different receptor molecules simultaneously in multimeric form, thereby enhancing EV inhibitory activity, has led to advances in the development of engineered, combinatorial EV-based surface-displaying protein therapeutics and, potentially, the ability to target specific receptor ligands. Such strategies are being developed to engineer artificial nanovesicles that retain the membrane features, structure and surface antigens of the donor cells of origin²⁹⁸⁻³⁰⁰ (an approach known as biointerfacing³⁰¹). These EV-based cancer therapeutics can be engineered to incorporate variants of signalling proteins to extend circulation time and target specific cell membranes for tumour therapy²⁵⁸. Such hybrid EVs are typically synthesized using liposomes (to provide an underlying structure for the artificial EV) and the membranes and luminal contents of native EVs (to incorporate both luminal and surface contents) and thus create EV-like hybrids³⁰² (described in detail elsewhere³⁰³). These strategies can be adapted to engineer various EV membranes and core content features (such as proteins, lipids or RNAs) while systematically varying certain properties of the EV membrane, such as particle size and $heterogeneity {}^{304}. The scalability of these methods is a salient advantage \\$ that can overcome the inefficiencies and low yields associated with obtaining native EVs from cultured cells.

Alternative donor source systems are now being considered for EV-based cancer therapeutic applications, including plant cells, which have the inherent advantages of scalable generation, high yields 305 and limited toxicities 306 . As an antitumour therapeutic strategy, a pipeline enabling the delivery of miRNAs for cancer therapy using a selection of EVs derived from different plant cell sources was developed, resulting in a hybrid, EV-polymeric system combined with a dendrimer (micelle nanoparticle) bound to an miR-146 mimic 268 . This loading strategy

resulted in a fivefold increase in miRNA uptake compared with either component alone and demonstrated successful cargo delivery as well as antitumour activity in mouse xenograft models of ovarian cancer²⁶⁸. The extent of cellular internalization of plant-derived hybrid EVs is reportedly similar to that of extant mammalian-derived EVs³⁰⁷.

Engineering EVs for targeting and extended circulation

Therapeutic anticancer EVs provide an opportunity to selectively target cancer cells and avoid systemic clearance. In this regard, EV surface proteins have an important role 106,308 , which includes regulating the interactions of native EVs with their extracellular environment including target cells and the extracellular matrix 309,310 , thus determining biodistribution 80 and influencing various pharmacokinetic aspects including circulation half-life 310,311 . For these reasons, EV surface molecules are being investigated for targeted EV enrichment and capture strategies 184,185 including applications involving aptamer technology 312 . EV-based engineering strategies have focused on EV surface proteins to enhance EV targeting 251,254,313,314 , expression of specific tumour antigens for immune recognition 233,245 , to modify and extend circulation time 315 , facilitate intracellular delivery and promote tumour penetrance and accumulation 316 (Fig. 4c).

For example, modifying EV membranes with the targeting heptapeptide PTHTRWA has been shown to enable selective interactions with lung cancer cells via $\alpha 5\beta 1$ integrins in both cell lines and mouse xenograft models²⁵⁴. This functionalization process used click chemistry to conjugate the heptapeptides to the EV surface via the N or C termini, with activity of the modified EV assessed using an in silico model of lipid membrane dynamics. Importantly, modelling data suggest that orientation of this EV-heptapeptide conjugate directly regulates the targeting capacity and binding affinity for the α5β1 receptor and therefore the ability to transcytose the cancer cell membrane²⁵⁴. Elsewhere, investigators engineered EVs combining the integrin α5-targeting peptide RYYRITY, the antifibrotic agent pirfenidone and miR-138-5p and demonstrated that this combination perturbs tumour growth, progression and metastatic dissemination in mouse models of pancreatic ductal adenocarcinoma (PDAC) owing to reprogramming of the cancer-associated fibroblast phenotype and remodelling of the extracellular matrix composition³¹⁷. These findings highlight the inhibitory effects of modified EVs in a multicellular tumour model that preserves both tumour heterogeneity and the stromal microenvironment, with evidence of an ability to reprogramme cancer-associated fibroblasts within the TME.

Recent biomimetic design strategies that use different cell types and engineered targeting features have been developed to enhance cellular uptake and overcome rapid clearance mediated by the mononuclear phagocyte system. A key example of this dual strategy (mononuclear phagocyte system escape and targetable delivery) was shown, in which EVs derived from DC2.4 cells with high levels of tropism for macrophages and therefore a propensity for mononuclear phagocytosis were functionalized using cationized mannan in an attempt to presaturate this 'eat me' signal 315. Subsequently, EVs obtained from human serum and enriched for CD47, reflecting a 'don't eat me' strategy, were combined with a polyethylene glycol nanocarrier functionalized with an integrin-binding complex 315. The resulting EV hybrid was less vulnerable to macrophage endocytosis and had a prolonged circulation time with increased target tissue accumulation in a mouse xenograft model of NSCLC315. As well as reducing systemic clearance and improving the circulation time in blood compared with non-CD47-enriched EVs, these hybrid vesicles retained their targeting ability, avoiding the

challenges associated with protein corona formation seen with various other nanomedicines 318 .

EVs can be engineered with nucleus-targeting transactivator of transcription (TAT) peptides (V2C-TAT) plus RGD peptide target sequences to refine their intracellular delivery. TAT is a highly cationic 11-amino acid cell-penetrating peptide sequence (YGRKKRRQRRR), whereas RGD targets the vasculature and cell membrane via interactions with integrin receptors³¹⁹. This dual V2C-TAT plus RGD peptide combination served as the therapeutic core nanoparticle, resulting in engineered EVs that act as vectors for cell and nuclear delivery, combined with photothermal therapy, with potent antitumour activity in vivo³¹⁹. Various cell-penetrating polypeptides (such as R9 or synthetic arginine-rich peptides) have been engineered for presentation on EV surface membranes, resulting in improved tumour penetration, cellular delivery and intracellular release³¹⁶. These modified EVs demonstrated more efficient cargo delivery owing to the ability to engage rapid clathrin-mediated endocytosis with selective suppression of BCL-2 mRNA in HepG2 cells in vitro³¹⁶. Together, these approaches appear to overcome the challenges associated with the use of antisense oligonucleotides administered without a delivery system, including their negative charge and inability to cross cell membranes as well as rapid enzymatic degradation.

In an attempt to enhance therapeutic versatility and antigen recognition, EVs have been modified with antibody-binding moieties selected using a domain-binding screen designed to select for specificity for the Fc domains of therapeutic antibodies 251 (such as those targeting HER2 or PD-L1). Importantly, such modified EVs could potentially be adapted to display other antibodies or Fc-fused proteins, including bispecific antibodies and antibody–drug conjugates (Fig. 4b,c).

In an attempt to better understand the systemic communication networks of EVs, investigators developed a tagging reporter system enabling tissue-specific and cell-type-specific in vivo tracking of CD63⁺ EVs¹⁴¹. This genetic modification approach (termed ExoBow¹⁴¹) enables comprehensive in vivo tracking of the spatiotemporal distribution of EVs to dissect their origin and distribution and has been applied in mouse models of PDAC. Other applications of this EV labelling approach include investigating the routes of communication between different EV subpopulations of the same cell of origin⁸⁷. Knowledge of such processes might enable the development of EV-based therapeutics capable of addressing intratumour heterogeneity³²⁰.

An alternative strategy for avoiding phagocytosis and enabling targeted cargo delivery involves incorporating biological membranes (such as those containing specific antigens or receptors, including CD47 and various adhesion proteins) from different cellular sources including red blood cells or cancer cells into synthetic phospholipid bilayers surrounding the EV 321 . Such bimodal-engineered EVs can be equipped with the ability to evade phagocytosis (similar to that of red blood cells), as well as the homologous targeting ability of cancer cells, enabling improved tumour-specific accumulation 321 .

Engineering EVs for immunotherapy and cancer vaccines

Various engineered EVs have been designed to enhance their antitumour therapeutic delivery, penetrance³²² and immunoregulation^{323,324}. Most studies test these agents in preclinical models with the precise effects in patients with cancer remaining largely unexplored³²⁵.

Various bioengineering approaches have been applied to the development of artificial-EV-mimetic nanoparticles, hybrid-EV-mimetic nanovesicles and EV-camouflaged nanoparticles 326-328. To simultaneously boost intratumoural immune infiltration and immune

activation, photoactivatable silencing EVs have been generated as EV-camouflaged nanoparticles 323. This approach localizes selective activation of therapies in proximity to the target site and thus minimizes systemic exposure, which might also reduce the risk of toxicities. In one study, investigators engineered a photoactivatable reactive oxygen species-sensitive nanocomplex core loaded with siRNAs targeting PAK4 followed by cloaking with EVs derived from M1 macrophages 323. These photoactivatable silencing EVs had an extended circulation half-life (-4 h) and improved tumour accumulation compared with nanoparticles coated with M0-macrophage-derived EVs 323. Furthermore, reactive oxygen species-responsive intracellular release of siPAK4 via 660 nm laser irradiation not only silenced PAK4 but also modulated the TME in mouse models of melanoma and colorectal cancer 323. Such hybrid EV systems provide a novel approach that has potential for the selective delivery of therapeutic cargoes to tumours.

Current clinical studies testing cancer vaccines are challenging and have mostly failed to provide substantial improvements in clinical outcomes, especially in patients with advanced-stage disease. For example, the first FDA-approved autologous DC-based therapeutic cancer vaccine (Sipulecel-T) provided only a modest survival benefit in patients with metastatic castration-resistant prostate cancer compared with other therapies that became available around the same time, such as enzalutamide³²⁹. Importantly, innovative strategies and advances in technology might overcome these challenges and broaden the opportunities for clinical application⁵⁷. A personalized EV-based engineered therapeutic cancer vaccine has been developed using these advances²³³. Here, modified EVs (termed IL2-ep13nsEV) from autologous dendritic cells (DCs) were pulsed with tumour cell lysates for enrichment of MHC-bound antigens inherited from primed DCs and T cell-promoting costimulatory factors at the EV surface and engineered to express membrane-bound IL-2 (ref. 233). This approach enabled the EVs to present antigens and thus promote cancer cell-specific T cell-mediated cytotoxicity in syngeneic mouse models and patient-derived xenograft (PDX) models of breast cancer²³³ (Fig. 4c). The presence of surface-bound IL-2 supported the latter function by enabling these modified DC-EVs to migrate towards lymphoid organs and to activate IL-2 signalling on lymphocytes²³³ (described in detail elsewhere 15). This EV-based personalized therapeutic cancer vaccine strategy induced robust antitumour immunity capable of preventing tumour development following injection of patient-derived tumour material in 50% of humanized PDX mice and sensitizing pre-existing tumours to immune checkpoint inhibitors²³³; this approach might provide a novel treatment approach for patients with metastatic breast cancer.

In another approach, EVs generated from OVA-pulsed DCs were conjugated with an anti-CTLA4 antibody³³⁰. This EV-based therapeutic cancer vaccine was demonstrated to promote tumour infiltration by T cells leading to antitumour activity in a mouse model of melanoma³³⁰. Elsewhere, researchers engineered antibody-decorated EVs from tumour antigen-pulsed DCs equipped with antibodies targeting CD3 or EGFR that are able to activate T cells directly and to promote T cell–cancer cell interactions, resulting in cell crosslinking and enhanced tumour cell killing in a B16-OVA mouse model²³¹. This cancer vaccine also elevated PD-L1 expression in tumour tissues in vivo and combination therapy with anti-PD-L1 antibodies further enhanced the efficacy of the tumour-targeting EVs²³¹.

Accumulating evidence indicates that immune cell-derived EVs can mediate communications between various immune cell types to dynamically regulate the immune response³³¹, providing a new platform

for cancer treatment focusing on immune cell regulation ^{15,234} (Fig. 4c). In a seminal study, researchers demonstrated that cancer-derived EVs (from preclinical models of lung or breast cancer or melanoma) containing PD-L1 can induce T cell senescence owing to alterations in lipid metabolism and activation of cAMP-response element binding protein (CREB) signalling ³³². Inhibition of EV formation, lipid metabolism and/or cholesterol synthesis or CREB signalling reversed this T cell senescence and sensitized mouse xenograft models to anti-PD-L1 antibodies in vivo ³³². These preclinical data reveal a novel onco-EV-mediated immunosuppressive mechanism of T cell senescence with dysfunction and the potential for resistance to immune checkpoint inhibitors.

Elsewhere, a therapeutic strategy involving a combination of EVs derived from induced pluripotent stem cells (iPSCs) exposed to tumour-associated antigens alongside DCs was investigated, resulting in antitumour activity following injection into syngeneic mouse models of various solid tumours²²⁹. These human iPSC-EVs (hiPSC-EVs) can be recognized by the mouse immune system and are able to elicit specific antitumour activity against various isolated tumour cells and in mouse models of lung metastasis and melanoma²²⁹; such findings provide a solid theoretical basis for clinical trials with hiPSC EV-based prophylactic and therapeutic cancer vaccines (Fig. 4c). These iPSC-derived EV-based vaccination strategies might overcome the challenges associated with current iPSC vaccines (such as autoimmune rejection and potential tumorigenicity) that limited antitumour activity, particularly for metastatic cancers³³³.

A further EV engineering strategy includes the development of functional gasdermin D mRNA-encapsulating EVs coated with the hydrophilic photosensitizer chlorin e6 and an anti-HER2 antibody, which engage pyroptosis in both mouse HER2-overexpressing 4T1 syngeneic and SKBR3 xenograft models³³⁴. Elsewhere, various approaches involving activation of the STING signalling pathway have been developed^{335,336}, primarily focusing on cytosolic DNA to stimulate DCs and activate cytotoxic immune cells. In one study, HEK293 cell-derived EVs externally loaded with the STING agonist cGMP-cAMP were efficiently internalized by DCs with subsequent activation of CD8⁺ T cells and suppression of tumour growth in syngeneic mouse models of melanoma. Following intratumoural injection, cyclic dinucleotide (CDN)-loaded EVs enhanced local T cell responses with >100-200-fold potent inhibition of tumour growth compared with doses of free CDN, or co-administered unloaded³³⁵. Importantly, such tumour localization and retention of CDN-loaded EVs resulted in systemic antitumour immunity without evidence of systemic inflammatory cytokine storm in the mouse model335.

Improving our understanding of the expression of specific tumour-targeting EV surface proteins and their implications for retention in the tumour vasculature remain key areas of research. In this regard, developments in EV engineering are delivering substantial advances in the ability to generate tumour-specific T cell responses ³³⁷. Multifunctional DC-derived EVs provide several advantages over existing immunotherapies such as the ability to stimulate both innate and adaptive immune responses, as well as their ease of manipulation for the delivery of broad-spectrum tumour antigen complexes for T cell activation, including cytosolic delivery of STING agonists for enhanced antigen presentation as well as an improved capacity to transverse tissue barriers.

Collectively, these therapeutic approaches, using complementary EV-based strategies (Box 1 and Fig. 4c), have demonstrated potent preclinical activity in various models, including humanized models²³³.

Such versatile EV-based systems provide a biotechnology tool for clinical development across multiple delivery strategies with the potential for long-term stability. In the early phases of clinical development (such as in NCT01159288, NCT01550523 and NCT02507583), bioengineered EV-based vaccines have primarily been tested in patients with advanced-stage cancers — with salient findings in terms of safety, immunomodulatory properties and in some cases ease of adaptation. However, efficacy in terms of both stimulating adaptive antitumour activity and clinical activity has been underwhelming in many of the early trials.

In summary, much of the current focus has shifted towards using EVs for the delivery of targeted therapies and as cancer vaccines. Selection of the most appropriate EV precursor cells is a critical point to be considered when designing an EV vaccine owing to the implications of the intrinsic properties of the EVs for activity and potency, surface antigen display, antigen loading and EV integrity, pharmacokinetic profiling and the feasibility of large-scale production and purification, as well as the ability to achieve consistent immune responses across experimental models and in patients.

EVs as a source of biomarkers Roles in detection and clinical management

Over the past decade, onco-EVs have attracted considerable clinical interest as diagnostic platforms (described in detail elsewhere³³⁸). This interest primarily reflects their release directly from tumour cells as well as the ability to obtain samples in a minimally invasive manner from the systemic circulation and other bodily fluids 78,248,339-341. EVs have the potential to provide clinical applications in the areas of cancer diagnosis³⁴², including disease staging^{78,152,343}, early cancer stage risk factors344, dissemination and/or metastasis loci152,344 and prognosis 13,341,345,346 (Table 3 and Fig. 5a). For example, in a groundbreaking study, investigators identified onco-EV-associated GPC1 (encoding glypican-1) as a prognostic biomarker enabling the detection of early-stage PDAC, including the ability to distinguish between patients with early-stage and advanced-stage disease³⁴². GPC1 (mRNA and protein) from onco-EVs was subsequently combined with the serum CA19-9 test for early PDAC detection and demonstrated encouraging specificity (91.3%) and sensitivity (~81%) in comparison to measures of either biomarker alone in a retrospective analysis³⁴⁵. This approach provides a promising non-invasive method of early diagnosis and treatment decision-making in patients with potentially curable PDAC. In this regard, the ExoDx Prostate (IntelliScore) (EPI) test is a non-invasive urine-based EV gene expression assay designed to inform about the need for biopsy sampling in patients with prostate cancer^{216,346,347}. In a randomized multicentre trial, all 1,094 patients had an EPI test, although only the intervention group received results during the biopsy decision-making process. A total of 833 patients had follow-up data available at 2.5 years and those with low-risk ExoDx scores (<15.6) had fewer and more-delayed biopsy procedures compared with those with high-risk disease³⁴⁸. The EPI test also leads to a 21.8% increase in the detection of high-grade prostate cancer in the EPI arm compared with those managed according to standard-of-care approaches while reducing the incidence of unnecessary biopsy sampling (44.6% of patients with low-risk disease in the EPI arm underwent biopsy sampling versus 79.0% in the control arm; P < 0.001)³⁴⁸. However, the prostate cancer is often slow to progress, and median survival outcomes from this study are thus far unavailable.

Challenges remain in determining the most suitable cancer biomarkers and, importantly, the type of molecule or molecules best suited specifically for the purpose of EV-based cancer detection or monitoring. In one

Table 3 | Extracellular vesicle-based liquid biopsy biomarkers in patients with cancer

Cancer	Biomarkers and detection methods	Clinical efficiency and feasibility	Refs.
Stage I PDAC (n=16)	EVs present in frozen plasma samples are isolated using ultracentrifugation followed by single-EV analysis (combining pan EV lipophilic labelling, size exclusion, high-resolution microscopy imaging) for the detection of various cancer-associated proteins, including mutant KRAS, P53, MUC1, EGFR and PGP4OH detected in frozen plasma samples using ultracentrifugation	Mutant KRAS and/or P53 detected in samples from 15 of 16 patients with stage I PDAC. Estimates suggest that tumours with a volume of -0.1cm³ could be detected at 80% specificity using the current approach and that detection limits as low as <0.03 cm³ might be feasible at similar levels of specificity with larger panels	124
mCRPC (n=76)	EVs present in frozen plasma samples were isolated using ultracentrifugation followed by low-association WGS with differential gene expression and gene-set enrichment analysis	Detectable tumour-derived DNA in \geq 4% of EVs (EV-DNA TF \geq 4%) associated with levels of clinical biomarkers such as serum PSA, LDH and ALP as well as shorter time to disease progression among patients receiving androgen receptor signalling inhibitors or taxanes (HR 2.76, 95% CI 1.45–5.25; log rank P =0.001)	157
HGSC (n=935) ^a	EVs present in plasma or serum samples were isolated using size-exclusion chromatography and immunoaffinity purification followed by proximity-ligation qPCR-based quantification and development of an EV-based test comprising BST2, FRa, MUC-1, MUC-16 and sTn	Specificity 97.0% (128 of 132 individuals), HGSC sensitivity of 97.0% (64 of 66 patients) and also detected 73.5% (61 of 83 patients) of non-high-grade ovarian cancers compared with serum CA-125	396
Breast cancer (n=196)	EVs present in serum samples were isolated using ultracentrifugation and size-exclusion chromatography followed by proteomic analysis	A panel comprising 12 EV proteins (TTYH3, KPNB1, RANBP2, PEPD, NCL, PARP1, ACTA2, ACTG2, TBCA, MATR3, KRT16, and CCT6A) was able to discriminate between patients with vs without lymph-node metastases at 93.8% sensitivity and 81.3% specificity; TALDO1 associated with distant metastases	152
Prostate cancer (n=1,563)	EVs present in urine samples (25–50 ml total volume) were isolated using a urine sample concentrator kit followed by qRT-PCR and analysis using the ExoDx Prostate IntelliScore panel (comprising ERG levels and fusion products plus, TMPRSS2) to calculate an EPI score	At 2.5 years of follow-up, patients with EPI scores suggesting low-risk disease were less likely to have high-grade prostate cancer (7.9% vs 26.8%, P<0.001). Furthermore, patients with low-risk EPI scores were less likely, and those with high-risk EPI scores were more likely to undergo biopsy sampling (44.6% and 79.0%) compared with those in the control group (59.6% and 58.8%)	216,347

ALP, alkaline phosphatase; EPI, ExoDx prostate; EV, extracellular vesicle; HGSC, high-grade squamous ovarian cancer; LDH, lactate dehydrogenase; mCRPC, metastatic castration-resistant prostate cancer; PDAC, pancreatic ductal adenocarcinoma; PSA, prostate-specific antigen; qRT-PCR, quantitative real-time PCR; sTn, sialylated Thomsen-nouveau antigen; TF, transcription factor; WGS, whole-genome sequencing. Includes 156 patients with HGSC as well as various control groups in both the training and validation cohorts.

EV-based diagnostic approach, the lipid composition of cancer-derived EVs was investigated ¹⁵¹. This study used a mass spectrometry-based detection platform focusing on the presence of sphingolipids and glycer-ophospholipids in EV membranes, with an overall accuracy for the detection of breast cancer of 93.1% by logistic regression classification with recursive feature elimination analysis ¹⁵¹. Furthermore, assays designed to detect cancer-associated mutations in DNA from EVs (such as those in *KRAS* ³⁴⁹ or *EGFR* ³⁵⁰) demonstrated superior sensitivity and specificity for the early detection of pancreatic or lung cancer, respectively, compared with the equivalent methods involving cell-free DNA (cfDNA). For example, sensitivity for activating *EGFR* mutations was 98% versus 82% and for *EGFR* ^{1790M} was 90% versus 84% in prospectively obtained samples from the TIGER-X cohort, in which patients with *EGFR*-mutant NSCLC (determined based on the analysis of a tumour biopsy sample) received the EGFR tyrosine-kinase inhibitor rociletinib ³⁵¹.

Immune cell-derived EVs harbouring integrin $\alpha_x\beta_2$ can serve as novel, blood-based biomarkers of thrombosis risk, specifically in the context of lung cancer 82 . Circulating tumour-derived CXCL13 was shown to reprogramme lung interstitial macrophages to produce EVs carrying activated integrin $\alpha_x\beta_2$, which was able to induce systemic platelet activation and aggregation responses via interactions with the platelet-bound glycoprotein GPIb. This EV-mediated phenotype was suggested to contribute to a hypercoagulable state that might predispose to organ dysfunction and failure in patients with cancer 82 . Importantly, EVs containing surface integrin β_2 (ITGB1) were also identified as an initiator of intravascular thrombosis, with selective inhibition preventing thrombosis and reducing the extent of metastatic dissemination in preclinical models of both early-stage and advanced-stage

cancers 82 . Other cell types might further contribute to the pool of circulating EV-associated ITGB1; nonetheless, this study demonstrates the potential of integrin β_2 as a biomarker of various cancer types associated with a high risk of thrombosis (including pancreatic and lung cancers and Hodgkin lymphoma) 82 . These findings highlight the complex interplay between EV signalling and metastasis-promoting factors released by activated platelets and a potential role of these factors as predictive/prognostic biomarkers for tumour-associated thrombosis and potential targets for the treatment of advanced-stage cancers.

In a seminal study³⁵², the researchers investigated circulating exosomes expressing PD-L1 on the vesicle surface as a prognostic biomarker in patients with metastatic melanoma receiving these agents. This study identified correlations between maximum fold changes in exosomal PD-L1 level after 3-6 weeks of pembrolizumab and an improved overall response rate (80% sensitivity and 89.7% specificity), whereas fold increase in total circulating PD-L1, MP-PD-L1 and EV-excluded PD-L1 levels was associated with an inferior overall response rate, suggesting a potential of exosomal PD-L1 as a bloodbased prognostic biomarker. Such insights raise important clinical considerations for biomarker discovery studies, in which sensitivity and specificity in specific settings dictate the ideal tumour biomarker. Circulating exosomal PD-L1 levels have also been associated with prognosis in patients with various solid tumours including head and neck squamous cell carcinomas³⁵³, gastric cancer³⁵⁴ and NSCLC³⁵⁵. The suggestion that exosomal PD-L1 inhibits the activity of CD8⁺ T cells in mouse models supports EV elimination as an effective adjunct anticancer therapy might improve the effectiveness of anti-PD-L1 antibodies in patients³⁵². Elsewhere, Melac-Chip, a microfluidic metabolic

glycan-labelling technology enabling temporal-selective labelling of newly released EVs, was used to demonstrate a positive correlation between PD-L1⁺ EV levels and tumour volume in mouse xenograft models of breast cancer or melanoma³⁵⁶. Collectively, these findings suggest that EV monitoring approaches could provide novel assays for early cancer diagnosis and for informing treatment-related decision-making.

Other strategies associated with EVs and immunoregulation are being directed towards prediction of immunotherapy response in patients ^{357,358}. For example, a clinically relevant voluntary exercise regimen was found to promote the release of EVs containing miR-29a-3p from the myocytes of patients with various solid tumours ³⁵⁷. miR-29a-3p released in this way was found to correlate positively with immune cell infiltration and survival outcomes, suggesting potential relevance as a biomarker ³⁵⁷.

Similarly, typically expressed EV-associated proteins such as CD9, HSPA8, ALIX, HSP90AB1, ACTN, MSN, RAP1B and SDCBP have been tested clinically as universal biomarkers for early cancer detection 78,121,210. Advances in technology and artificial intelligence

(Al)-based refinement of EV-based, specific 124,359 and multicancer tests 210 have the potential to optimize the performance of early cancer detection tests and warrant further testing in prospective studies. For example, ExoLuminate is a prospective, multicentre, observational registry study (NCT05625529), which is designed to evaluate the ExoVerita assay for the early detection of pancreatic cancer, which has already demonstrated 93% sensitivity and 91% specificity for PDAC in the training data set 57 . In April 2025, the EvoLiver test was designated as an FDA Breakthrough Device for early detection of hepatocellular carcinoma (HCC) in patients with cirrhosis and therefore a high risk of HCC. In a multicentre trial, this assay demonstrated 86% sensitivity and 88% specificity for the detection of early-stage liver cancer, surpassing the performance of methods such as ultrasonography and α -fetoprotein testing.

Bulk EVs versus onco-EVs

The vesicular population of blood comprises EVs originating potentially from any tissues or cell types (Fig. 5b). Within this complex EV

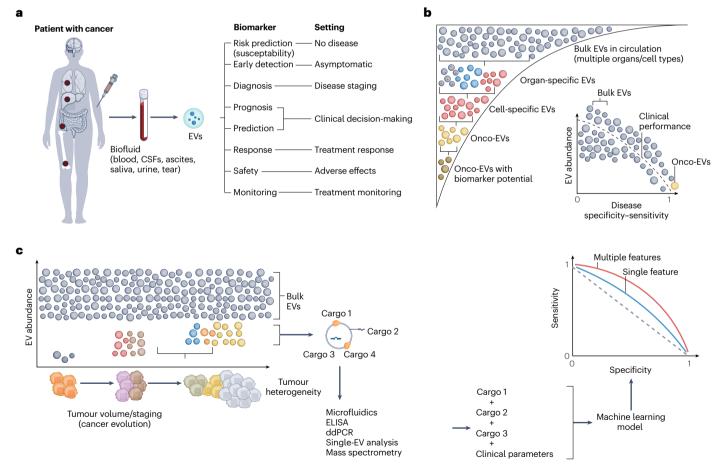


Fig. 5| Cancer extracellular vesicles as diagnostic-prognostic platforms.

a, Extracellular vesicles (EVs) containing complex biomolecules reflective of their cells and tissues of origin have the potential for clinical utility as diagnostic and/or prognostic biomarkers with the potential for minimally invasive sampling via blood plasma or other bodily fluids. **b,c**, Advances in the sensitivity of detection strategies enable the identification and monitoring of cancers using EV-bound biomarkers and/or molecular cargoes (**b**) including both specific cancers and multiple cancer types (pan-cancer biomarkers) using methodologies,

such as genome sequencing (for the detection of mutations, or potentially changes in DNA methylation or fragmentation) 129,373,417,418 , mass spectrometry 78 , lab-on-a-chip platforms 210 , label-free and fluorescent and/or metabolic labelling combined with microfluidic isolation 356,419 , machine learning 147 , interaction mapping (via ligand–receptor networks 420 or cellular interaction interfaces 421), single-EV-based analyses 124 and antitumour therapy response 352,356 (c). CSF, cerebrospinal fluid; ddPCR, digital droplet PCR; ELISA, enzyme-linked immunosorbent assay.

mixture exists a small subset of organ-specific EVs arising from different cells within each organ. Cancer cells within organs are known to release onco-EVs that typically comprise a tiny subset of the vesicular population. Nonetheless, these EVs might have potential as cancer biomarkers owing to the presence of tumour-specific features reflecting their cell type of origin. Onco-EVs have a limited abundance in the systemic circulation (estimated to be <0.1% of the total EV population using single-EV analysis-based fluorescence detection 124). To address this limited abundance, high-throughput analysis of single-EV surface markers has been used to measure the kinetics of EV interactions with an affinity-labelled surface as specific and non-specific EV interactions, with high sensitivity (89%) and specificity (100%) detection of a protein signature (comprising EpCAM, GPC1 and HER2) in pancreatic cancer-derived onco-EVs against a background of a 350-fold excess of non-specific plasma EVs 359 .

The ability to selectively isolate onco-EVs from blood samples or other bodily fluids containing populations of circulating EVs originating from potentially any organ or cell type (typically 10¹⁰–10¹² EVs/ml in blood)360 remains a major challenge for both basic researchers and clinical translation. Nonetheless, several studies have demonstrated the feasibility of capturing circulating onco-EVs originating from specific cancer cell types 124,129,157,361 (Fig. 5c). Recently, a transcriptomic-based approach was developed to specifically enrich circulating EVs with RNA or DNA cargoes¹⁵⁷. This study demonstrated enrichment for DNAs and RNAs encoding epithelial markers commonly amplified or deleted in bulk EVs derived from patients with cancer, both globally and at individual patient levels¹⁵⁷. Further analysis of these EV cargoes revealed the presence of tumour-specific mutations, copy-number alterations and transcriptional programmes that largely correlated with gene expression patterns in EV-RNAs derived from matched tumour biopsy samples. Evaluation of plasma EV-RNAs in patients receiving systemic androgen receptor inhibitors after 4 weeks of treatment revealed downregulation of cancer-related transcription programmes including those regulating epithelial development, keratinization and proliferation (E2F, MYC), PI3K-mTOR and AR signalling, with upregulation of resistance-associated signatures including those involved in neuroendocrine differentiation, basal-like programmes and RB1 loss. This EV isolation strategy (combining ultracentrifugation, density gradient purification and column-based capture), while showcasing the potential of onco-EV isolation based on specific molecular cargoes, raises questions concerning the number of EVs released by tumour cells and other cells populating the TME and whether certain EV populations (such as those associated with cell death) might dominate in terms of the RNA or DNA cargoes detected and thus provide a biased readout of tumour biology362

Elsewhere, a comprehensive analysis of EV-DNA including sequences, structure, biogenesis and function in cancer progression demonstrated that EV-associated genomic DNA can inhibit liver metastasis by reprogramming the immune microenvironment ³⁶³. In this study, EV-associated DNA was predominantly detected at the EV surface and derived from nuclear DNA, while its chromatin structure differed strikingly from that of cellular DNA. Importantly, the EV-associated histones were identified and differed markedly from those of their cell source-derived nuclei in that the EV-derived histones had signs of DNA fragmentation and increased methylation, suggesting a puzzling and non-random mechanism of extracellular export ³⁶⁴. This study used advanced microscopy and genome-wide CRISPR–Cas9 screens to identify candidate genes associated with the packaging of DNA into EVs ³⁶³. Importantly, these EVs demonstrated an anti-metastatic function in

a mouse model of liver metastases, without any obvious effects on the growth of the primary tumour. Furthermore, EV-associated DNA triggered Kupffer cell-mediated suppression of the immune microenvironment as well as generated transcriptional signatures associated with DNA damage response pathways, in parallel with the release of immunostimulatory cytokines and chemokines (such as tumour necrosis factor, CCL5 and CXCL1/10). This study also provided evidence of a potential prognostic role of onco-EV-DNA, with reduced amounts of onco-EV-associated DNA correlating with an increased risk of postoperative metastases in patients with various cancer types, with 87% sensitivity and 56% specificity for metastatic recurrence at a cut-off of 49.2 ng/µg (ref. 363).

A large-scale comprehensive analysis of the proteomes of EVs isolated (using ultracentrifugation and size exclusion) from serum samples from 196 patients with breast cancer or those without cancer identified several tumour-associated EV proteins, which could serve as potential biomarkers for the detection of early-stage breast cancer (suggesting a 7-marker panel) and metastatic disease (suggesting a 12-marker panel). These findings could be complemented by advances in our understanding of circulating EVs, for example, by using multi-omics to identify onco-EV markers that are conserved across different clinical cohorts that precisely differentiate EVs ³⁶⁵ — such knowledge would be crucial in enabling the clinical potential of circulating EVs to be fully realized.

Evolving technologies

Advances in detection and capture and the ability to obtain multiplexed measurements from onco-EVs are beginning to address the inherent heterogeneity of putative cancer cell-associated proteins and the frequency of specific mutated oncogenes or tumour suppressor proteins in single EVs^{87,88,124}. Various methodologies, including digital detection assays¹²⁴ and single-cell EV nanoscopy³⁶⁶ (described in detail elsewhere³⁶⁷), have been applied for this purpose. Current EV biomarker strategies capable of sensitive capture and digital detection (such as enzyme-linked immunosorbent assay, digital flow cytometry, digital surface-enhanced Raman scattering and other emerging digital strategies³⁶⁶) and microfluidics technologies to analyse individual molecules from single EVs¹⁵⁰, including double-stranded DNA and single-stranded DNA³⁶⁸, are highlighted (Box 2).

The ability to define transcriptional profiles of tumours from liquid biopsies has focused on methylation changes in ctDNA 369 , and fragmentomics 370,371 (reviewed elsewhere 372), in which highly sensitive evaluation of fragmentation patterns of cfDNA across the genome have demonstrated 80–98% cancer detection specificity 370,371 . Given that fragmentation profiles reveal regional differences between tissues, their profiles can be matched and analysed to identify the tissue of origin of ctDNA. Although this approach highlights the clinical importance of combining assessments of characteristics such as DNA fragmentation patterns across the genome for screening, early detection and monitoring of cancer in patients 371,373 , fragmentomics analysis has not yet been applied to the interrogation of EV-derived DNA.

The availability of sensitive assay platforms and alternative technologies to determine the origin and molecular features of EVs is expected to provide a key step forward in the absolute quantification of biomarker expression levels and their characterization at the single-EV and single-molecule levels of resolution 124,366 . In theory, patient-derived onco-EVs can, in essence, capture the neoantigen landscape 124,362 and might therefore facilitate the development of comprehensive, adaptable and highly personalized vaccines targeting a broad spectrum of

Box 2 | Emerging technologies for extracellular vesicle-based cancer diagnostics

Emerging new technologies and approaches for more sensitive and more specific extracellular vesicle (EV)-based cancer diagnosis include the following.

Microfluidics

Microfluidic platforms for label-free EV isolation and/or capture from biofluids or tissue samples have the advantages of high throughput, purity in isolating EV subpopulations, sensitivity in their capacity to derive cell-specific features on EVs as well as multiplexing capabilities 356,430. Microfluidic platforms such as functionalized magnetic beads for rapid isolation of EV subtypes have demonstrated superior performance relative to other EV isolation methods including at the single-cell and single-vesicle levels⁴³¹. For example, the detection of biotin-linked metabolic glycan labelling CD63⁺ EVs using a microfluidic-assisted enrichment strategy based on metabolic labelling and click chemistry (Melac-Chip) demonstrated the ability to distinguish nascent from pre-existing EVs³⁵⁶. Microfluidic techniques also enable the controlled production of synthetic EVs and effective cancer drug loading for EV-based therapies⁴³². However, maintaining precise flow control within microchannels, which requires complex and multilayered designs within nanoscale structures⁴³³, and impurities and a limited ability to isolate EVs from whole blood remain challenges in this area. Nonetheless, a viscoelastic-based microfluidics platform equipped with a cell-depletion module and a single-EV isolation module has demonstrated 97% purity and an 87% recovery rate for small (<200 nm) EVs⁴¹⁹.

Multi-omics profiling of EVs and other biomarkers

Integrative multi-omics analysis enables the identification of multiple biomarkers with the potential for an improved understanding of the roles of such molecules in cancer 434,435. For example, a liquid biopsy signature comprising EV-derived mRNAs, microRNAs and long non-coding RNAs has been shown to distinguish between patients with advanced-stage gastric cancer with a response and those without a response to neoadjuvant fluorouracil-based chemotherapy in a retrospective analysis (AUC 0.77) 436. In another study, investigators analysed 52 omics data sets (comprising 481 exosome-derived molecules including miRNAs, mRNAs, lipids and proteins) and identified HLA-DQB2 and COL17A1 as high-performance predictors of breast cancer prognosis (AUC 85.4%) 437. Further applications of EV-associated small DNA fragments are emerging, given that EVs typically provide large fragments of intact DNA 438,

typically of ~150-500 bp (refs. 438,439) and up to 2,000 kb in length. Fragmentomics presents an orthogonal approach, providing additional information about the biological context of the DNA and the cell from which it originated, including vesicle biogenesis and cargo loading. Elsewhere, a dual mass spectrometry-based proteomic approach was applied to circulating EVs obtained from patients with breast cancer (n=126) or those without cancer (n=70). Both targeted and label-free proteomics enabled the identification of a panel of 7 proteins as a potential diagnostic signature for breast cancer, increasing to 12 proteins for the detection of lymph node metastases with validation in five independent cohorts demonstrating a sensitivity of 93.8% and a specificity of 81.3% (ref. 152). Translational potential was further established using high-throughput molecular docking and virtual inhibitor library screening, which identified inhibition of the pentose phosphate pathway enzyme transaldolase 1 as a method of delaying tumour progression in vivo¹⁵².

Nanocapture technologies for EV-derived protein and/or gene detection

Several widely used and novel technologies are available for EV-based liquid biopsy analysis that is suitable for multitarget quantification and high-sensitivity detection such as various antibody-based assays²¹³, digital droplet PCR (ddPCR)^{212,440,441}, single-molecule resolution digital sEV counting detection (DECODE) chips⁴⁴² and droplet-barcode sequencing⁴⁴³. However, the limited abundance of most protein cargoes in EVs remains a challenge. Excitingly, single-EV and single-particle analysis¹²⁴ for high-sensitivity EV protein detection has been developed and enables the quantification of individual molecules from a single EV^{124,150,366,444}; this approach can be used to detect stage I pancreatic ductal adenocarcinoma using a low-volume (100 µl) plasma sample¹²⁴.

Artificial intelligence-assisted EV-based early cancer prediction

Integrating EV multi-omics data and artificial intelligence (AI)-assisted analysis (for example, omics screens, imaging and predictive modelling) could provide powerful tools for early cancer prediction²¹⁰. In one approach, investigators developed an explainable AI-based prostate cancer screening system combining AI (to identify the key role of each biomarker in decision-making and provided specific clinicopathological data supporting its decision for individuals) with a dual-gate field-effect transistor biosensor⁴⁴⁵.

cancer antigens¹²⁴. Technologies and machine-learning approaches enabling refinements in how we identify early drivers of tumorigenesis are rapidly evolving ^{374–377} (Fig. 5c and Box 2). Strategies involving the profiling of hundreds of millions of single analytes to identify very rare circulating EV-centric biomarkers (for example, less than -0.01–0.05% of bulk EVs for early-stage solid tumours, -0.1–1% for advanced-stage metastatic disease²⁴¹ and 1–10% for in vivo xenograft models²⁴⁸) are currently emerging³⁷⁸. EV profiling and modelling studies have begun to correlate tumour size with the presence and concentration of circulating EVs¹²⁴. Such estimates of the number of EVs released per unit time and unit tumour volume highlight the challenges in developing bulk EV-based platforms for the detection of early-stage, small

tumours and how single-EV detection strategies might resolve these challenges in detection sensitivity (-1,000-fold or more over bulk methods) and potentially enable the detection of early-stage cancers in humans $<1\,\mathrm{mm}^3$.

Alternatively, applying multiplex biomarker panels to the detection of onco-EVs might provide improved analytical specificity and sensitivity, therefore reducing tumour detection limits (Fig. 5c). Indeed, a framework model for the detection of stage I PDAC integrating the amount of circulating onco-EVs detected in PDX models of PDAC, analysis with multiplex marker panels and the effects of tumour volume predicted that such an approach would enable the diagnosis of 68% of patients with tumour volumes of 0.1 cm 3 at a specificity of 80%,

suggesting the potential for early cancer detection 124 . Such multiplex assays also have the potential to substantially contribute to EV initiatives aiming to standardize the definition of EVs by providing multilayer biomarker profiles.

Clinical translation

Despite promising data from preclinical studies and ongoing and completed clinical trials including studies testing promising early-stage cancer assay platforms (NCT05625529), prognostic biomarkers in patients with NSCLC (NCT05424029), the EvoLiver test for HCC surveillance in patients with cirrhosis, ExoDx prostate and OverC, a high-specificity multicancer detection blood test^{79,127,198,332,379}, major challenges remain that have limited the translation of knowledge of the role of EVs in cancer biology into clinically effective therapeutics or other clinical applications. In this regard, comprehensive investigations of fundamental questions regarding the functions and biological significance of EVs in the initiation and evolution of cancer¹⁷ and stromal and immune cell regulation¹⁵ are required and would probably support and expand the clinical application of EVs. Some generalized fundamental questions relate to the specific roles of EVs in cancer initiation and the identity of the molecular cargoes that drive these oncogenic programmes as well as the types of EV cargo that mediate immune checkpoint modulation or immunosuppressive signalling. Could these mechanisms be targeted using selective stage-specific inhibitors, or leveraged as biomarkers for cancer staging and prognosis? Furthermore, how can the signatures of tumour-specific EVs be leveraged to improve the sensitivity and specificity of liquid biopsy assays? Furthermore, knowledge of the interactions between EVs and anticancer and immunoregulatory therapeutic agents and how these affect treatment outcomes remains limited, as does our ability to address the fundamental biological and technical challenges created by heterogeneity in EV populations, which will need to be overcome to enable more precise functional studies.

EVs are highly heterogeneous and arise from complex biogenesis pathways with variable targeting mechanisms, all of which are not yet fully understood. Notably, the challenges created by the existence of many diverse subpopulations capable of producing and receiving a diverse range of signals are not unique to research into EVs, and in this regard single-EV studies will probably provide a deeper understanding of EV biology with important implications for biomarker discovery³⁸⁰. Single-cell studies of tumour-infiltrating immune cells have revolutionized immunology and cancer biology by revealing cellular heterogeneity, states and dynamics in an unprecedented level of detail. Yet, single-EV studies – although conceptually similar in aiming to dissect heterogeneity – have been challenging to execute owing to several limitations. These include the inherent technical limitations in resolving and specifically detecting and profiling single EVs, the need for standardized single-EV profiling strategies and the requirement for comprehensive, refined databases and standards for interpreting molecular profiles at the single-vesicle level (reference atlases). In this regard, advances in nanotechnology and microfluidic systems, and in combining multimodal approaches (imaging and molecular profiling), might reveal a level of EV heterogeneity akin to that demonstrated in single-cell studies¹¹³ (Box 2). The regulatory machinery that controls the production and cellular uptake of EVs remains largely unknown, including the regulation of biodistribution and cell-specific interactions. The EV corona has an established role as a part of the EV interactome, with the potential to contribute to and expands EV functionality and influence EV hydrodynamic size and $mobility^{168,171-173,381}. \ The implications of this bioactive medium, which$

is known to affect and in certain scenarios enhance vaccine delivery and immune responses in nanostructures³⁸², require consideration when using EV delivery systems for immunoregulation and activation including in antigen-specific adaptive immune responses³⁸³. Overall, such advances in our understanding of the protein corona are expected to improve rational EV-inspired nano-therapy design.

In terms of clinical utility as therapeutics, substantial manufacturing challenges exist including the scalability of production of clinical-grade EVs, selection of the most appropriate cellular sources as well as the most appropriate standardized internal controls to monitor batch variance and ensure that EV integrity, yield, composition, function and ultimately clinical effectiveness remain consistent. Considerable improvements in EV isolation strategies have been made, although the optimal method of scalable isolation of pure, clinical-grade EVs remains unknown and attempts to define this are still ongoing¹⁴³. In this regard, the mechanisms and kinetics involved in the loading of tumour-associated DNA^{143,144} and RNA^{245,384} into EVs remain an area of active research. For regulatory approvals, regulatory agencies such as the FDA and EMA have stringent standards for cell-derived products³⁸⁵; such requirements include ensuring the authenticity of the EV sources, maintaining strict biological control over parental cells, understanding the effects of such processes on EV corona composition and/or cell targeting and accumulation¹⁷², utilizing standardized and reproducible production methods and implementing standardized testing protocols^{143,385} (including protocols for the evaluation of particle biophysical characterization, membrane stability, biochemical composition as well as the development of in vitro-in vivo-correlated assays 367,386), models that mimic the composition and architecture of specific cellular environments^{387,388} and assessments of pharmacokinetics and the rapeutic efficacy $^{183,385,387}\!.$ Innovations in strategies to extend the circulation time of modified EVs including membrane camouflage³⁸⁸, cell target tethering³⁸⁹ or biomaterial-based tissue-specific controlled release or retention strategies³⁹⁰⁻³⁹³ are emerging. Despite these caveats, efforts for large-scale production of EVs (or hybrid EVs³⁰³) from various cell types under good manufacturing process-like conditions³⁹⁴ for their development as therapeutic tools are ongoing ^{65,183}. The future characterization of therapeutic EVs should involve multi-omics data integrated with advances in digital and machine-learning-based models to predict product quality and therapeutic consistency^{65,395}.

Substantial technical challenges also exist when considering circulating onco-EVs as diagnostic tools – most notably, the development, and application of highly sensitive tumour cell-specific EV assays, including the EvoLiver test and ExoDx prostate. ExoDx prostate, an EV-based liquid biopsy assay designed to guide cancer diagnosis and treatment decisions using a non-invasive multiparameter test, has been designated as an FDA Breakthrough Device³⁴⁷. Importantly, this designation now also applies to the Mercy Halo ovarian cancer screening test, an EV-based test designed for ovarian cancer screening of asymptomatic postmenopausal women³⁹⁶, with detection based on a panel of biomarkers (BST-2, FOLR1, MUC-1, MUC-16 and STN) colocalized on the surface of individual EVs³⁸⁰. The recent concomitant analysis of cfDNA, EV-DNA and EV-RNA from longitudinal cohorts of patients with prostate cancer links comprehensive analyses combining multi-omics and multi-analyte liquid biopsy – highlighting the salient fragmentation features of EV-RNA cargo as promising biomarkers for diagnostic and monitoring treatment response. This approach correlates DNA copy number and EV-RNA expression levels, globally and at an individual patient level, for regions commonly amplified

or deleted in prostate cancer, demonstrating the ability to detect individual tumour-specific features¹⁵⁷. As nanotechnology platforms, microfluidics could be used to quantify EVs for diagnosis²¹⁵. Nanosensor arrays and fluidic devices can measure specific protein and nucleic acid biomarkers and thus enable in-depth liquid biopsy assessments³⁵⁹. However, such strategies are still not widely used in clinical diagnosis owing to challenges related to reproducibility, standardization and a lack of robust assessment workflows. Most importantly, no standardized protocols and analyte references exist that would enable uniform evaluations of the performance of the various isolation and detection methods for EV analysis, especially at the low levels of abundance of most EVs. In this regard, highly specific EV detection and surface protein profiling strategies will be needed for effective early cancer detection assays. These assays could include strategies such as dynamic immunoassay surface profiling, which is capable of detecting multiple marker signatures from rare, ultra-low abundance tumour-specific sources in plasma and has already demonstrated an ability to discriminate between patients with PDAC and those without in a small retrospective cohort³⁵⁹. Although still rather preliminary, an understanding of the differences in EVs derived from different organs or tissues is emerging - which adds a level of complexity and variability in defining specific changes in EV composition. Indeed, applications of highly sensitive single-EV detection assays reflect considerable improvements in the limits of detection of CTC-derived EVs from early-stage cancers¹⁴⁹. This high sensitivity presents a seminal challenge in applying knowledge of circulating EV origins to the isolation of heterogeneous EVs, with certain biomarkers found to be much less prevalent than initially thought²¹³. Finally, distinct differences in sample collection criteria, storage, pre-handling, separation and detection methods often exist across different laboratories, making direct interlaboratory comparisons of results difficult.

Despite these various challenges, clinical implementation of EV-based biomarkers will require a method capable of specifically capturing, reproducibly separating and detecting EV-based biomarkers and for this approach to demonstrate superior diagnostic performance in large cohorts of patients^{359,380} (such as the ExoLuminate trial (NCT05625529)). Considering these challenges, various studies have explored isolation methods based on the detection of tumour-specific membrane protein markers on EV surfaces to enrich for onco-EVs, or aiming for single-EV characterization¹⁴⁹. Salient EV-based marker profiling studies focused on other cancer-related effects, such as linking liver metabolic reprograming with adverse effects of chemotherapy in mouse models, might be suitable for development into clinical assays¹⁶⁰. Profiling of circulating EVs from 20 patients with ovarian cancer and 10 age-matched individuals without cancer highlighted EV FRα as a potential biomarker for the early detection and monitoring of ovarian cancer²¹¹. Elsewhere, an EV-based molecular profiling analysis referred to as RExCuE was found to enable longitudinal assessments of ongoing responses to anticancer therapies, including androgen receptor signalling inhibitors and taxanes¹⁵⁷, highlighting the clinical feasibility of comprehensive EV profiling to inform the management of patients with advanced-stage cancer.

Conclusions

Knowledge of the potential role of EVs as biomarkers enabling early cancer detection, monitoring of disease progression or responses to treatment and the development of metastasis has made tremendous leaps in the past decade. This progress is evident from

our understanding of onco-EVs and the development of various high-sensitivity, high-throughput and high-resolution techniques appropriate for the isolation of onco-EVs 397,398 (comprising, for example, $^{-1}$ –0.01% of total EVs in blood 124,355) as well as various high-sensitivity methods for analysing EV cargoes 78,148,157,158,160,165,215,345,363 and for optimizing the loading of cancer drugs and EV bioengineering strategies for targeted therapies.

A diverse range of strategies for engineering EVs for anticancer therapy are emerging. These approaches might overcome the challenges associated with the use of natural EVs as engineered cancerbased therapeutics, including their scalable generation, heterogeneity, cellular uptake efficiency and deficient loading, with hybrid engineered

Glossary

Bulk EVs

The entire vesicular population (including onco-extracellular vesicles and all other subtypes) present in biofluids, originating from multiple organs, tissues and cell types.

Exosomes

A major class of extracellular vesicle (typically 30–150 nm in diameter) of endocytic origin released by all cell types following fusion of multivesicular bodies with the plasma membrane.

Extracellular vesicles

(EVs). Lipid membrane-encapsulated particles released by cells into the intercellular space and/or circulation that enable bidirectional cell-cell communication. EVs comprise various subclasses based on their molecular cargo, biogenesis and biophysical properties.

Liquid biopsy

Analysis of blood samples to identify circulating cancer biomarkers that can aid in clinical diagnosis and disease prognosis.

Microparticles

A major class of membranous extracellular vesicles (typically, 50-1,500 nm in diameter) formed by direct budding from the plasma membrane; microparticles can also be known as microvesicles and ectosomes.

Nanoparticles

Synthetic, lipid-based, polymeric and inorganic nanostructures (typically <100 nm in diameter) that determine

their functionality, activity and utility for drug delivery applications.

Nanoscopy

Use of light microscopy technique with diffraction-unlimited spatial resolution, which produces high-resolution images at the nanometre scale (also known as single-molecule localization microscopy or super-resolution microscopy).

Nanotherapeutics

The use of nanotechnology to design and deliver drugs and devices to treat a wide range of diseases, improve drug delivery and reduce toxicity.

Non-vesicular extracellular particles

(NVEPs). Non-extracellular vesicle particles include plasma lipoproteins, protein aggregates, supermeres, exomeres and even viruses.

Onco-EVs

Cancer cell-derived extracellular vesicles (EVs) that contain oncogenic cargoes (such as EV surface proteins, antigens, intracellular proteins, lipids, metabolites, RNAs, DNA fragments and others) that might augment cancer progression.

Pre-metastatic niche

A microenvironment induced by factors released from the primary tumour in a distant organ that supports metastatic cell seeding, survival and outgrowth. Such factors include tumour cell-derived exosomes and extracellular vesicles.

EVs having improved therapeutic delivery, tumour penetrance³²² and immunoregulation^{323,324}. EV cargo modification approaches such as indirect passive loading, chemical transfection and genetic engineering have also all been widely used³⁹⁹, in addition to the integration of other approaches for cargo loading including click chemistry, cloaking and biocoupling¹⁷³. Bioengineering techniques that alter the surfaces of EVs, such as aptamers, click chemistry and covalent binding interactions, enzymatic conjugation, ligand-receptor binding or membrane fusion have all been used to improve EV delivery to targeted cells and to regulate immunoreactivity, intracellular uptake and to enhance tissue and/or tumour penetrance^{251,297}. Bioengineering strategies to overcome challenges such as drug toxicity and that enable more specific tumour targeting for therapeutic applications warrant further attention. Multidisciplinary collaboration in areas such as enhancing bioengineering strategies, modelling cellular interactions and strategies such as AI virtual cell as multiscale, multimodal large-neuralnetwork-based models that can represent and simulate the behaviour of molecules, cells and tissues – and potentially EVs – across diverse states will probably be required to facilitate the development and clinical translation of EV-based approaches.

Onco-EVs, which are released directly from tumour cells, have immense clinical potential as cancer biomarkers¹⁵⁰. Onco-EVs can provide information on tumour biochemical features and origins as well as enabling detection at early disease stages 124,150,363,366. Encouragingly, several studies from the past few years have demonstrated the feasibility of capturing and identifying circulating onco-EVs from specific cancer types, with the potential to leverage these EVs as biomarkers 129,150,158,356 as well as the potential for EV capture and/or analysis using a growing range of physical and/or biological characteristics. Together, these technological advances now enable the profiling of multiple analytes from EVs, which in turn enable the identification of rare cancer biomarkers in bodily fluids, including blood and urine 78,210,400,401. These advances, coupled with evolving AI-enhanced and machine learning technologies 147,376,401 that integrate different marker types in multimodal tests, are accelerating progress in EV-based diagnostics 210,362,402. This field is now at an exciting juncture in terms of addressing how we apply EV-based tumour-targeted therapies and in the development of EV vaccines. The availability of EV-based diagnostic platforms is likely to change how we detect, monitor and manage cancer, and, importantly, our understanding of how EVs regulate the oncogenic programmes that drive and influence the development of cancer. The numerous trials underway or already completed as well as ever-increasing amounts of preclinical data accompanied by technological advances as well as expanding investment interest promise to usher in EV-based approaches as clinically translatable platforms in the foreseeable future.

Published online: 08 October 2025

References

- Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. *Annu. Rev. Cell Dev. Biol.* 30, 255–289 (2014).
- Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes Science 367, eaau6977 (2020).
- Xu, R. et al. Extracellular vesicles in cancer implications for future improvements in cancer care. Nat. Rev. Clin. Oncol. 15, 617-638 (2018).
- O'Brien, K., Breyne, K., Ughetto, S., Laurent, L. C. & Breakefield, X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. *Nat. Rev. Mol. Cell Biol.* 21, 585–606 (2020).
- Greening, D. W. & Simpson, R. J. Understanding extracellular vesicle diversity current status. Expert Rev. Proteom. 15, 887–910 (2018).
- van Niel, G. et al. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat. Rev. Mol. Cell Biol. 23, 369–382 (2022).

- Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4, 594-600 (1998).
- Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).
- Andre, F. et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360, 295–305 (2002).
- Wolfers, J. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 7, 297–303 (2001).
- Kalluri, R. & McAndrews, K. M. The role of extracellular vesicles in cancer. Cell 186, 1610–1626 (2023).
- Dou, X., Feng, C., Li, J., Jiang, E. & Shang, Z. Extracellular vesicle-mediated crosstalk in tumor microenvironment dominates tumor fate. *Trends Cell Biol.* 35, 230–247 (2025).
- Moller, A. & Lobb, R. J. The evolving translational potential of small extracellular vesicles in cancer. Nat. Rev. Cancer 20, 697-709 (2020)
- Kumar, M. A. et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target. Ther. 9, 27 (2024).
- Greening, D. W., Xu, R., Ale, A., Hagemeyer, C. E. & Chen, W. Extracellular vesicles as next generation immunotherapeutics. Semin. Cancer Biol. 90, 73–100 (2023).
- Zhou, E. et al. Circulating extracellular vesicles are effective biomarkers for predicting response to cancer therapy. eBioMedicine 67, 103365 (2021).
- Lucotti, S., Kenific, C. M., Zhang, H. & Lyden, D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J. 41, e109288 (2022).
- Ferreira, J. V. et al. LAMP2A regulates the loading of proteins into exosomes. Sci. Adv. 8, eabm1140 (2022).
- Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).
- van Niel, G. et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev. Cell 21, 708–721 (2011).
- Baietti, M. F. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes Nat. Cell Biol. 14, 677–685 (2012).
- Matsui, T., Osaki, F., Hiragi, S., Sakamaki, Y. & Fukuda, M. ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells. EMBO Rep. 22, e51475 (2021).
- Marie, P. P. et al. Accessory ESCRT-III proteins are conserved and selective regulators of Rab11a-exosome formation. J. Extracell. Vesicles 12, e12311 (2023).
- Clancy, J. W., Schmidtmann, M. & D'Souza-Schorey, C. The ins and outs of microvesicles. FASEB Bioadv. 3, 399–406 (2021).
- Vagner, T. et al. Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. J. Extracell. Vesicles 7, 1505403 (2018).
- van Niel, G., D'Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).
- Rilla, K. Diverse plasma membrane protrusions act as platforms for extracellular vesicle shedding. J. Extracell. Vesicles 10, e12148 (2021).
- Rai, A. et al. Secreted midbody remnants are a class of extracellular vesicles molecularly distinct from exosomes and microparticles. Commun. Biol. 4, 400 (2021).
- Park, S. et al. The mammalian midbody and midbody remnant are assembly sites for RNA and localized translation. Dev. Cell 58, 1917–1932.e6 (2023).
- Advedissian, T., Fremont, S. & Echard, A. Cytokinetic abscission requires actin-dependent microtubule severing. Nat. Commun. 15, 1949 (2024).
- Farmer, T. & Prekeris, R. New signaling kid on the block: the role of the postmitotic midbody in polarity, stemness, and proliferation. Mol. Biol. Cell 33, pe2 (2022).
- Suwakulsiri, W. et al. Comparative proteomic analysis of three major extracellular vesicle classes secreted from human primary and metastatic colorectal cancer cells: exosomes, microparticles, and shed midbody remnants. Proteomics 24, e2300057 (2024).
- Peterman, E. & Prekeris, R. Understanding post-mitotic roles of the midbody during cell differentiation and polarization. Methods Cell Biol. 137, 173-186 (2017).
- Jiao, H. et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control process Cell 184, 2896–2910.e13 (2021).
- Ma, L. et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 25, 24–38 (2015).
- Jiang, D. et al. Neutrophil-derived migrasomes are an essential part of the coagulation system. Nat. Cell Biol. 26, 1110–1123 (2024).
- Jiao, H. et al. Localized, highly efficient secretion of signaling proteins by migrasomes. Cell Res. 34, 572–585 (2024).
- Mageswaran, S. K., Yang, W. Y., Chakrabarty, Y., Oikonomou, C. M. & Jensen, G. J. A cryo-electron tomography workflow reveals protrusion-mediated shedding on injured plasma membrane. Sci. Adv. 7, eabc6345 (2021).
- Cordero Cervantes, D. & Zurzolo, C. Peering into tunneling nanotubes the path forward. EMBO J. 40, e105789 (2021).
- Chakraborty, R., Nonaka, T., Hasegawa, M. & Zurzolo, C. Tunnelling nanotubes between neuronal and microglial cells allow bi-directional transfer of alpha-synuclein and mitochondria. Cell Death Dis. 14, 329 (2023).
- Hu, H. T. et al. The cellular protrusions for inter-cellular material transfer: similarities between filopodia, cytonemes, tunneling nanotubes, viruses, and extracellular vesicles. Front. Cell Dev. Biol. 12, 1422227 (2024).
- Kakarla, R., Hur, J., Kim, Y. J., Kim, J. & Chwae, Y. J. Apoptotic cell-derived exosomes: messages from dying cells. Exp. Mol. Med. 52, 1–6 (2020).

- Santavanond, J. P., Rutter, S. F., Atkin-Smith, G. K. & Poon, I. K. H. Apoptotic bodies: mechanism of formation, isolation and functional relevance. Subcell. Biochem. 97, 61–88 (2021).
- Ketelut-Carneiro, N. & Fitzgerald, K. A. Apoptosis, pyroptosis, and necroptosis oh my! The many ways a cell can die. J. Mol. Biol. 434, 167378 (2022).
- Hessvik, N. P. et al. PIKfyve inhibition increases exosome release and induces secretory autophagy. Cell. Mol. Life Sci. 73, 4717–4737 (2016).
- Leidal, A. M. et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat. Cell Biol. 22, 187–199 (2020).
- Liu, P. et al. Mitopherogenesis, a form of mitochondria-specific ectocytosis, regulates sperm mitochondrial quantity and fertility. Nat. Cell Biol. 25, 1625–1636 (2023).
- Jeppesen, D. K. et al. Blebbisomes are large, organelle-rich extracellular vesicles with cell-like properties. Nat. Cell Biol. 27, 438–448 (2025).
- Di Vizio, D. et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 69, 5601–5609 (2009).
- Nicolas-Avila, J. A., Sanchez-Diaz, M. & Hidalgo, A. Isolation of exophers from cardiomyocyte-reporter mouse strains by fluorescence-activated cell sorting. STAR Protoc. 2, 100286 (2021).
- Turek, M. et al. Muscle-derived exophers promote reproductive fitness. EMBO Rep. 22, e52071 (2021).
- Sugiura, A., McLelland, G. L., Fon, E. A. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 33, 2142–2156 (2014).
- Liang, W. et al. Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired. Nat. Commun. 14, 5031 (2023).
- Wang, Q. et al. ARMMs as a versatile platform for intracellular delivery of macromolecules. Nat. Commun. 9, 960 (2018).
- Nabhan, J. F., Hu, R., Oh, R. S., Cohen, S. N. & Lu, Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl Acad. Sci. USA 109, 4146–4151 (2012).
- Shlomovitz, I. et al. Proteomic analysis of necroptotic extracellular vesicles. Cell Death Dis. 12, 1059 (2021).
- Saxena, M., van der Burg, S. H., Melief, C. J. M. & Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360–378 (2021).
- Welsh, J. A. et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J. Extracell. Vesicles 13, e12404 (2024).
- Witwer, K. W. & Thery, C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J. Extracell. Vesicles 8, 1648167 (2019).
- 60. Schorey, J. S., Cheng, Y. & McManus, W. R. Bacteria- and host-derived extracellular vesicles two sides of the same coin? *J. Cell Sci.* **134**, jcs256628 (2021).
- Gill, S., Catchpole, R. & Forterre, P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol. Rev. 43, 273–303 (2019).
- Deatherage, B. L. & Cookson, B. T. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. *Infect. Immun.* 80, 1948–1957 (2012).
- Askenase, P. W. Exosomes provide unappreciated carrier effects that assist transfers
 of their miRNAs to targeted cells; I. They are 'The Elephant in the Room'. RNA Biol.
 18. 2038–2053 (2021).
- Cossetti, C. et al. Soma-to-germline transmission of RNA in mice xenografted with human tumour cells: possible transport by exosomes. PLoS ONE 9, e101629 (2014).
- Rai, A., Claridge, B., Lozano, J. & Greening, D. W. The discovery of extracellular vesicles and their emergence as a next-generation therapy. Circ. Res. 135, 198–221 (2024).
- Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).
- Plebanek, M. P. et al. Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nat. Commun. 8, 1319 (2017).
- Hyenne, V. et al. Studying the fate of tumor extracellular vesicles at high spatiotemporal resolution using the zebrafish embryo. Dev. Cell 48, 554–572.e7 (2019).
- Zhou, W. et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25. 501–515 (2014).
- Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).
- Si, G., Chen, X., Li, Y. & Yuan, X. Exosomes promote pre-metastatic niche formation in colorectal cancer. *Heliyon* 10, e27572 (2024).
- Yuan, X. et al. Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells. Theranostics 11, 1429–1445 (2021).
- 73. Zeng, Z. et al. HAO1-mediated oxalate metabolism promotes lung pre-metastatic niche formation by inducing neutrophil extracellular traps. Oncogene 41, 3719–3731 (2022).
- Sanchez, C. A. et al. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget 7, 3993–4008 (2016).
- Yu, W. et al. Exosome-based liquid biopsies in cancer: opportunities and challenges Ann. Oncol. 32, 466-477 (2021).
- Shegekar, T., Vodithala, S. & Juganavar, A. The emerging role of liquid biopsies in revolutionising cancer diagnosis and therapy. Cureus 15, e43650 (2023).
- Zhou, B. et al. Application of exosomes as liquid biopsy in clinical diagnosis Signal Transduct. Target. Ther. 5, 144 (2020).
- Hoshino, A. et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 182, 1044–1061.e18 (2020).

- Wang, S. et al. Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci. Transl. Med. 13. eabb6981 (2021).
- Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).
- Rodrigues, G. et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat. Cell Biol. 21, 1403–1412 (2019).
- Lucotti, S. et al. Extracellular vesicles from the lung pro-thrombotic niche drive cancer-associated thrombosis and metastasis via integrin beta 2. Cell 188, 1642–1661.e24 (2025).
- Tawil, N. et al. Glioblastoma cell populations with distinct oncogenic programs release podoplanin as procoggulant extracellular vesicles. *Blood Adv.* 5, 1682-1694 (2021).
- Cheng, L. & Hill, A. F. Therapeutically harnessing extracellular vesicles. Nat. Rev. Drug Discov. 21, 379–399 (2022).
- 85. Tan, F. et al. Clinical applications of stem cell-derived exosomes. Signal Transduct. Target. Ther. 9, 17 (2024).
- Dai, J. et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther. 5, 145 (2020).
- Nikoloff, J. M., Saucedo-Espinosa, M. A., Kling, A. & Dittrich, P. S. Identifying extracellular vesicle populations from single cells. Proc. Natl Acad. Sci. USA 118, e2106630118 (2021).
- Ji, Y. et al. Multiplexed profiling of single-cell extracellular vesicles secretion. Proc. Natl Acad. Sci. USA 116, 5979–5984 (2019).
- 89. Jeppesen, D. K. et al. Reassessment of exosome composition. Cell 177, 428-445.e18 (2019).
- Manno, M., Bongiovanni, A., Margolis, L., Bergese, P. & Arosio, P. The physico-chemical landscape of extracellular vesicles. Nat. Rev. Bioeng. 3, 68–82 (2024).
- Mathieu, M., Martin-Jaular, L., Lavieu, G. & Thery, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. *Nat. Cell Biol.* 21, 9–17 (2019).
- Greening, D. W., Xu, R., Gopal, S. K., Rai, A. & Simpson, R. J. Proteomic insights into extracellular vesicle biology — defining exosomes and shed microvesicles. *Expert Rev. Proteom.* 14, 69–95 (2017).
- Garcia-Martin, R., Brandao, B. B., Thomou, T., Altindis, E. & Kahn, C. R. Tissue differences in the exosomal/small extracellular vesicle proteome and their potential as indicators of altered tissue metabolism. Cell Rep. 38, 110277 (2022).
- Crewe, C. et al. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab. 33, 1853–1868.e11 (2021).
- Ghoroghi, S. et al. Ral GTPases promote breast cancer metastasis by controlling biogenesis and organ targeting of exosomes. eLife 10, e61539 (2021).
- Zijlstra, A. & Di Vizio, D. Size matters in nanoscale communication. Nat. Cell Biol. 20, 228–230 (2018).
- Xu, R., Greening, D. W., Zhu, H. J., Takahashi, N. & Simpson, R. J. Extracellular vesicle isolation and characterization: toward clinical application. J. Clin. Invest. 126, 1152–1162 (2016).
- Palmulli, R. & van Niel, G. To be or not to be... secreted as exosomes, a balance finely tuned by the mechanisms of biogenesis. Essays Biochem. 62, 177-191 (2018).
- Burbidge, K. et al. Cargo and cell-specific differences in extracellular vesicle populations identified by multiplexed immunofluorescent analysis. J. Extracell. Vesicles 9, 1789326 (2020).
- 100. Moon, M. J. et al. Differential effects of physiological agonists on the proteome of platelet-derived extracellular vesicles. *Proteomics* **24**, e2300391 (2024).
- Zabeo, D. et al. Exosomes purified from a single cell type have diverse morphology. J. Extracell. Vesicles 6, 1329476 (2017).
- Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).
- Martin-Jaular, L. et al. Unbiased proteomic profiling of host cell extracellular vesicle composition and dynamics upon HIV-1 infection. EMBO J. 40, e105492 (2021).
- Ai, Y. et al. Endocytosis blocks the vesicular secretion of exosome marker proteins. Sci. Adv. 10, eadi9156 (2024).
- Fordjour, F. K., Guo, C., Ai, Y., Daaboul, G. G. & Gould, S. J. A shared, stochastic pathway mediates exosome protein budding along plasma and endosome membranes. J. Biol. Chem. 298, 102394 (2022).
- 106. Rai, A., Fang, H., Claridge, B., Simpson, R. J. & Greening, D. W. Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform. J. Extracell. Vesicles 10, e12164 (2021).
- Shurtleff, M. J., Temoche-Diaz, M. M., Karfilis, K. V., Ri, S. & Schekman, R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife 5, e19276 (2016).
- Kanada, M. et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc. Natl Acad. Sci. USA 112, E1433–E1442 (2015).
- 109. Follain, G. et al. Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev. Cell 45, 33–52.e12 (2018).
- Li, H. et al. Alternation of gene expression in brain-derived exosomes after cerebral ischemic preconditioning in mice. Heliyon 10, e35936 (2024).
- Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018).
- Dixson, A. C., Dawson, T. R., Di Vizio, D. & Weaver, A. M. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. *Nat. Rev. Mol. Cell Biol.* 24, 454–476 (2023).

- 113. von Lersner, A. K. et al. Multiparametric single-vesicle flow cytometry resolves extracellular vesicle heterogeneity and reveals selective regulation of biogenesis and cargo distribution. ACS Nano 18, 10464–10484 (2024).
- Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254.e39 (2021).
- Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).
- Yan, W. et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. *Nat. Cell Biol.* 20, 597–609 (2018).
- Lennon, K. M. et al. Single molecule characterization of individual extracellular vesicles from pancreatic cancer. J. Extracell. Vesicles 8, 1685634 (2019).
- Mizenko, R. R. et al. Tetraspanins are unevenly distributed across single extracellular vesicles and bias sensitivity to multiplexed cancer biomarkers. J. Nanobiotechnol. 19, 250 (2021).
- Mathieu, M. et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun. 12, 4389 (2021).
- Sork, H. et al. Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome. Sci. Rep. 8, 10813 (2018).
- Kugeratski, F. G. et al. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nat. Cell Biol. 23, 631–641 (2021).
- Carney, R. P. et al. Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications. Nat. Nanotechnol. 20, 14–25 (2025).
- van de Wakker, S. I., Meijers, F. M., Sluijter, J. P. G. & Vader, P. Extracellular vesicle heterogeneity and its impact for regenerative medicine applications. *Pharmacol. Rev* 75, 1043–1061 (2023).
- 124. Ferguson, S. et al. Single-EV analysis (sEVA) of mutated proteins allows detection of stage 1 pancreatic cancer. Sci. Adv. 8, eabm3453 (2022).
- Al-Nedawi, K. et al. Intercellular transfer of the oncogenic receptor EGFRVIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008).
- Demory Beckler, M. et al. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol. Cell. Proteom. 12, 343–355 (2013).
- Hyung, S. et al. Patient-derived exosomes facilitate therapeutic targeting of oncogenic MET in advanced gastric cancer. Sci. Adv. 9, eadk1098 (2023).
- Zhu, K. G. et al. The microprotein encoded by exosomal lncAKR1C2 promotes gastric cancer lymph node metastasis by regulating fatty acid metabolism. *Cell Death Dis.* 14, 708 (2023).
- 129. Kahlert, C. et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289, 3869–3875 (2014).
- Yang, Y. et al. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 28, 862–864 (2018).
- Cooks, T. et al. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat. Commun. 9, 771 (2018).
- Balaj, L. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180 (2011).
- Deng, C. et al. Extracellular-vesicle-packaged S100A11 from osteosarcoma cells mediates lung premetastatic niche formation by recruiting gMDSCs. Cell Rep. 43. 113751 (2024).
- Xie, X. et al. Tumor-derived exosomes can specifically prevent cancer metastatic organotropism. J. Control. Rel. 331, 404–415 (2021).
- Morrissey, S. M. et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. *Cell Metab.* 33, 2040–2058.e10 (2021).
- Yin, X. et al. PPARalpha inhibition overcomes tumor-derived exosomal lipid-induced dendritic cell dysfunction. Cell Rep. 33, 108278 (2020).
- Jeon, G. et al. miRNA profiling of B16F10 melanoma cell exosomes reveals melanin synthesis-related genes. Heliyon 10, e30474 (2024).
- Kesidou, D. et al. Extracellular vesicles from differentiated stem cells contain novel proangiogenic miRNAs and induce angiogenic responses at low doses. *Mol. Ther.* 32, 185–203 (2024).
- Soncin, I. et al. The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma. Nat. Commun. 9, 582 (2018).
- Kudo, K. et al. Secreted phospholipase A(2) modifies extracellular vesicles and accelerates B cell lymphoma. Cell Metab. 34, 615–633.e8 (2022).
- Adem, B. et al. Exosomes define a local and systemic communication network in healthy pancreas and pancreatic ductal adenocarcinoma. Nat. Commun. 15, 1496 (2024).
- Sansone, P. et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc. Natl Acad. Sci. USA 114. E9066–E9075 (2017).
- Clancy, J. W., Sheehan, C. S., Boomgarden, A. C. & D'Souza-Schorey, C. Recruitment of DNA to tumor-derived microvesicles. Cell Rep. 38, 110443 (2022).
- Yokoi, A. et al. Mechanisms of nuclear content loading to exosomes. Sci. Adv. 5, eaax8849 (2019).
- 145. Heidegger, S. et al. Targeting nucleic acid sensors in tumor cells to reprogram biogenesis and RNA cargo of extracellular vesicles for T cell-mediated cancer immunotherapy. Cell Rep. Med. 4, 101171 (2023).

- 146. Kojima, R. et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment. Nat. Commun. 9, 1305 (2018).
- Li, B., Kugeratski, F. G. & Kalluri, R. A novel machine learning algorithm selects proteome signature to specifically identify cancer exosomes. eLife 12, RP90390 (2024).
- Quiralte, M. et al. Proteomic profiles of peritoneal fluid-derived small extracellular vesicles correlate with patient outcome in ovarian cancer. J. Clin. Invest. 134, e176161 (2024).
- Ferguson, S., Yang, K. S. & Weissleder, R. Single extracellular vesicle analysis for early cancer detection. Trends Mol. Med. 28, 681–692 (2022).
- Reynolds, D. E. et al. Double digital assay for single extracellular vesicle and single molecule detection. Adv. Sci. 10, e2303619 (2023).
- Dorado, E. et al. Extracellular vesicles as a promising source of lipid biomarkers for breast cancer detection in blood plasma. J. Extracell. Vesicles 13, e12419 (2024).
- Xu, G. et al. Proteomic profiling of serum extracellular vesicles identifies diagnostic signatures and therapeutic targets in breast cancer. Cancer Res. 84, 3267–3285 (2024).
- Kehrloesser, S. et al. Cell-of-origin-specific proteomics of extracellular vesicles. PNAS Nexus 2, pgad107 (2023).
- Brown, M. et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359, 1408–1411 (2018).
- Risson, E., Nobre, A. R., Maguer-Satta, V. & Aguirre-Ghiso, J. A. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. *Nat. Cancer* 1, 672–680 (2020).
- Chen, J. et al. Tumor extracellular vesicles mediate anti-PD-L1 therapy resistance by decoying anti-PD-L1. Cell. Mol. Immunol. 19, 1290–1301 (2022).
- Casanova-Salas, I. et al. Circulating tumor extracellular vesicles to monitor metastatic prostate cancer genomics and transcriptomic evolution. Cancer Cell 42, 1301–1312.e7 (2024).
- 158. Ruzanov, P. et al. Oncogenic ETS fusions promote DNA damage and proinflammatory responses via pericentromeric RNAs in extracellular vesicles. J. Clin. Invest. 134, e169470 (2024).
- Lima, L. G. et al. Tumor microenvironmental cytokines bound to cancer exosomes determine uptake by cytokine receptor-expressing cells and biodistribution. Nat. Commun. 12, 3543 (2021).
- Wang, G. et al. Tumour extracellular vesicles and particles induce liver metabolic dysfunction. Nature 618, 374–382 (2023).
- Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. *Nature* 527, 100–104 (2015).
- 162. Xing, F. et al. Loss of XIST in breast cancer activates MSN-c-Met and reprograms microglia via exosomal miRNA to promote brain metastasis. Cancer Res. 78, 4316–4330 (2018).
- 163. Sirkisoon, S. R. et al. Breast cancer extracellular vesicles-derived miR-1290 activates astrocytes in the brain metastatic microenvironment via the FOXA2→CNTF axis to promote progression of brain metastases. Cancer Lett. 540, 215726 (2022).
- Benito-Martin, A. et al. Mast cells impair melanoma cell homing and metastasis by inhibiting HMGA1 secretion. *Immunology* 168, 362–373 (2023).
- Leary, N. et al. Melanoma-derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes. J. Extracell. Vesicles 11, e12197 (2022).
- Zhao, L., Ma, X. & Yu, J. Exosomes and organ-specific metastasis. Mol. Ther. Methods Clin. Dev. 22, 133-147 (2021).
- Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).
- Toth, E. A. et al. Formation of a protein corona on the surface of extracellular vesicles in blood plasma. J. Extracell. Vesicles 10, e12140 (2021).
- Cedervall, T. et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).
- Monopoli, M. P., Aberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).
- Musico, A. et al. Surface functionalization of extracellular vesicle nanoparticles with antibodies: a first study on the protein corona 'variable'. Nanoscale Adv. 5, 4703–4717 (2023).
- Liam-Or, R. et al. Cellular uptake and in vivo distribution of mesenchymal-stem-cell-derived extracellular vesicles are protein corona dependent. Nat. Nanotechnol. 19, 846–855 (2024).
- 173. Wolf, M. et al. A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation. *J. Extracell. Vesicles* 11, e12207 (2022).
- Hirosawa, K. M. et al. Uptake of small extracellular vesicles by recipient cells is facilitated by paracrine adhesion signaling. Nat. Commun. 16, 2419 (2025).
- Hallal, S., Tuzesi, A., Grau, G. E., Buckland, M. E. & Alexander, K. L. Understanding the extracellular vesicle surface for clinical molecular biology. J. Extracell. Vesicles 11, e12260 (2022).
- Koo, D. et al. Optimizing cell therapy by sorting cells with high extracellular vesicle secretion. Nat. Commun. 15, 4870 (2024).
- Colao, I. L., Corteling, R., Bracewell, D. & Wall, I. Manufacturing exosomes: a promising therapeutic platform. *Trends Mol. Med.* 24, 242–256 (2018).
- Lener, T. et al. Applying extracellular vesicles based therapeutics in clinical trials an ISEV position paper. J. Extracell. Vesicles 4, 30087 (2015).
- Thouvenot, E. et al. High-yield bioproduction of extracellular vesicles from stem cell spheroids via millifluidic vortex transport. Adv. Mater. 37, 2412498 (2024).
- Paganini, C., Boyce, H., Libort, G. & Arosio, P. High-yield production of extracellular vesicle subpopulations with constant quality using batch-refeed cultures. Adv. Healthc. Mater. 12, e2202232 (2023).

- Feng, J. et al. Plant-derived vesicle-like nanoparticles as promising biotherapeutic tools: present and future. Adv. Mater. 35, e2207826 (2023).
- de Abreu, R. C. et al. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat. Rev. Cardiol. 17, 685–697 (2020).
- Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).
- Reategui, E. et al. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat. Commun. 9, 175 (2018).
- Sharma, P. et al. Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. J. Extracell. Vesicles 7, 1435138 (2018).
- Vallabhajosyula, P. et al. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue. J. Clin. Invest. 127, 1375–1391 (2017).
- Cheng, C. A., Hou, K. C., Hsu, C. W. & Chiang, L. C. Ultrasensitive and high-resolution protein spatially decoding framework for tumor extracellular vesicles. Adv. Sci. 11, e2304926 (2024).
- Bergqvist, M., Lasser, C., Crescitelli, R., Park, K. S. & Lotvall, J. A non-centrifugation method to concentrate and purify extracellular vesicles using superabsorbent polymer followed by size exclusion chromatography. J. Extracell. Vesicles 14, e70037 (2025).
- Gorgens, A. et al. Identification of storage conditions stabilizing extracellular vesicles preparations. J. Extracell. Vesicles 11, e12238 (2022).
- Gelibter, S. et al. The impact of storage on extracellular vesicles: a systematic study. J. Extracell. Vesicles 11, e12162 (2022).
- Trenkenschuh, E. et al. Enhancing the stabilization potential of lyophilization for extracellular vesicles. Adv. Healthc. Mater. 11, e2100538 (2022).
- Lozano-Andres, E. et al. Tetraspanin-decorated extracellular vesicle-mimetics as a novel adaptable reference material. J. Extracell. Vesicles 8, 1573052 (2019).
- 193. Gorgens, A. et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J. Extracell. Vesicles 8, 1587567 (2019).
- Geeurickx, E. et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat. Commun. 10, 3288 (2019).
- Rohde, E., Pachler, K. & Gimona, M. Manufacturing and characterization of extracellular vesicles from umbilical cord-derived mesenchymal stromal cells for clinical testing. Cytotherapy 21, 581–592 (2019).
- 196. Borger, V. et al. International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19. Cytotherapy 22, 482-485 (2020).
- Meng, W. et al. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. *Drug Deliv.* 27, 585–598 (2020).
- Guo, M. et al. Autologous tumor cell-derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Sci. Transl. Med. 11. eaat 5690 (2019).
- Gong, L. et al. An off-the-shelf small extracellular vesicle nanomedicine for tumor targeting therapy. J. Control. Rel. 364, 672–686 (2023).
- Takakura, Y. et al. Quality and safety considerations for therapeutic products based on extracellular vesicles. Pharm. Res. 41, 1573–1594 (2024).
- Wiklander, O. P. B., Brennan, M. A., Lotvall, J., Breakefield, X. O. & El Andaloussi, S. Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med. 11, eaav8521 (2019).
- Coumans, F. A. W. et al. Methodological guidelines to study extracellular vesicles. Circ. Res. 120, 1632–1648 (2017).
- Marsavela, G., Aya-Bonilla, C. A., Warkiani, M. E., Gray, E. S. & Ziman, M. Melanoma circulating tumor cells: benefits and challenges required for clinical application. Cancer Lett. 424, 1–8 (2018).
- 204. Castillo, J. et al. Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann. Oncol. 29, 223–229 (2018)
- Pietrowska, M. et al. Proteomic profile of melanoma cell-derived small extracellular vesicles in patients' plasma: a potential correlate of melanoma progression. J. Extracell. Vesicles 10, e12063 (2021).
- 206. Kang, Y. T. et al. Dual-isolation and profiling of circulating tumor cells and cancer exosomes from blood samples with melanoma using immunoaffinity-based microfluidic interfaces. Adv. Sci. 7, 2001581 (2020).
- Cheng, S. et al. Advances in microfluidic extracellular vesicle analysis for cancer diagnostics. Lab Chip 21, 3219–3243 (2021).
- Sundaresan, T. K. et al. Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses. Clin. Cancer Res. 22, 1103–1110 (2016).
- 209. Yang, D. et al. Progress, opportunity, and perspective on exosome isolation efforts for efficient exosome-based theranostics. *Theranostics* 10, 3684–3707 (2020).
- Hinestrosa, J. P. et al. Early-stage multi-cancer detection using an extracellular vesicle protein-based blood test. Commun. Med. 2, 29 (2022).
- Zhang, P. et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 3, 438–451 (2019).
- Salviano-Silva, A. et al. Extracellular vesicles carrying Tenascin-C are clinical biomarkers and improve tumor-derived DNA analysis in glioblastoma patients. ACS Nano 19, 9844–9859 (2025).
- Spitzberg, J. D. et al. Multiplexed analysis of EV reveals specific biomarker composition with diagnostic impact. Nat. Commun. 14, 1239 (2023).

- Wu, X. et al. Exosome-templated nanoplasmonics for multiparametric molecular profiling. Sci. Adv. 6, eaba2556 (2020).
- Min, L. et al. Advanced nanotechnologies for extracellular vesicle-based liquid biopsy. Adv. Sci. 8, e2102789 (2021).
- McKiernan, J. et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. 2, 882–889 (2016).
- Freag, M. S. et al. Modulating tumoral exosomes and fibroblast phenotype using nanoliposomes augments cancer immunotherapy. Sci. Adv. 10, eadk3074 (2024).
- Zhou, X. et al. The function and clinical application of extracellular vesicles in innate immune regulation. Cell. Mol. Immunol. 17, 323–334 (2020).
- Escudier, B. et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J. Transl. Med. 3, 10 (2005).
- 220. Morse, M. A. et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. *J. Transl. Med.* **3.** 9 (2005).
- Cheng, K. et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat. Commun. 12. 2041 (2021).
- Lee, E. Y. et al. Therapeutic effects of autologous tumor-derived nanovesicles on melanoma growth and metastasis. PLoS ONE 7, e33330 (2012).
- Mahaweni, N. M., Kaijen-Lambers, M. E., Dekkers, J., Aerts, J. G. & Hegmans, J. P. Tumour-derived exosomes as antigen delivery carriers in dendritic cell-based immunotherapy for malignant mesothelioma. J. Extracell. Vesicles 2, 22492 (2013).
- 224. Rao, Q. et al. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. Hepatology 64, 456-472 (2016).
- Lv, Q. et al. Thermosensitive exosome-liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved treatment of metastatic peritoneal cancer. Adv. Sci. 7, 2000515 (2020).
- Cheng, Q. et al. Eliciting anti-cancer immunity by genetically engineered multifunctional exosomes. Mol. Ther. 30, 3066–3077 (2022).
- Gordillo, G. M. et al. Tissue nanotransfection causes tumor regression by its effect on nanovesicle cargo that alters microenvironmental macrophage state. *Mol. Ther.* 31, 1402–1417 (2023).
- 228. Gong, N. et al. Tumour-derived small extracellular vesicles act as a barrier to therapeutic nanoparticle delivery. *Nat. Mater.* 23, 1736–1747 (2024).
- 229. Wang, R., Zhu, T., Hou, B. & Huang, X. An iPSC-derived exosome-pulsed dendritic cell vaccine boosts antitumor immunity in melanoma. *Mol. Ther.* **31**, 2376–2390 (2023).
- Jayasinghe, M. K. et al. Extracellular vesicle surface display enhances the therapeutic efficacy and safety profile of cancer immunotherapy. Mol. Ther. 32, 3558–3579 (2024).
- Fan, M. et al. A CAR T-inspiring platform based on antibody-engineered exosomes from antigen-feeding dendritic cells for precise solid tumor therapy. *Biomaterials* 282, 121424 (2022).
- Jung, M. et al. Nanovesicle-mediated targeted delivery of immune checkpoint blockades to
 potentiate therapeutic efficacy and prevent side effects. Adv. Mater. 34, e2106516 (2022).
- 233. Wu, K. et al. Engineering an active immunotherapy for personalized cancer treatment and prevention of recurrence. Sci. Adv. 9, eade0625 (2023).
- 234. Kim, G. B. et al. Xenogenization of tumor cells by fusogenic exosomes in tumor microenvironment ignites and propagates antitumor immunity. Sci. Adv. 6, eaaz2083 (2020).
- Xie, X. et al. Eliminating blood oncogenic exosomes into the small intestine with aptamer-functionalized nanoparticles. Nat. Commun. 10, 5476 (2019).
- Datta, A. et al. High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: a drug repurposing strategy for advanced cancer. Sci. Rep. 8, 8161 (2018).
- Yang, Z. et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat. Biomed. Eng. 4, 69–83 (2020).
- 238. Witwer, K. W. & Wolfram, J. Extracellular vesicles versus synthetic nanoparticles for drug delivery. *Nat. Rev. Mater.* **6**, 103–106 (2021).
- Nie, W. et al. Responsive exosome nano-bioconjugates for synergistic cancer therapy.
 Angew. Chem. Int. Ed. Engl. 59, 2018–2022 (2020).
- 240. Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. *Nature* **572**, 392–396 (2019).
- Wang, D. et al. A metabolism-oriented strategy to directly generate photosensitizerengineered extracellular vesicles from cancer cells. Adv. Mater. 37, 2505726 (2025).
- Bi, Y. et al. Tumor-derived extracellular vesicle drug delivery system for chemo-photothermal-immune combination cancer treatment. iScience 27, 108833 (2024).
- Liang, X. et al. Engineering of extracellular vesicles for efficient intracellular delivery of multimodal therapeutics including genome editors. Nat. Commun. 16, 4028 (2025).
- 244. You, Y. et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. *Nat. Biomed. Eng.* **7**, 887–900 (2023).
- Dong, S. et al. Adaptive design of mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer. Nat. Commun. 14, 6610 (2023).
- 246. Wang, Y. et al. Efficient, high-quality engineering of therapeutic extracellular vesicles on an integrated nanoplatform. ACS Nano 18, 32421–32437 (2024).
- Wang, J. et al. The use of RGD-engineered exosomes for enhanced targeting ability and synergistic therapy toward angiogenesis. Nanoscale 9, 15598–15605 (2017).
- Dooley, K. et al. A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties. Mol. Ther. 29, 1729–1743 (2021).

- Zhuang, M. et al. SPION decorated exosome delivery of TNF-alpha to cancer cell membranes through magnetism. Nanoscale 12, 173–188 (2020).
- Lu, Y. et al. Small EV-based delivery of CpG ODNs for melanoma postsurgical immunotherapy. J. Control. Rel. 363, 484–495 (2023).
- Wiklander, O. P. B. et al. Antibody-displaying extracellular vesicles for targeted cancer therapy. Nat. Biomed. Eng. 8, 1453–1468 (2024).
- Zhou, X. et al. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation. J. Extracell. Vesicles 11, e12198 (2022).
- Han, Z. et al. Improving tumor targeting of exosomal membrane-coated polymeric nanoparticles by conjugation with aptamers. ACS Appl. Bio Mater. 3, 2666–2673 (2020).
- Kowalczyk, A. et al. Surface-bioengineered extracellular vesicles seeking molecular biotargets in lung cancer cells. ACS Appl. Mater. Interfaces 16, 31997–32016 (2024).
- Evers, M. J. W. et al. Functional siRNA delivery by extracellular vesicle-liposome hybrid nanoparticles. Adv. Healthc. Mater. 11, e2101202 (2022).
- 256. Zhu, T., Chen, Z., Jiang, G. & Huang, X. Sequential targeting hybrid nanovesicles composed of chimeric antigen receptor T-cell-derived exosomes and liposomes for enhanced cancer immunochemotherapy. ACS Nano 17, 16770–16786 (2023).
- Sancho-Albero, M. et al. Efficient encapsulation of theranostic nanoparticles in cell-derived exosomes: leveraging the exosomal biogenesis pathway to obtain hollow gold nanoparticle-hybrids. Nanoscale 11, 18825–18836 (2019).
- Yang, Y. et al. Genetically programmable cell membrane-camouflaged nanoparticles for targeted combination therapy of colorectal cancer. Signal Transduct. Target. Ther. 9, 158 (2024).
- Jayasinghe, M. K. et al. New approaches in extracellular vesicle engineering for improving the efficacy of anti-cancer therapies. Semin. Cancer Biol. 74, 62–78 (2021).
- Pham, T. C. et al. Covalent conjugation of extracellular vesicles with peptides and nanobodies for targeted therapeutic delivery. J. Extracell. Vesicles 10, e12057 (2021).
- Kamerkar, S. et al. Exosome-mediated genetic reprogramming of tumor-associated macrophages by exoASO-STAT6 leads to potent monotherapy antitumor activity. Sci. Adv. 8, eabj7002 (2022).
- Lin, Y. et al. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv. Sci. 5, 1700611 (2018).
- Kim, S. M. et al. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J. Control. Rel. 266, 8–16 (2017).
- Dubey, S. et al. Small extracellular vesicles (sEVs)-based gene delivery platform for cell-specific CRISPR/Cas9 genome editing. Theranostics 14, 2777–2793 (2024).
- 265. Zhao, J. et al. CRISPR-Cas9 library screening combined with an exosome-targeted delivery system addresses tumorigenesis/TMZ resistance in the mesenchymal subtype of glioblastoma. Theranostics 14, 2835–2855 (2024).
- Gulei, D. & Berindan-Neagoe, I. Activation of necroptosis by engineered self tumor-derived exosomes loaded with CRISPR/Cas9. Mol. Ther. Nucleic Acids 17, 448–451 (2019).
- Usman, W. M. et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat. Commun. 9, 2359 (2018).
- Corvigno, S. et al. Enhanced plant-derived vesicles for nucleotide delivery for cancer therapy. npj Precis. Oncol. 8, 86 (2024).
- Wedge, M. E. et al. Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nat. Commun. 13, 1898 (2022).
- 270. Lamichhane, T. N. et al. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. *Cell Mol. Bioeng.* **9**, 315–324 (2016).
- O'Loughlin, A. J. et al. Functional delivery of lipid-conjugated siRNA by extracellular vesicles. Mol. Ther. 25, 1580–1587 (2017).
- McAndrews, K. M. et al. Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic Kras(G12D) in pancreatic cancer. Life Sci. Alliance 4, e202000875 (2021).
- Sterzenbach, U. et al. Engineered exosomes as vehicles for biologically active proteins. Mol. Ther. 25, 1269–1278 (2017).
- Yim, N. et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. *Nat. Commun.* 7, 12277 (2016)
- Gurriaran-Rodriguez, U. et al. Identification of the Wnt signal peptide that directs secretion on extracellular vesicles. Sci. Adv. 10, eado5914 (2024).
- Pomatto, M. A. C. et al. Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs. Mol. Ther. Methods Clin. Dev. 13, 133–144 (2019).
- 277. Huang, L. et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. *Mol. Cancer* **21**, 45 (2022).
- Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).
- 279. Yazawa, M., Sadaghiani, A. M., Hsueh, B. & Dolmetsch, R. E. Induction of protein–protein interactions in live cells using light. *Nat. Biotechnol.* 27, 941–945 (2009).
- Wang, J., Chen, D. & Ho, E. A. Challenges in the development and establishment of exosome-based drug delivery systems. J. Control. Rel. 329, 894–906 (2021).
- Somiya, M. & Kuroda, S. Engineering of extracellular vesicles for small molecule-regulated cargo loading and cytoplasmic delivery of bioactive proteins. Mol. Pharm. 19, 2495–2505 (2022).
- Gee, P. et al. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat. Commun. 11, 1334 (2020).
- Hood, J. L., Scott, M. J. & Wickline, S. A. Maximizing exosome colloidal stability following electroporation. Anal. Biochem. 448, 41–49 (2014).

- 284. Fuhrmann, G., Serio, A., Mazo, M., Nair, R. & Stevens, M. M. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J. Control. Rel. 205, 35–44 (2015).
- Esfandyarpour, R. et al. Multifunctional, inexpensive, and reusable nanoparticle-printed biochip for cell manipulation and diagnosis. Proc. Natl Acad. Sci. USA 114, E1306–E1315 (2017).
- Li, G. et al. Current challenges and future directions for engineering extracellular vesicles for heart, lung, blood and sleep diseases. J. Extracell. Vesicles 12, e12305 (2023)
- 287. Chiang, C. L. et al. Dual targeted extracellular vesicles regulate oncogenic genes in advanced pancreatic cancer. *Nat. Commun.* **14**, 6692 (2023).
- 288. Wang, X. et al. Tumor vaccine based on extracellular vesicles derived from γδ-T cells exerts dual antitumor activities. J. Extracell. Vesicles 12. e12360 (2023).
- Silva, A. M. et al. Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution. J. Extracell. Vesicles 10, e12130 (2021).
- 290. Hung, M. E. & Leonard, J. N. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. J. Extracell. Vesicles 5, 31027 (2016).
- Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into
 exosomes through binding to specific motifs. Nat. Commun. 4, 2980 (2013).
- 292. Garcia-Martin, R. et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. *Nature* **601**, 446–451 (2022).
- Zhang, H. et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol. Cancer 19, 43 (2020).
- 294. Lin, F. et al. YBX-1 mediated sorting of miR-133 into hypoxia/reoxygenation-induced EPC-derived exosomes to increase fibroblast angiogenesis and MEndoT. Stem Cell Res. Ther. 10, 263 (2019).
- 295. Kooijmans, S. A. et al. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. *J. Extracell. Vesicles* **5**, 31053 (2016).
- Ohno, S. et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 21, 185–191 (2013).
- Gupta, D. et al. Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles. Nat. Biomed. Eng. 5, 1084–1098 (2021).
- 298. Yuan, J. et al. Brain-targeting biomimetic disguised manganese dioxide nanoparticles via hybridization of tumor cell membrane and bacteria vesicles for synergistic chemotherapy/chemodynamic therapy of glioma. J. Colloid Interface Sci. 676, 378–395 (2024).
- Xie, J. et al. Targeted therapy for peri-prosthetic osteolysis using macrophage membrane-encapsulated human urine-derived stem cell extracellular vesicles. Acta Biomater. 160, 297–310 (2023).
- Wang, H. et al. Hybrid Ginseng-derived extracellular vesicles-like particles with autologous tumor cell membrane for personalized vaccination to inhibit tumor recurrence and metastasis. Adv. Sci. 11, e2308235 (2024).
- Hu, C. M. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).
- Piffoux, M., Silva, A. K. A., Wilhelm, C., Gazeau, F. & Tareste, D. Modification of extracellular vesicles by fusion with liposomes for the design of personalized biogenic drug delivery systems. ACS Nano 12, 6830–6842 (2018).
- 303. Chen, Y. et al. Leveraging nature's nanocarriers: translating insights from extracellular vesicles to biomimetic synthetic vesicles for biomedical applications. Sci. Adv. 11, eads5249 (2025).
- 304. Staufer, O. et al. Bottom-up assembly of biomedical relevant fully synthetic extracellular vesicles. Sci. Adv. 7, eabg6666 (2021).
- Moon, K., Hur, J., Kim, K. P., Lee, K. & Kang, J. Y. Surface-functionalizable plant-derived extracellular vesicles for targeted drug delivery carrier using grapefruit. Adv. Mater. Interfaces 10, 2300220 (2023).
- 306. Fernandes Neto, J. M. et al. Multiple low dose therapy as an effective strategy to treat EGFR inhibitor-resistant NSCLC tumours. *Nat. Commun.* **11**, 3157 (2020).
- Wang, Q. et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat. Commun. 4, 1867 (2013).
- de Voogt, W. S. et al. EV-Elute: a universal platform for the enrichment of functional surface marker-defined extracellular vesicle subpopulations. J. Extracell. Vesicles 13, e70017 (2024).
- Hu, Q. et al. Clinical applications of exosome membrane proteins. Precis. Clin. Med. 3, 54–66 (2020).
- Buzas, E. I., Toth, E. A., Sodar, B. W. & Szabo-Taylor, K. E. Molecular interactions at the surface of extracellular vesicles. Semin. Immunopathol. 40, 453–464 (2018).
- Charoenviriyakul, C., Takahashi, Y., Morishita, M., Nishikawa, M. & Takakura, Y. Role of extracellular vesicle surface proteins in the pharmacokinetics of extracellular vesicles. Mol. Pharm. 15, 1073–1080 (2018).
- 312. Chowdhury, R. et al. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. *Nanoscale* 16, 11457–11479 (2024).
- Barok, M., Puhka, M., Yazdi, N. & Joensuu, H. Extracellular vesicles as modifiers of antibody-drug conjugate efficacy. J. Extracell. Vesicles 10, e12070 (2021).
- 314. Bose, R. J. et al. Engineered cell-derived vesicles displaying targeting peptide and functionalized with nanocarriers for therapeutic microRNA delivery to triple-negative breast cancer in mice. Adv. Healthc. Mater. 11, e2101387 (2022).
- Belhadj, Z. et al. A combined 'eat me/don't eat me' strategy based on extracellular vesicles for anticancer nanomedicine. J. Extracell. Vesicles 9, 1806444 (2020).

- Xu, H., Liao, C., Liang, S. & Ye, B. C. A novel peptide-equipped exosomes platform for delivery of antisense oligonucleotides. ACS Appl. Mater. Interfaces 13, 10760–10767 (2021)
- Zhou, P., Du, X., Jia, W., Feng, K. & Zhang, Y. Engineered extracellular vesicles for targeted reprogramming of cancer-associated fibroblasts to potentiate therapy of pancreatic cancer. Signal Transduct. Target. Ther. 9, 151 (2024).
- Hadjidemetriou, M. et al. In vivo biomolecule corona around blood-circulating, clinically
 used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano 9, 8142–8156
 (2015).
- Cao, Y. et al. Engineered exosome-mediated near-infrared-II region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano 13, 1499–1510 (2019).
- Ruivo, C. F. et al. Extracellular Vesicles from Pancreatic Cancer Stem Cells Lead an Intratumor Communication Network (EVNet) to fuel tumour progression. Gut 71, 2043–2068 (2022).
- Zhang, K. L. et al. Artificial chimeric exosomes for anti-phagocytosis and targeted cancer therapy. Chem. Sci. 10, 1555–1561 (2019).
- Yong, T. et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 10, 3838 (2019).
- 323. Lu, M. et al. Photoactivatable silencing extracellular vesicle (PASEV) sensitizes cancer immunotherapy. Adv. Mater. **34**, e2204765 (2022).
- Xu, F. et al. Engineering of dendritic cell bispecific extracellular vesicles for tumor-targeting immunotherapy. Cell Rep. 42, 113138 (2023).
- Meng, Y. et al. Extracellular vesicles-based vaccines: emerging immunotherapies against cancer. J. Control. Rel. 378, 438–459 (2025).
- 326. Zhang, M. et al. Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct. Target. Ther. 8, 124 (2023).
- Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).
- 328. Wang, L., Wang, D., Ye, Z. & Xu, J. Engineering extracellular vesicles as delivery systems in therapeutic applications. *Adv. Sci.* **10**, e2300552 (2023).
- 329. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. *N. Engl. J. Med.* **367**, 1187–1197 (2012).
- Phung, C. D. et al. Anti-CTLA-4 antibody-functionalized dendritic cell-derived exosomes targeting tumor-draining lymph nodes for effective induction of antitumor T-cell responses. Acta Biomater. 115, 371–382 (2020).
- Buzas, E. I. The roles of extracellular vesicles in the immune system. Nat. Rev. Immunol. 23, 236–250 (2023).
- 332. Ma, F. et al. Tumor extracellular vesicle-derived PD-L1 promotes T cell senescence through lipid metabolism reprogramming. Sci. Transl. Med. 17, eadm7269 (2025).
- Goyvaerts, C. & Breckpot, K. Towards a personalized iPSC-based vaccine. Nat. Biomed. Eng. 2, 277–278 (2018).
- 334. Xing, Y. et al. Efficient delivery of GSDMD-N mRNA by engineered extracellular vesicles induces pyroptosis for enhanced immunotherapy. Small 19, e2204031 (2023).
- Jang, S. C. et al. ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance. Commun. Biol. 4, 497 (2021).
- McAndrews, K. M., Che, S. P. Y., LeBleu, V. S. & Kalluri, R. Effective delivery of STING agonist using exosomes suppresses tumor growth and enhances antitumor immunity. J. Biol. Chem. 296, 100523 (2021).
- 337. Bao, P. et al. Chimeric exosomes functionalized with STING activation for personalized glioblastoma immunotherapy. *Adv. Sci.* **11**, e2306336 (2024).
- 338. Rayamajhi, S. et al. Extracellular vesicles as liquid biopsy biomarkers across the cancer journey: from early detection to recurrence. Clin. Chem. 70, 206–219 (2024).
- Lam, S. M. et al. A multi-omics investigation of the composition and function of extracellular vesicles along the temporal trajectory of COVID-19. Nat. Metab. 3, 909–922 (2021).
- 340. Jiang, L. et al. A bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and Delta variants. J. Extracell. Vesicles 11, e12192 (2022).
- van Eijndhoven, M. A. et al. Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients. JCI Insight 1, e89631 (2016).
- Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177-182 (2015).
- 343. Lai, X. et al. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. 393, 86–93 (2017).
- 344. Yokoi, A. et al. Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat. Commun. 8, 14470 (2017).
- 345. Li, H. et al. Extracellular vesicular analysis of Glypican 1 mRNA and protein for pancreatic cancer diagnosis and prognosis. Adv. Sci. 11, e2306373 (2024).
- 346. Margolis, E. et al. Predicting high-grade prostate cancer at initial biopsy: clinical performance of the ExoDx (EPI) Prostate Intelliscore test in three independent prospective studies. Prostate Cancer Prostatic Dis. 25, 296–301 (2022).
- 347. Tutrone, R. et al. ExoDx prostate test as a predictor of outcomes of high-grade prostate cancer an interim analysis. *Prostate Cancer Prostatic Dis.* **26**, 596–601 (2023).
- 348. Tutrone, R. et al. Correction to: ExoDx prostate test as a predictor of outcomes of high-grade prostate cancer — an interim analysis. Prostate Cancer Prostatic Dis. 27, 161 (2024).
- 349. Allenson, K. et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann. Oncol. 28, 741–747 (2017).

- Wan, Y. et al. Nanoscale extracellular vesicle-derived DNA is superior to circulating cell-free DNA for mutation detection in early-stage non-small-cell lung cancer. *Ann. Oncol.* 29, 2379–2383 (2018).
- 351. Krug, A. K. et al. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. *Ann. Oncol.* 29, 700–706 (2018).
- Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).
- 353. Theodoraki, M. N. et al. Circulating exosomes measure responses to therapy in head and neck cancer patients treated with cetuximab, ipilimumab, and IMRT. Oncoimmunology 8, 1593805 (2019).
- 354. Fan, Y. et al. Exosomal PD-L1 retains immunosuppressive activity and is associated with gastric cancer prognosis. *Ann. Surg. Oncol.* **26**, 3745–3755 (2019).
- Li, C. et al. Clinical significance of PD-L1 expression in serum-derived exosomes in NSCLC patients. J. Transl. Med. 17, 355 (2019).
- 356. Wu, Q. et al. Capturing nascent extracellular vesicles by metabolic glycan labeling-assisted microfluidics. *Nat. Commun.* **14**, 6541 (2023).
- Luo, Z. et al. Voluntary exercise sensitizes cancer immunotherapy via the collagen inhibition-orchestrated inflammatory tumor immune microenvironment. Cell Rep. 43, 114697 (2024).
- Storci, G. et al. CAR+ extracellular vesicles predict ICANS in patients with B cell lymphomas treated with CD19-directed CAR T cells. J. Clin. Invest. 134, e173096 (2024).
- Zhai, C. et al. Precise identification and profiling of surface proteins of ultra rare tumor specific extracellular vesicle with dynamic quantitative plasmonic imaging. ACS Nano 17, 16656–16667 (2023).
- Iannotta, D., Amruta, A., Kijas, A. W., Rowan, A. E. & Wolfram, J. Entry and exit of extracellular vesicles to and from the blood circulation. *Nat. Nanotechnol.* 19, 13–20 (2024).
- San Lucas, F. A. et al. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. *Ann. Oncol.* 27, 635–641 (2016).
- 362. Ciani, Y., Nardella, C. & Demichelis, F. Casting a wider net: the clinical potential of EV transcriptomics in multi-analyte liquid biopsy. Cancer Cell 42, 1160–1162 (2024)
- Wortzel, I. et al. Unique structural configuration of EV-DNA primes Kupffer cell-mediated antitumor immunity to prevent metastatic progression. Nat. Cancer 5, 1815–1833 (2024).
- 364. Rak, J. Anti-metastatic extracellular vesicles carrying DNA. *Nat. Cancer* **5**, 1793–1795 (2024).
- Rai, A. et al. Multi-omics discovery of hallmark protein and lipid features of circulating small extracellular vesicles in humans. Preprint at bioRxiv https://doi.org/10.1101/ 2024.03.16.585131 (2024).
- Saftics, A. et al. Single extracellular vesicle nanoscopy. J. Extracell. Vesicles 12, e12346 (2023).
- Van Dorpe, S., Tummers, P., Denys, H. & Hendrix, A. Towards the clinical implementation of extracellular vesicle-based biomarker assays for cancer. Clin. Chem. 70, 165–178 (2024).
- Jiao, Y. et al. Profiling DNA cargos in single extracellular vesicles via hydrogel-based droplet digital multiple displacement amplification. *Anal. Chem.* 96, 1293–1300 (2024).
- 369. Wu, A. et al. Genome-wide plasma DNA methylation features of metastatic prostate cancer. *J. Clin. Invest.* **130**, 1991–2000 (2020).
- 370. Foda, Z. H. et al. Detecting liver cancer using cell-free DNA fragmentomes. *Cancer Discov.* **13**, 616–631 (2023).
- Cristiano, S. et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 570, 385–389 (2019).
- 372. Thierry, A. R. Circulating DNA fragmentomics and cancer screening. *Cell Genom.* **3**, 100242 (2023).
- 373. Mouliere, F. et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci. Transl. Med. 10, eaat4921 (2018).
- Soleimany, A. P. & Bhatia, S. N. Activity-based diagnostics: an emerging paradigm for disease detection and monitoring. *Trends Mol. Med.* 26, 450–468 (2020).
- 375. Crosby, D. et al. Early detection of cancer. Science 375, eaay9040 (2022).
- Vittone, J., Gill, D., Goldsmith, A., Klein, E. A. & Karlitz, J. J. A multi-cancer early detection blood test using machine learning detects early-stage cancers lacking USPSTF-recommended screening. npj Precis. Oncol. 8, 91 (2024).
- 377. Guerra, C. E., Sharma, P. V. & Castillo, B. S. Multi-cancer early detection: the new frontier in cancer early detection. *Annu. Rev. Med.* **75**, 67–81 (2024).
- Walker, S. N. et al. Rapid assessment of biomarkers on single extracellular vesicles using 'Catch and Display' on ultrathin nanoporous silicon nitride membranes. Small 2, e2405505 (2024).
- Gao, X. et al. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci. Transl. Med. 10, eaat0195 (2018).
- 380. Salem, D. P. et al. Colocalization of cancer-associated biomarkers on single extracellular vesicles for early detection of cancer. J. Mol. Diagn. 26, 1109–1128 (2024)
- Radeghieri, A. & Bergese, P. The biomolecular corona of extracellular nanoparticles holds new promises for advancing clinical molecular diagnostics. Expert Rev. Mol. Diagn. 23, 471–474 (2023).
- Vu, V. P. et al. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat. Nanotechnol. 14, 260–268 (2019).
- Wang, J. et al. Targeting vaccines to dendritic cells by mimicking the processing and presentation of antigens in xenotransplant rejection. *Nat. Biomed. Eng.* 9, 201–214 (2025).

- Wei, Z. et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat. Commun. 8, 1145 (2017).
- 385. Wang, C. K., Tsai, T. H. & Lee, C. H. Regulation of exosomes as biologic medicines: regulatory challenges faced in exosome development and manufacturing processes. *Clin. Transl. Sci.* 17, e13904 (2024).
- Nguyen, V. V. T., Witwer, K. W., Verhaar, M. C., Strunk, D. & van Balkom, B. W. M. Functional assays to assess the therapeutic potential of extracellular vesicles. *J. Extracell. Vesicles* 10, e12033 (2020).
- 387. Gupta, D., Zickler, A. M. & El Andaloussi, S. Dosing extracellular vesicles. *Adv. Drug Deliv. Rev.* 178, 113961 (2021).
- Parada, N., Romero-Trujillo, A., Georges, N. & Alcayaga-Miranda, F. Camouflage strategies for therapeutic exosomes evasion from phagocytosis. J. Adv. Res. 31, 61–74 (2021).
- Zheng, W. et al. Cell-specific targeting of extracellular vesicles through engineering the glycocalyx. J. Extracell. Vesicles 11, e12290 (2022).
- 390. Shen, Y. et al. Sequential release of small extracellular vesicles from bilayered thiolated alginate/polyethylene glycol diacrylate hydrogels for scarless wound healing. ACS Nano 15, 6352–6368 (2021).
- Lv, K. et al. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction. *Theranostics* 9, 7403–7416 (2019).
- Xing, H. et al. Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration. J. Nanobiotechnol. 19, 264 (2021).
- Tang, J. et al. Injection-free delivery of MSC-derived extracellular vesicles for myocardial infarction therapeutics. Adv. Healthc. Mater. 11, e2100312 (2022).
- 394. Kink, J. A. et al. Large-scale bioreactor production of extracellular vesicles from mesenchymal stromal cells for treatment of acute radiation syndrome. Stem Cell Res. Ther. 15, 72 (2024)
- 395. EATRIS-Plus Multi-omics working group and Stakeholders. Multi-omics quality assessment in personalized medicine through European Infrastructure for Translational Medicine (EATRIS): an overview. Phenomics 5, 311–325 (2025).
- 396. Winn-Deen, E. S. et al. Improving specificity for ovarian cancer screening using a novel extracellular vesicle-based blood test: performance in a training and verification cohort. J. Mol. Diagn. 26, 1129–1148 (2024).
- Park, J. et al. An integrated magneto-electrochemical device for the rapid profiling of tumour extracellular vesicles from blood plasma. Nat. Biomed. Eng. 5, 678–689 (2021).
- Chen, Y. et al. Exosome detection via the ultrafast-isolation system: EXODUS. Nat. Methods 18, 212–218 (2021).
- Radler, J., Gupta, D., Zickler, A. & Andaloussi, S. E. Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Mol. Ther. 31, 1231–1250 (2023).
- Yim, K. H. W., Krzyzaniak, O., Al Hrout, A., Peacock, B. & Chahwan, R. Assessing extracellular vesicles in human biofluids using flow-based analyzers. Adv. Healthc. Mater. 12, e2301706 (2023).
- Baba, S. et al. A noninvasive urinary microRNA-based assay for the detection of pancreatic cancer from early to late stages: a case control study. eClinicalMedicine 78. 102936 (2024).
- Hinestrosa, J. P. et al. Development of a blood-based extracellular vesicle classifier for detection of early-stage pancreatic ductal adenocarcinoma. Commun. Med. 3 146 (2023).
- 403. Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. *Nat. Cell Biol.* **12**, 19–30 (2010).
- 404. Arya, S. B., Chen, S., Jordan-Javed, F. & Parent, C. A. Ceramide-rich microdomains facilitate nuclear envelope budding for non-conventional exosome formation. *Nat. Cell Biol.* 24, 1019–1028 (2022).
- Palmulli, R. et al. CD63 sorts cholesterol into endosomes for storage and distribution via exosomes. Nat. Cell Biol. 26, 1093–1109 (2024).
- 406. Lischnig, A., Bergqvist, M., Ochiya, T. & Lasser, C. Quantitative proteomics identifies proteins enriched in large and small extracellular vesicles. *Mol. Cell. Proteom.* 21, 100273 (2022).
- Nicolas-Avila, J. A. et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94–109.e23 (2020).
- 408. Minciacchi, V. R. et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. *Oncotarget* 6, 11327–11341 (2015).
- Atkin-Smith, G. K. et al. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat. Commun. 6, 7439 (2015).
- Zhang, Q. et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat. Cell Biol. 23, 1240–1254 (2021).
- Liu, C. et al. A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Nat. Nanotechnol. 17, 531–540 (2022).
- Ma, X. et al. Functional immune cell-derived exosomes engineered for the trilogy of radiotherapy sensitization. Adv. Sci. 9, e2106031 (2022).
- Johnson, L. R. et al. The immunostimulatory RNA RN7SL1 enables CAR-T cells to enhance autonomous and endogenous immune function. *Cell* 184, 4981–4995.e4914 (2021).

- 414. Pi, F. et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol. 13, 82–89 (2018).
- Wang, Q. et al. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res. 75, 2520–2529 (2015).
- Zhang, J. et al. Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy. Sci. Adv. 8, eabj8207 (2022).
- Kim, K. A. et al. Genome-wide methylation profiling reveals extracellular vesicle DNA as an ex vivo surrogate of cancer cell-derived DNA. Sci. Rep. 14, 24110 (2024).
- Rosas-Alonso, R. et al. Evaluation of the clinical use of MGMT methylation in extracellular vesicle-based liquid biopsy as a tool for glioblastoma patient management. Sci. Rep. 14, 11398 (2024).
- 419. Meng, Y. et al. Direct isolation of small extracellular vesicles from human blood using viscoelastic microfluidics. Sci. Adv. 9, eadi5296 (2023).
- 420. Jin, S., Plikus, M. V. & Nie, Q. CellChat for systematic analysis of cell-cell communication from single-cell transcriptomics. *Nat. Protoc.* **20**, 180–219 (2025).
- Bechtel, T. J., Reyes-Robles, T., Fadeyi, O. O. & Oslund, R. C. Strategies for monitoring cell-cell interactions. Nat. Chem. Biol. 17, 641–652 (2021).
- Menasche, P. et al. First-in-man use of a cardiovascular cell-derived secretome in heart failure. Case report. eBioMedicine 103, 105145 (2024).
- 423. Besse, B. et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. *Oncoimmunology* **5**, e1071008 (2016).
- 424. Andrews, D. W. et al. Phase Ib clinical trial of IGV-001 for patients with newly diagnosed glioblastoma. *Clin. Cancer Res.* 27, 1912–1922 (2021).
- 425. LeBleu, V. S. et al. KRAS^{G12D}-specific targeting with engineered exosomes reprograms the immune microenvironment to enable efficacy of immune checkpoint therapy in PDAC patients. Preprint at medRxiv https://doi.org/10.1101/2025.03.03.25322827 (2025).
- 426. Hu, S. et al. Exosome-eluting stents for vascular healing after ischaemic injury. Nat. Biomed. Eng. 5, 1174–1188 (2021).
- Gorringe, A. R. & Pajon, R. Bexsero: a multicomponent vaccine for prevention of meningococcal disease. Hum. Vaccin. Immunother. 8, 174–183 (2012).
- 428. Choi, S. et al. Displaying and delivering viral membrane antigens via WW domain-activated extracellular vesicles. Sci. Adv. 9, eade2708 (2023).
- Popowski, K. D. et al. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 5, 2960–2974 (2022).
- Nikoloff, J. M., Saucedo-Espinosa, M. A. & Dittrich, P. S. Microfluidic platform for profiling of extracellular vesicles from single breast cancer cells. *Anal. Chem.* 95, 1933–1939 (2023).
- Sun, J. et al. Enhancing analysis of extracellular vesicles by microfluidics. Anal. Chem. 97, 6922–6937 (2025).
- Abreu, C. M., Costa-Silva, B., Reis, R. L., Kundu, S. C. & Caballero, D. Microfluidic platforms for extracellular vesicle isolation, analysis and therapy in cancer. *Lab Chip* 22, 1093–1125 (2022).
- Chiu, D. T. et al. Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2, 201–223 (2017).
- 434. Luo, H. T. et al. Dissecting the multi-omics atlas of the exosomes released by human lung adenocarcinoma stem-like cells. *npj Genom. Med.* **6**, 48 (2021).
- 435. Suwakulsiri, W. et al. Transcriptomic analysis and fusion gene identifications of midbody remnants released from colorectal cancer cells reveals they are molecularly distinct from exosomes and microparticles. *Proteomics* 24, e2300058 (2024).
- 436. Guo, T. et al. A liquid biopsy signature of circulating exosome-derived mRNAs, miRNAs and lncRNAs predict therapeutic efficacy to neoadjuvant chemotherapy in patients with advanced gastric cancer. *Mol. Cancer* 21, 216 (2022).
- Long, F. et al. A novel exosome-derived prognostic signature and risk stratification for breast cancer based on multi-omics and systematic biological heterogeneity. Comput. Struct. Biotechnol. J. 21, 3010–3023 (2023).
- 438. Tsering, T., Nadeau, A., Wu, T., Dickinson, K. & Burnier, J. V. Extracellular vesicle-associated DNA: ten years since its discovery in human blood. *Cell Death Dis.* 15, 668 (2024).
- 439. Liu, H. et al. Analysis of extracellular vesicle DNA at the single-vesicle level by nano-flow cytometry. *J. Extracell. Vesicles* **11**, e12206 (2022).
- 440. Wang, C. et al. Droplet digital PCR improves urinary exosomal miRNA detection compared to real-time PCR. Clin. Biochem. 67, 54–59 (2019).
- Shen, X. et al. Evaluation of EpCAM-specific exosomal lncRNAs as potential diagnostic biomarkers for lung cancer using droplet digital PCR. J. Mol. Med. 100, 87–100 (2022).
- 442. Li, J. et al. Digital decoding of single extracellular vesicle phenotype differentiates early malignant and benign lung lesions. Adv. Sci. 10, e2204207 (2022).
- Banijamali, M. et al. Characterizing single extracellular vesicles by droplet barcode sequencing for protein analysis. J. Extracell. Vesicles 11, e12277 (2022).
- 444. Penders, J. et al. Single particle automated Raman trapping analysis of breast cancer cell-derived extracellular vesicles as cancer biomarkers. ACS Nano 15, 18192–18205 (2021).
- 445. Choi, J. Y. et al. Explainable artificial intelligence-driven prostate cancer screening using exosomal multi-marker based dual-gate FET biosensor. *Biosens. Bioelectron.* 267, 116773 (2025).

Acknowledgements

D.W.G.'s laboratory is supported by research funds from the National Health and Medical Research Council (NHMRC; MRF2015523 and APP1141946), National Heart Foundation (NHF; 105072), Helen Amelia Hains Fellowship (D.W.G.) and Department of Defense (PR230065). R.X. is supported by research funds from CASS Foundation (10380), Bethlehem Griffiths Research Foundation (2302) and Monash Future Leadership Fellowship (R.X.). The Baker Heart & Diabetes Institute acknowledges support by the Victorian State Government Operational Infrastructure funding.

Author contributions

All authors made a substantial contribution to all aspects of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Peer review information *Nature Reviews Clinical Oncology* thanks M. Mitchell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© Springer Nature Limited 2025

¹Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. ²Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia. ³Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia. ⁴Nanobiotechnology Laboratory, Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia. ⁵Frazer Institute, Translational Research Institute (TRI), The University of Queensland, Brisbane, Queensland, Australia. ⁶Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China. ⁷Laboratory of Precision Medicine, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China. ⁸Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Victoria, Australia. ⁹These authors contributed equally: David W. Greening, Rong Xu.