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Abstract

Genome-wide association studies have identified thousands of 
single-nucleotide variants that are associated with complex traits, 
including cardiometabolic diseases, cancers and neurological 
disorders. Polygenic risk scores (PRSs), which aggregate the effects 
of these variants, can help to identify individuals who are at increased 
risk of developing such diseases. As PRSs are typically only weakly 
associated with conventional risk factors for these diseases, they have 
incremental predictive value and are beginning to be incorporated into 
clinical practice to guide early detection and preventive strategies. 
However, challenges to their use — such as suboptimal precision, poor 
transferability across diverse populations and low familiarity among 
patients and providers with the concept of polygenic risk — must be 
addressed before their broader clinical adoption. This Review explores 
the current state of the field, highlights key challenges and outlines 
future directions for the use of PRSs to improve risk prediction and 
to advance personalized prevention in clinical care.
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Background
Mathematically, a PRS is the sum of risk alleles at disease-associated 
loci weighted by the strength of association of each risk allele with the 
trait or disease (which can, for example, be expressed as the log odds 
ratio for binary traits or as the slope of the linear regression between 
allele count and trait for continuous traits)13 (Box 1). Initial PRSs were 
constructed from loci identified in GWAS that met the threshold of 
statistical significance. However, for many highly polygenic traits, PRSs 
perform better when they also include a much larger number of vari-
ants below the threshold14–16. The source GWAS data (either individual 
level or summary statistics) are called the training dataset, and the 
parameters (for example, the P-value threshold for statistical signifi-
cance below which SNVs are included) are selected in an independent 
tuning dataset. The final step of testing is performed in an independent, 
out-of-sample cohort to avoid generating inflated prediction metrics13.

The assessment of polygenic disease risk in this manner is the focus 
of intense research, with increasing reports of the clinical validation and 
implementation of PRSs. For example, PRSs for CHD, type 2 diabetes, 
Alzheimer disease and breast and prostate cancers are available for clini-
cal application and are being used in clinical settings in several countries 
including the USA. In addition, PRSs for immune-mediated inflamma-
tory diseases (such as type 1 diabetes and ankylosing spondylitis)17, eye 
disorders such as glaucoma18 and respiratory diseases (such as chronic 
obstructive pulmonary disease)19 are being evaluated for clinical use. 
Although no guidelines have yet been established for the clinical use of 
PRSs, as the field awaits additional studies demonstrating their clinical 
utility, there is recognition of the potential to improve health outcomes 
and the need for further research.

Research consortia studying PRSs include Electronic Medical 
Records and Genomics (eMERGE)20 and Polygenic Risk Methods in 
Diverse Populations (PRIMED)21 in the USA, the former focusing on 
clinical implementation of PRSs and the latter on reducing the perfor-
mance gap in PRSs between population groups. The All of Us22 cohort, 
established in the USA with an emphasis on diversity, and the FinnGen23 
and UK Biobank24 cohorts from Europe are valuable resources for 
validating PRSs. Several additional global genomic data sharing ini-
tiatives are attempting to develop PRSs for diverse groups25,26. The 
ClinGen consortium in the USA includes PRS working groups that have 
developed a PRS reporting standard27 and are establishing a framework 
for curating evidence for the clinical utility of PRSs. Several speciality 
societies, such as the American Heart Association28, European Society of 
Cardiology29 and American College of Medical Genetics and Genomics 
(ACMG)30, as well as a Task Force of the International Common Disease 
Alliance17, have commented on the clinical use of PRSs.

Although enthusiasm for using PRSs is increasing — as reflected in 
the emergence of PRS-focused companies, direct-to-consumer (DTC) 
genetic testing services31 and academic centre-based genomic initia-
tives — the transition to routine clinical use faces several hurdles. These 
include the limited familiarity of patients and clinical service providers 
with the probabilistic nature of polygenic risk, the lack of integration 
of PRSs into electronic health record (EHR) systems and the paucity 
of clinical decision support (CDS) tools to guide the interpretation of 
PRSs and the clinical management of patients. There is a need to estab-
lish clinical standards for PRSs and regulatory and policy guidelines, 
given the different methods for constructing PRSs and their applica-
tion to different diseases. Moreover, outcome studies are needed to 
establish whether the return of a PRS to an individual improves clinical 
decision-making and health outcomes, thereby informing practice 
guidelines and supporting the cost–effectiveness of PRS testing.

Introduction
Most common human diseases, such as cardiometabolic diseases, 
cancers and neurological disorders, result from multiple aetiological 
factors, including both genetic and environmental factors. These condi-
tions are leading causes of morbidity and mortality worldwide, and risk 
assessment has a crucial role in devising screening strategies and guid-
ing preventive or therapeutic interventions. Traditionally, risk estima-
tion has relied on risk factors identified in large cohort studies (such 
as age, male sex, smoking, hypertension, diabetes and hypercholes-
terolaemia for coronary heart disease (CHD)), and for some diseases, 
validated algorithms are available to estimate absolute risk over defined 
time periods based on these factors. However, the accuracy of risk 
prediction for common diseases is modest, partly owing to the limited 
availability of sufficiently predictive biomarkers. In this context, the 
development of polygenic risk scores (PRSs), based on genetic variants 
identified in genome-wide association studies (GWAS)1,2, represents an 
important advance in disease risk assessment3.

A historical perspective
The origin of PRSs can be traced back to the principles of complex trait 
genetics and statistical genetic prediction, first proposed in the early 
twentieth century4. At that time, the scientific divide between biometri-
cians, who analysed continuous variation in traits, and ‘Mendelians’, 
who focused on discrete patterns of inheritance, was reconciled by 
Ronald Fisher5 in a seminal paper published in 1918. Fisher proposed 
that complex traits are influenced by the additive effects of many 
genetic variants of small effect and that these traits could be studied 
using quantitative statistical approaches4. He proposed analysis of 
variance as a statistical method to partition phenotypic variation into 
genetic and environmental components, introducing the concept 
of heritability. Importantly, these early models of genetic architecture 
were based on the analysis of phenotypes among related individuals, 
primarily in the context of animal or plant breeding programmes, with-
out knowledge of genotypes. Traits such as milk yield in cattle or oil 
content in maize became the focus of selection experiments, which 
provided further insights into quantitative genetics6.

In the mid-twentieth century, population geneticists including 
Fisher, JBS Haldane and Sewall Wright advanced theoretical models 
to describe how genetic variation is shaped by forces such as drift, 
mutation, migration and selection7 (see Fig. 1 for a population genetics 
background for PRSs). However, it was not until later in the twentieth 
century — when genetic markers across the genome became available — 
that the field of disease genetics emerged8. Although linkage analysis 
had been successful in identifying loci for rare Mendelian diseases, 
it was largely ineffective for complex traits characterized by poly-
genicity and small effect sizes9. In a 1996 commentary, Neil Risch and 
Kathleen Merikangas10 proposed a shift in strategy: the genotyping 
of common single-nucleotide variants (SNVs) across the genome to 
identify associations with complex traits. This vision came to fruition 
with the advent of GWAS, catalysed by the availability of the human 
genome sequence, Haplotype Map (HapMap) data and genotyp-
ing arrays. Subsequent GWAS, including the landmark study by the 
Wellcome Trust Case Control Consortium2, validated this approach, 
leading to the discovery of thousands of loci associated with a wide 
range of diseases and traits, often implicating many variants for a 
single condition11. A logical next step was to aggregate the effects of 
multiple trait-associated variants into a single PRS for that trait — that 
is, quantifying an individual’s inherited susceptibility to disease based 
on the cumulative contribution of many common variants1,2,12.

http://www.nature.com/nrg
https://www.genome.gov/Funded-Programs-Projects/Electronic-Medical-Records-and-Genomics-Network-eMERGE
https://www.genome.gov/Funded-Programs-Projects/PRIMED-Consortium
https://www.researchallofus.org/
https://www.finngen.fi/en
https://www.ukbiobank.ac.uk/
https://clinicalgenome.org/


Nature Reviews Genetics

Review article

This Review focuses on the translational aspects of polygenic risk 
assessment; it summarizes the potential use of PRSs in the clinic, with 
an emphasis on practical challenges and the evidence that is needed for 
their responsible implementation. Although other recent reviews have 
covered PRS methodology and reporting standards14,27,32, the author 
focuses here on the next steps required for their clinical adoption, 
particularly in the context of improving risk prediction for common 
diseases (see Table 1 for potential clinical applications of PRSs). The 
current status of PRS testing is discussed within the four domains — 
analytical validity, clinical validity, clinical utility and ethical, legal and 
social implications — of the ACCE framework33, which is a standard 

analytical process adopted by various entities worldwide for evaluating 
scientific data on emerging clinical genetic tests. Barriers to PRS use, 
including scientific and infrastructure gaps, are highlighted. Future 
directions in data harmonization and regulatory frameworks to bridge 
the translational divide between genetic discovery and personalized 
medicine and to promote the successful clinical implementation of 
PRSs are discussed.

Analytical validity of PRSs
Polygenic risk assessment can be considered an ‘omic’ technology that 
uses genome-wide genetic variation to construct a PRS. Here, the author 
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Fig. 1 | The influence of population and evolutionary genetics on polygenic 
risk scores. A simplified depiction of how human population genetics 
and evolutionary history underly differences in polygenic risk score (PRS) 
distributions across continental groups. Both neutral and non-neutral 
phenomena influence allele frequencies in such groups. The former includes 
genetic drift and gene flow facilitated by population migration, and the 
latter includes forces of natural selection172. a, After their origin in Africa 
around 300,000 years ago, anatomically modern humans were exposed to 
diverse environments, pathogens and nutrients, resulting in their genetic 
adaptation through natural selection. b, The subsequent migration(s) of humans 
out of Africa 50,000 years ago was characterized by a population bottleneck, 
which increased the effect of genetic drift, followed by explosive population 

growth and migration173. Again, exposure to diverse environments, pathogens 
and nutrients led to the selection of certain genetic variants in different 
populations172. c, Differences in allele frequencies and linkage disequilibrium 
between populations that have been geographically and culturally separated lead 
to differences in genetic architecture and in the distribution of PRSs. Although 
causal variants (represented by larger dots within the PRS distributions) may 
be shared, the frequency and effect sizes differ between groups. This leads to 
variable transferability of a PRS that is based on data from one genetic ancestry 
group to other groups. d, To compare effect sizes across different PRSs, traits, 
cohorts or studies, when the raw score ranges differ, PRSs from different groups 
are standardized to a mean of zero and a standard deviation (s.d.) of 1.
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discusses aspects related to the analytic validity of PRSs, including 
identifying genetic variants by genotyping arrays or whole-genome 
sequencing (WGS), imputation of non-genotyped variants and 
methods for constructing PRSs and adjusting for genetic ancestry 
and admixture.

Measuring genetic variation
An initial step in calculating a PRS is the accurate capture of commonly 
occurring genetic variation across the genome of the individual.  
Genotyping on arrays, followed by statistical imputation of non- 
genotyped variants using patterns of linkage disequilibrium, is a 
cost-effective way to calculate PRSs. For example, the Global Diversity 
Array34 includes more than 1.8 million SNVs and is optimized for under-
studied groups, such as those of African ancestries or Latino ethnicities. 
Array-based genotyping is highly reproducible for common variants, 
especially when using the same genotyping platform, rigorous quality 
control pipelines and high-quality reference panels for imputation35. 
Reproducibility is lower for rare variants, when different genotyping 
arrays are used, and in cohorts of diverse genetic ancestries. By con-
trast, WGS can capture both common and rare variants without reliance 
on imputation, which could potentially provide more robust input 
data for calculating a PRS. However, the analytical validity of WGS data 
used in PRS calculations is sensitive to coverage depth, variant calling 
algorithms and sequencing error rates36,37. Insufficient coverage or 
suboptimal variant calling pipelines can lead to the misclassification 
of genotypes, which in turn may reduce the performance of PRSs that 
are calculated from WGS data. At present, genotyping arrays remain the 

pragmatic standard in most research settings owing to their scalability 
and affordability whereas, for clinical use, low-pass WGS is emerging 
as an alternative.

Imputing non-genotyped variants
Genotype imputation — and, by extension, PRS accuracy — is influ-
enced by both genotyping array design and the choice of reference 
panel38. The differences in genotype imputation quality across differ-
ent reference panels can be substantial and can affect PRS calculation. 
The quality of imputation depends on several factors, including refer-
ence panel size, sequencing coverage of the reference panel, minor 
allele frequency (in the reference panel) of the variant being imputed, 
haplotype accuracy in reference and study samples, density of geno-
typing array, match between the study and reference populations 
and the imputation algorithm used39. Although the 1000 Genomes 
Project reference panel has been widely used for genotype imputation, 
larger and more diverse panels such as the Trans-Omics for Precision 
Medicine (TOPMed) reference panel40 identify a greater number of 
variants. However, linear reference panels derived from short-read 
sequences will miss a proportion of the genomic variation in under-
studied populations, which could reduce the performance of PRSs in 
these groups41. Recognizing this limitation, the Human Pangenome 
Project42 has completed telomere-to-telomere sequencing of 350 indi-
viduals from diverse groups to develop comprehensive reference 
panels that capture most of the genetic variation worldwide. This 
will enable a more complete ascertainment of genetic variation in 
non-European genetic ancestry groups, such as individuals of African 

Box 1 | Calculating a polygenic risk score
 

A polygenic risk score (PRS) for a disease or trait in an individual is the 
numeric value calculated from a PRS model and may be presented 
as a raw score or as an adjusted score in the context of a population 
distribution (in other words, as a percentile or standard deviation 
from the population mean). The PRS for an individual j is calculated 
as follows:

∑= ×β GPRSj i i j
i

where βi is the effect size (or β) of the ith genetic variant and Gj
i is the 

genotype of individual j at the ith variant.
A PRS scoring file is a list of genetic variants with their associated 

weights (effect sizes) for a particular trait and is typically included in 

the Polygenic Score (PGS) Catalog, an open database of polygenic 
scores and the relevant metadata. The metadata typically include 
additional details such as the studies and populations used to develop 
and/or validate the PRS; the method used to calculate the PRS; the 
number of genetic variants included in the PRS and the genome build.

The overlap between PRS distributions in cases and controls 
(see the figure) — despite the difference in mean PRSs being highly 
statistically significant — means that PRSs cannot be used as 
standalone screening tests. The relationship between a PRS and risk 
for disease is not linear but rather follows a probit function with flared 
tails (see the figure, part b). As a result, cases are enriched among 
those with very high PRS scores (as shown by the dashed black line 
in the inset of figure, part a)174.
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ancestries or Latino ethnicities, in turn improving the performance 
of PRSs for these groups.

Constructing PRSs
PRSs are constructed using two broad categories of method that differ 
in variant selection strategy: pruning and thresholding or genome-wide 
methods (for example, LDpred, PRS-CS or SBayesR)13. The pruning and 
thresholding method chooses a P-value threshold for disease-associated 
variants that produces the highest prediction accuracy in a tuning 
cohort. Correlated SNVs within an arbitrarily chosen window size for 
linkage disequilibrium are removed to select those SNVs that are nearly 
independent from each other and thus can be fit additively. By contrast, 
genome-wide methods include all SNVs simultaneously, accounting 
for linkage disequilibrium between SNVs, using a reference panel to 
reduce the risk of overfitting43. Statistical techniques are used to apply 
shrinkage or regularization to the GWAS effect sizes, such as penalized 
regression (for example, LASSO regression using Lassosum, an R pack-
age that adapts penalized regression to GWAS summary statistics44) 
as well as Bayesian approaches (for example, SbayesR or PRS-CS) that 
implement shrinkage by specifying a prior distribution of SNV effect 
sizes45,46. An independent validation dataset is typically used to assess 
the predictive power and generalizability of SNV weights. The optimal 
method (pruning and thresholding or genome-wide) depends on the 
genetic architecture of a trait47,48. Genome-wide methods can adapt to 
different genetic architectures and tend to perform better than pruning 
and thresholding49 but are computationally burdensome, motivating 
efforts to develop methods that improve both prediction accuracy and 
computational efficiency, particularly in large biobank-scale datasets50,51.

Adjusting for genetic ancestry
For clinical application, PRSs must be adjusted to the ancestral 
background of the tested individual52. This requires both inference 
of the genetic ancestry of the test subject and alignment to appro-
priate reference distributions. One strategy uses principal compo-
nent analysis (PCA) to place an individual within a global ancestry 
space52,53. The adjustment of PRSs based on PCA should ideally model 
both the variance and means of PRSs in an ancestry-dependent 
manner52,53. Alternative methods to adjust for ancestry quantify 
genetic distance — for example, using Euclidean metrics — to identify 
reference individuals with similar ancestry, such as by a k-nearest-
neighbour algorithm54 or interpolation weights that are based on the 
Euclidean distance from ancestry groups in the global PCA space55. 
These approaches can improve PRS adjustment to avoid systematic 
misclassification of risk, particularly in individuals of admixed or 
under-represented backgrounds.

Clinical validity of PRSs
The clinical validity of a PRS depends on how strongly it is associated 
with the trait of interest. Metrics for reporting the clinical validity of 
a PRS27 include the hazard ratio associated with a 1 standard devia-
tion increase in PRS or with having a high PRS (for example, in the top 
5th percentile), the proportion of disease liability56 explained by a PRS 
and discrimination as assessed by the area under the receiver operat-
ing curve, which is a composite metric of sensitivity and specificity57. 
Additional metrics include reclassification indices and net benefit58. 
Being in the highest range of the distribution of a PRS for certain 
diseases may be associated with risk equivalent to that posed by the 

Table 1 | Potential clinical applications of polygenic risk scores

Application Detail Disease-specific example

Refine risk prediction for common disease As one of the inputs into multivariable risk 
prediction algorithms3

Inclusion of a PRS in clinical risk algorithms to predict absolute 
risk of CHD or breast cancer79,160

Refine risk estimates for disease in the 
presence of pathogenic or likely pathogenic 
variants implicated in monogenic disorders

Polygenic background may influence the 
penetrance and expressivity of monogenic 
disease161

Among carriers of a monogenic risk variant, the probability 
of disease by age 75 years ranged from 17% to 78% for CHD, 
13% to 76% for breast cancer, and 11% to 80% for colon cancer, 
dependent on polygenic background161

Understand the genetic basis of conditions 
that resemble monogenic disorders but 
where no pathogenic variants are identified

Examples include heritable cancer syndromes, 
severe hypercholesterolaemia, prolonged QT 
syndrome and cardiac hypertrophy162

In a UK Biobank study of individuals with a prolonged QT 
interval (>480 ms) on an ECG, 3.4% carried a monogenic variant, 
whereas 21% were in the top decile for a PRS163

Pharmacogenomics, therapeutic targeting Assess response to drugs or predisposition to 
adverse reactions; identify groups who would 
benefit the most from drug therapy164,165

Participants with a higher PRS for type 2 diabetes had greater 
reductions in haemoglobin A1c in response to sulfonylurea 
therapy166

Targeted recruitment into clinical trials Enrich clinical trials for higher risk patients to 
reduce sample size and cost167,168

In clinical trials of monoclonal antibodies to PCSK9 that lower 
LDL-cholesterol, the risk reduction was greater in those with a 
high PRS for CHD169. An a priori prediction and corresponding 
trial design could have led to a roughly fivefold reduction in trial 
size by targeting a higher risk subset of patients169

Interpretation of laboratory tests in diverse 
groups

Establish new ranges for laboratory tests in 
diverse groups after regressing out polygenic 
influence on such measures170

A polygenic predisposition to lower white blood cell counts was 
associated with a lower risk of identifying pathology on a bone 
marrow biopsy performed for a low white blood cell count and a 
higher risk of discontinuing azathioprine treatment170

Predict disease trajectory or prognosis PRSs for disease severity and prognosis have not 
yet been widely validated given relatively small 
study cohorts18

A PRS for glaucoma predicted glaucoma progression and need 
for surgical intervention in prospectively monitored individuals 
with early-onset glaucoma18

Identify aetiological pathways activated in 
an individual

In theory, enrichment in certain aetiological 
pathways could be detected in a PRS for an 
individual, with implications for drug therapy171

A pathway PRS could distinguish subtypes of inflammatory 
bowel disease and bipolar disorder171

CHD, coronary heart disease; ECG, electrocardiogram; LDL, low-density lipoprotein; PRS, polygenic risk score.

http://www.nature.com/nrg
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monogenic form of the disease53. For example, a PRS for CHD in the top 
5th percentile is associated with a twofold to threefold higher risk of 
CHD than a PRS below this threshold, which is similar to the risk of CHD 
from a monogenic disease such as familial hypercholesterolaemia53. 
The clinical validity of PRSs in certain settings may be reduced by the 
modest performance and variable transferability across genetic ances-
try groups. Additional aspects relevant to the clinical validity of PRSs 
include how to calculate absolute risk estimates after incorporating a 
PRS; how to combine PRSs with other genetic risk factors (family history 
and monogenic risk), non-genetic risk factors (social, environmental 
and lifestyle factors) and known clinical risk factors; and how to assess 
the clinical impact of PRSs in different contexts such as age and sex.

Improving performance
The performance of a PRS improves with increasing size and diversity 
of the GWAS training datasets56. The ceiling for such improvement is 
set by SNV heritability59,60 and it is possible that with very large sample 
sizes of source GWAS, fine mapping of causal variants and functional 
annotation of genetic variants, a PRS could eventually explain most 
of the narrow-sense heritability in a trait61. In parallel, innovations in 
methodology could also improve PRS performance, such as the inclu-
sion of genome-wide SNVs to calculate a PRS, using linkage disequi-
librium score regression to account for correlation between SNVs. 
This approach led to better performing PRSs for diseases with high 
polygenicity, such as CHD, but not for breast and prostate cancers, pos-
sibly owing to differing genetic architectures. Additional approaches 
to improve PRS performance include: the use of multi-ancestry data 
with ancestry-specific linkage disequilibrium information to provide a 
more accurate estimate of effect sizes and to identify causal variants62,63; 
jointly modelling multiple correlated traits to leverage pleiotropy 
across traits64–67; incorporating rare and structural variants68,69; and 
the use of functional annotation to weight GWAS variants14,70.

Transferability across ancestry groups
The performance of PRSs across genetic ancestry groups varies. Meth-
odological innovations can reduce but not eliminate the gap in perfor-
mance of PRSs in non-European genetic ancestry groups, and there is 
a need to increase the size of training datasets for such individuals. 
Recognizing this, the PRIMED Consortium21 aims to reduce dispari-
ties in polygenic risk assessment by both methods development and 
increasing the size of GWAS datasets for individuals of non-European 
ancestries. The gap in PRS performance is widest between individuals 
of European genetic ancestries and African genetic ancestries, owing 
to the marked imbalance in the size of available GWAS datasets to train 
PRSs for these two groups. Hence, there is a need to establish infra-
structure and biobanks for genotyping on the African continent25,26 
and to increase enrolment of African diaspora populations in biobanks 
and GWAS. These efforts could also lead to novel insights into human 
disease genetics, given the greater genetic variation and lower linkage 
disequilibrium in African populations. Another group for which there 
are limited GWAS data is South Asians, who comprise nearly a quarter 
of the world’s population. Initial efforts to increase the representation 
of this group in GWAS include the Pakistani Genome Resource71 and the 
Genes & Health study, which includes 40,000 individuals of Pakistani 
and Bangladeshi origin living in East London, UK72. Biobanking projects 
that are already established or underway across the world25,26,73, as well 
as diverse reference panels for genotype imputation and multi-ancestry 
GWAS, should eventually lead to improvement in the transferability 
of PRSs21,63,74.

Use in admixed individuals
In individuals from admixed populations (for example, Uighurs in China 
and Latinos and African Americans in the USA75), PRSs are challenging 
to calculate and their clinical validity may be reduced as admixture pro-
portions can vary widely from person to person. For example, in Latinos, 
the average proportion of European genetic ancestries ranges from 
45% in Mexican Americans to 80% in Puerto Ricans76. Approaches to 
calculating PRSs in admixed individuals include estimating overall 
proportions of genetic ancestries and adjusting the PRS accordingly14. 
An alternative approach is to map local genetic ancestry along the 
genome77 and then aggregate the PRS from each segment. However, 
this approach may be limited by the lack of adequate training datasets 
as well as reference panels for one or more of the source populations. 
Furthermore, as admixture is pervasive and nearly every human is 
‘admixed’ to some degree, individuals may not always discretely map 
onto distinct continental ancestry groups used as references. There-
fore, methods that incorporate continuous representations of genetic 
ancestry may prove useful in calculating PRSs54,55,78.

Joint modelling with other genetic risk factors
Family history and PRSs provide complementary information on 
genetic risk, which can be modelled jointly for a more complete 
assessment of disease susceptibility, as demonstrated in analyses of 
UK Biobank79 and FinnGen80 datasets. Both common and rare vari-
ants contribute to complex traits81, and accounting for any linkage 
disequilibrium between rare and common variants may allow for 
their joint inclusion in a PRS. An example of jointly modelling a PRS 
using both common and rare genetic variants (as well as non-genetic 
risk factors) is the Breast and Ovarian Analysis of Disease Incidence 
and Carrier Estimation Algorithm (BOADICEA) model and the cor-
responding CanRisk tool, which is widely used for breast cancer risk 
assessment82. However, additional work is needed to determine opti-
mal methods for integrating rare variants into a PRS83. Prospective 
cohorts in which family history and rare variants were assessed at the 
outset and incident disease ascertained at follow-up (for example, as 
assessed for UK Biobank and All of Us cohorts) are necessary to gener-
ate weights for multivariable integrated risk models. In addition, most 
PRSs comprise genetic variation in the form of SNVs and may capture 
only a fraction of the total heritable risk for complex traits. Inclusion 
of genetic variation beyond SNVs, such as structural variants, as well 
as gene expression, methylation and somatic mosaicism, is likely to 
improve risk prediction (Box 2).

Joint modelling with environmental, social and lifestyle factors
In addition to genetic factors, the risk of common diseases is strongly 
influenced by environmental, social and lifestyle factors, and these 
should be included when assessing risk58,84 (Box 2). However, such vari-
ables have often been inconsistently ascertained in epidemiological 
studies and appropriate weights for statistical modelling in risk predic-
tion equations may not be available. In a subset of All of Us participants84 
who completed a social determinants of health (SDOH) survey, CHD 
risk was higher in African Americans than in other self-identified 
race/ethnicity (SIRE) groups but not after adjustment for the higher 
SDOH burden in African Americans. In the UK Biobank58, a polysocial 
score that included SDOH and psychosocial factors was as strongly 
predictive for incident CHD as a PRS. In both studies, non-white indi-
viduals were at higher risk of CHD and this risk appeared to be mediated 
by social–environmental factors and SDOH, which supports the con-
cept of race as a social construct. In addition, the PRS for CHD was not 
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correlated with SDOH and thus these factors could be jointly modelled 
to provide additive risk information.

Clinical utility of PRSs
The clinical utility of a genetic test depends on the adoption of effective 
evaluation and treatment conditioned on the results and is influenced 
by factors such as the target population (for example, adults of a certain 
age range), the prevalence and public health burden of the disease or 
trait of interest and the potential for mitigating high risk if detected85–87. 
It is important to note that data from a genotyping array for an indi-
vidual can be used to calculate a range of PRSs to assess susceptibility 
to multiple conditions, which raises the question of which PRSs should 
be calculated at what time, and when and how these should be reported 
to the individual. In phase IV of the eMERGE Network, 20 PRSs that 
were considered clinically relevant were proposed by the participat-
ing sites52; 10 of these PRSs were chosen for clinical implementation 

based on potential actionability as well as the availability of validated 
multi-ancestry PRSs.

Definitions of clinical utility vary: a narrow definition includes 
improved health outcomes in an individual, whereas a broader 
definition also includes personal utility and utility to the family and 
society. The broad definition of clinical utility of a genetic test adopted 
by the ACMG is the “effect on diagnosis, therapeutic management, and 
prognosis, as well as health and psychological well-being for patients 
and their relatives, and economic impacts on health-care systems”88. 
These aspects are further discussed subsequently.

Medical decision-making and health outcomes
The narrow definition of clinical utility focuses on whether the use 
of a genetic test improves health outcomes (such as by decreasing 
morbidity and mortality) as these end points inform practice guidelines 
and decisions about funding for genetic tests by public health systems 

Box 2 | Multiple inputs for assessing risk of a common disease
 

A polygenic risk score (PRS) is an important input for risk assessment of 
common diseases for several reasons. First, a PRS is often comparable 
to or a stronger predictor of disease than individual risk factors. For 
example, in one study175, a PRS had greater discriminatory power for 
incident CHD than any of six conventional factors (smoking, diabetes, 
hypertension, body mass index, self-reported high cholesterol and 
family history). Second, for most diseases, the PRS is orthogonal to 
conventional risk factors and adding a PRS to such factors increases 
the accuracy of prediction175. Third, a PRS in the highest percentile may 
confer a risk similar to that of a monogenic aetiology53. Finally, a PRS 
can be informative relatively early in life, before other risk factors have 
manifested93,175.

Given the complex multifactorial aetiology of common 
diseases, multiple inputs, in addition to a PRS, are necessary to 
assess disease risk, disease subtypes and temporal profiles176–178. 
These include:

	• Conventional risk factors such as age, sex, adiposity and 
smoking;

	• Genetic factors other than a PRS: family history, rare variants, 
acquired somatic variants (somatic mosaicism), epigenetic 
features, structural variants and gene expression;

	• Circulating proteomic and/or metabolomic markers;
	• Lifestyle, social and environmental factors, including social 
determinants of health and the exposome;

	• Electronic health record data, including results of imaging or other 
laboratory studies;

	• Self-reported or objective measures of physical activity, sleep and 
other physiological parameters.

Additional factors to consider in assessing disease risk 
include: (1) risk factors can change over the life course and 
therefore risk estimates are dynamic; (2) risk factors may vary 
across different disease subtypes; and (3) single, very strongly 
predictive biomarkers (for example, having odds ratios of 20-fold 
or higher) are rare. It is more likely that progress in risk prediction 
will be made by the continued accretion of low-to-moderate 
strength biomarkers that are minimally correlated with established 
risk factors.

The use of complex, multiple inputs for assessing disease risk may 
require machine-learning approaches as well as model calibration, as 
described subsequently.

High-dimensional models
Multivariable risk prediction models that include a PRS and clinical, 
demographic, lifestyle and ‘omic’ variables can be affected by potential 
correlations and interactions between these predictors. In this context, 
machine-learning approaches may offer advantages over traditional 
regression methods. One such method is elastic net regression, which 
enables both variable selection and coefficient shrinkage, thereby 
accommodating correlated predictors and enhancing model stability179. 
Predictor weights can be derived in a training dataset and then 
validated in an independent test set. By penalizing model complexity, 
elastic net regression reduces the risk of overfitting and may improve 
the generalizability of PRS-enhanced models to external populations.

Model calibration
Regardless of the modelling strategy, risk prediction models can be 
affected by sources of error such as exposure measurement error 
(inaccuracy in assessing an individual’s exposure to a particular lifestyle 
or environmental factor) and unmeasured confounders (which may 
account for the observed association between exposure and outcome). 
Consequently, model calibration (the extent to which predicted 
probabilities correspond to observed outcome frequencies) is a crucial 
and often underappreciated aspect of model evaluation180. For example, 
among individuals assigned a 10% predicted risk of developing 
disease over a 10-year period, calibration would be reflected in 10% 
of them developing the outcome over this period. Calibration should 
be assessed using independent and, ideally, population-representative 
cohorts. Importantly, models that are well calibrated in one population 
may exhibit poor calibration in another owing to differences in PRS 
performance, baseline disease risk and covariate distributions. 
When miscalibration is detected, recalibration techniques — such 
as updating the baseline hazard or model intercept — may be 
necessary. Stratified calibration assessments can also help to identify 
and address disparities in model performance across subgroups, 
supporting equitable clinical implementation of such models.
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and private insurers89,90. However, given the likely long latency between 
disclosure of a PRS and health outcomes, surrogate or intermediate 
outcomes are often assessed91. These include the influence of PRSs 
on screening strategies, risk stratification, therapeutic decisions and 
changes in patient behaviour. An illustrative example is a prospective 
screening study for prostate cancer92: men in the top decile of a PRS for 
prostate cancer were found to have a higher detection rate of clinically 
relevant tumours compared with screening of men guided solely by 
prostate-specific antigen levels or MRI92. Supplementary Table 1 lists 
examples of diseases that pose a substantial public health burden and 
for which a PRS, combined with traditional risk algorithms and family 
history, could inform risk-based screening and preventive care. Of these 
conditions, PRSs for CHD, type 2 diabetes, Alzheimer disease and breast 
and prostate cancers are already available for use in clinical practice, 
although not yet routinely implemented92–95.

Personal utility and societal considerations
Beyond traditional clinical outcomes, the calculation of an individual’s 
PRS may have personal utility through perceived benefits in psychologi-
cal preparedness, informed life planning and satisfaction from access-
ing personal genomic information87,96,97. Patients may value information 
for its own sake, even in the absence of clinical actionability, and report 
impacts on lifestyle, long-term care planning and family communica-
tion. At the societal level, PRSs intended for stratifying disease risk 
must aim for a population-level health benefit and not solely clinical 
or personal utility for individual patients. An important consideration 
for policymakers and funders is cost–effectiveness when testing PRSs 
at scale. Initial reports based on simulation and modelling indicate that 
the use of PRSs for diverse conditions such as cardiovascular disease98, 
type 2 diabetes99, open-angle glaucoma100 and various cancers101–104 
is modestly cost-effective. Cost savings could result from targeted 
versus uniform screening, offering screening to those at higher risk 
and avoiding screening in those at lower risk.

Evidence base for clinical utility
Despite growing interest in the use of PRSs in the clinic, empirical evi-
dence supporting the clinical utility of PRSs remains limited92,105,106. 
Only a small number of randomized controlled trials have been com-
pleted to date107. One such study, the myocardial infarction genes 
(MI-GENES) trial (ClinicalTrials.gov: NCT01936675), randomized 
participants to receive either conventional or PRS-integrated risk 
assessments for CHD95. Those who received the PRS-integrated score 
had significantly lower LDL-cholesterol levels at 6 months after risk 
assessment and, in a post hoc analysis, lower rate of major cardiovas-
cular events at 10 years, likely on the basis of earlier and longer statin 
use108. Other, ongoing, initiatives are expanding the evidence base 
for clinical utility of PRSs109,110. The Genomic Medicine at Veterans 
Affairs (GenoVA) study (ClinicalTrials.gov: NCT04331535) is a rand-
omized clinical trial looking at whether PRSs for six common diseases 
(CHD, type 2 diabetes, atrial fibrillation and breast, colorectal and 
prostate cancers) alter time to diagnosis110. PRS-guided mammographic 
screening for breast cancer is being tested in the Women Informed 
to Screen Depending on Measures of Risk (WISDOM) (ClinicalTrials.
gov: NCT02620852) and Personalized Risk Assessment for Prevention 
and Early Detection of Breast Cancer: Integration and Implementa-
tion (PERSPECTIVE I&I) studies111,112. In the USA, the eMERGE Network 
(ClinicalTrials.gov: NCT05277116) is evaluating near-term outcomes 
related to medical decision-making following the clinical deployment 
of PRSs for 10 common conditions113. In the UK, the Our Future Health 

initiative is incorporating PRSs for several chronic diseases, such as 
cancer, cardiovascular disease, Alzheimer disease and diabetes, within a 
large (5 million individuals) population-based cohort to examine imple-
mentation at scale114,115. Implementation of PRSs in national human 
genomics programmes outside the USA and the UK, such as Genome 
Canada, Precision Health Research, Singapore (PRECISE), the Danish 
National Genome Center (DNGC), the Qatar Genome Program (QGP) 
and Australian Genomics, will provide valuable insights into the utility 
of PRSs in diverse settings116.

Although randomized clinical trials remain the gold standard to 
assess the clinical implementation of PRSs, their feasibility is limited by 
cost, complexity and long timelines. A diverse array of study designs is 
therefore essential to evaluate the utility of PRSs in real-world settings. 
These include prospective and retrospective cohort studies, health 
economics modelling, simulation-based analyses, implementation 
science studies, case series and observational designs. As evidence 
accumulates, standardized reporting will be crucial to compare PRSs 
and synthesize the data. Assessment frameworks that evolve with 
new technologies and methodological refinements will be neces-
sary to evaluate the utility of PRSs across diverse healthcare settings. 
Structured reporting of outcomes and harmonized metrics will be 
essential to ensure that emerging evidence can guide the responsible 
clinical use of PRSs. The ClinGen PRS Clinical Utility Working Group is 
curating evidence for the clinical utility of selected PRSs — beginning 
with those for breast cancer and CHD — with the intention of developing 
a systematic framework for assessing clinical utility.

Ethical, legal and social implications
Deploying PRSs in clinical practice has ethical, legal and social impli-
cations not only for individuals but also their family members and 
communities117. It is crucial to gather diverse perspectives on the poten-
tial benefits and harms of polygenic risk assessment, particularly from 
populations historically marginalized by genetic research. In addition, 
engaging legal experts, ethicists and policymakers can help to establish 
an ethical framework for implementing PRSs.

Equity at the population level
Differential performance of PRSs between groups. The predictive 
power of PRSs varies widely between and even within demographic 
groups118,119 and is lower in individuals of non-European ancestries than 
in those of European genetic ancestries17,118. For example, the odds ratio 
for CHD for a 1-standard-deviation increase in PRS was twice as high 
in individuals of European ancestries than in individuals of African 
ancestries (1.53 versus 1.27)118. This raises an ethical dilemma — should 
PRSs be deployed for routine clinical use for all individuals regardless of 
genetic ancestry in the face of such disparate performance? It is impor-
tant to note that despite their lower predictive power in individuals of 
non-European ancestries, PRSs could still provide useful risk reclas-
sification in certain settings, such as for CHD in African Americans118. 
Strategies to enable equitable polygenic risk assessment across the 
globe are discussed in more detail in other reviews25,26.

Race, genetic ancestry and population descriptors. The debate 
about whether and how to incorporate SIRE in risk algorithms for com-
mon diseases is ongoing, despite the consensus that race and ethnicity 
are not biological constructs but reflect a multitude of factors, mostly 
social and environmental120. Although there is a push to replace race 
and ethnicity in clinical risk algorithms with SDOH121, it is worth not-
ing that race and ethnicity capture additional important exposures 
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that may not be easily quantifiable, such as experiences of racism 
and discrimination and exposure to unique environmental factors. 
Incorporating genetic ancestry into risk algorithms is also challeng-
ing as individuals are often divided into discrete continental ancestry 
groups, despite the complex and continuous nature of genetic ances-
tries. Overall, the addition of SIRE to PRS models could be useful in 
specific groups with sufficient data (for example, African Americans 
in the USA) and in certain clinical contexts such as cardiometabolic 
disease and cancers122,123.

Implications for public health and screening programmes. The 
potential application of PRSs at the population level has important 
public health implications related to equity in disease prevention and 
management. Widespread implementation of a PRS must be accom-
panied by efforts to ensure equitable access to testing and follow-up 
care, to avoid worsening of health disparities124,125 and to maximize 
population-level benefit by reducing the burden of disease. There are 
concerns that increased healthcare expenditures incurred by those 
with access to PRS testing might divert resources from disadvantaged 
individuals126. In addition, the emergence of private companies offer-
ing polygenic risk assessments for embryos raises concerns regarding 
selecting embryos based on low PRSs for various diseases127, such as the 
promotion of eugenics, the imprecision in polygenic risk prediction 
and the possibility of unwanted pleiotropic effects.

Implications for individuals and families
Implications for individuals. At the individual level, relying solely on 
a PRS for risk stratification could lead to misclassification — that is, 
labelling a person as low risk when they are actually at high risk and 
vice versa128 — although it should be noted that risk misclassification 
is inherent to all biomarkers and not unique to PRSs. This could lead 
to false reassurance or anxiety, contribute to overdiagnosis as part of 
a multivariable risk model or result in unnecessary interventions97. 
Patients with a family history of disease who receive a PRS that is not 
high may be falsely reassured. Genetic determinism — the belief that 
genes define destiny — could distract from the importance of lifestyle 
and environmental factors in modulating health outcomes. Individu-
als with a high PRS for conditions such as psychiatric disorders might 
perceive a sense of inevitability of developing the condition129 and face 
social stigma, which could impact their relationships and employment 
opportunities. For diseases with no known intervention, the potential 
benefits (in terms of family planning or altered life plans) should be 
weighed against the stresses of receiving the result.

Implications for family members. The PRSs of first-degree family 
members are correlated, and in one study, high PRSs for four cardio-
metabolic diseases were concordant among siblings130. However, unlike 
for single-gene disorders, it is difficult to determine exact probabilities 
for a high PRS in relatives, as polygenic burden may not segregate 
predictably within families owing to meiotic recombination and inde-
pendent assortment. It is therefore unclear when cascade testing for 
relatives of an index case is necessary or whether a clinician should 
inform the relatives of an individual with high polygenic risk131.

Testing children of index cases for PRSs is controversial, and the 
American Academy of Pediatrics (AAP) and the ACMG recommend 
postponing genetic testing for conditions that manifest later in life 
unless immediate actions are necessary132. The AAP and  the ACMG 
consider the age of the child — whether they are an older child or a 
mature adolescent — as influencing the decision whether to disclose 

results of a PRS. To further explore some of these issues, the eMERGE IV 
study returned PRSs for four conditions (type 1 and 2 diabetes, obesity 
and asthma) to children and their guardians113.

Insurance coverage and genetic discrimination. Individuals and, 
potentially, their family members must also be made aware of the 
possible implications for employment and insurance coverage before 
undergoing PRS testing. Measures for protection against genetic dis-
crimination are in place in countries including Australia, Canada, the 
USA and UK133 but the effectiveness of such protections can differ from 
country to country. For example, in the USA, the Genetic Informa-
tion Nondiscrimination Act protects individuals from discrimination 
by employers and health insurers; however, additional protections 
are necessary for life, disability and long-term care insurance, which are 
not as yet legally protected in the USA. Despite genetic discrimination 
being relatively uncommon, the fear of it may deter individuals from 
pursuing polygenic risk assessment134,135. Consideration should be 
given by policymakers and lawmakers to prohibiting the use of PRSs 
in underwriting for different types of insurance133.

Availability of PRS testing. Although reports of the clinical validity and 
potential utility of PRSs for predicting common disease risk have gen-
erated enthusiasm for their use in clinical practice, such testing is not 
readily available outside the DTC setting29. The commercialization of 
PRSs has been relatively slow for several reasons, including the complex 
quality control, bioinformatics and statistical pipelines needed to cal-
culate a PRS from genotype data, which may not be familiar to clinical 
laboratory staff. Genotyping arrays are used widely for research GWAS 
but not routinely in the clinical setting. Close collaboration among 
molecular geneticists, bioinformaticians and statistical geneticists is 
necessary to develop and update PRSs for clinical use. For example, a 
report from the eMERGE Network highlights the considerable effort 
needed to develop and calculate clinical-grade PRSs for a range of 
conditions using genotyping array data52.

Owing to the limited availability of PRSs in traditional hospital 
or clinic settings, individuals may turn to DTC genetic testing to learn 
about their genetic predisposition to disease31. DTC genetic testing 
is relatively easy to obtain and may also include access to a genetic 
counsellor or a clinician, although follow-up with a clinician is less 
likely to occur than when results are returned in a clinical setting31. 
Other drawbacks include a lack of transparency as to how genetic risk 
is calculated, lack of access to clinical data and concerns about how 
companies handle, store and potentially share genetic data with third 
parties (for example, researchers or insurance companies), including 
risks of data breaches and commercialization of patient data without 
benefit sharing. DTC genetic testing is in a state of flux and it is unclear 
which models will survive going forward31.

Barriers to the clinical use of PRSs
There are several barriers to the widespread clinical use of PRSs. 
As discussed earlier, the major barrier is their limited transferability 
across diverse ancestry groups, which compromises both accuracy and 
equity; ongoing efforts aim to increase the diversity of the genotyping 
data used to construct PRSs, as has been reviewed elsewhere25,26. In addi-
tion, there is currently a low level of awareness and understanding of 
PRSs among patients and healthcare providers, although this would 
be the case initially for any novel medical application. Other obstacles 
include challenges in communicating probabilistic risk, lack of famili-
arity among providers in the use of PRSs, the inherent imprecision of 
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Box 3 | Communicating polygenic risk
 

When communicating a polygenic risk score (PRS)-informed 
disease risk to an individual, several factors should be considered. 
(1) Ideally, the risk estimate should be linked to a clinical action 
to improve health outcome. (2) Risk estimates may give a false 
sense of precision; the uncertainty around such estimates should 
be communicated to the patient to facilitate informed and shared 
decision-making. (3) Use of visuals such as colour-coded icon 
arrays and risk percentile ranks can improve the understanding of 
both clinicians and patients (see the figure, for some examples). 
Dashboards within a patient’s electronic health record could be used 
to display the PRS alongside traditional risk factors (such as family 
history, smoking and laboratory test results)181. (4) The variation in 
levels of understanding among patients, as well as their selective 
engagement with the report, should also be considered when 
designing PRS reports, to avoid misinterpretation140. (5) Patients 
(as well as care providers) may need guidance on how clinical 
variables, family history and monogenic variants were combined 
with PRS results.

The risk information in a PRS can be conveyed using three 
approaches that are not mutually exclusive182: absolute risk over a 
given period of time, relative risk or odds ratio, or percentile rank 
within a given population (see the figure; note that the figure does not 
depict uncertainty around estimates).

Absolute risk
PRSs are most useful when integrated into existing clinical equations, 
such as those for breast cancer and coronary heart disease (CHD), 
that estimate absolute risk over a defined period. The Breast and 
Ovarian Analysis of Disease Incidence and Carrier Estimation 

Algorithm (BOADICEA) equation for breast cancer risk is the only 
clinically used equation that can accommodate a PRS, family history 
and rare genetic variants together with clinical risk variables160. 
The pooled cohort equations (PCEs) for CHD have not yet been 
modified to include genetic risk factors but as the CHD PRS is 
orthogonal to PCE, it can be incorporated in a log additive manner 
into the equations79. For most common conditions, such as atrial 
fibrillation, abdominal aortic aneurysm, diabetes, colorectal cancer 
or neurological diseases, validated algorithms to estimate absolute 
risk are typically not in routine clinical use. Here, absolute risk can 
be estimated using epidemiological indices of disease incidence, 
mortality and prevalence183. It is worth noting that in many countries, 
the lack or paucity of epidemiological data means that absolute risk 
estimates may not be available.

Absolute risk estimates are especially useful when linked to 
management guidelines from speciality societies. For example, 
a 5-year risk of breast cancer of 25% or higher, as calculated by 
BOADICEA, would be an indication for regular breast imaging such 
that any abnormalities on imaging could lead to decisions about 
chemoprevention or surgery to reduce risk. A 10-year risk of CHD 10% 
or higher, as calculated by PCEs for CHD, would be an indication to 
start a statin medication to lower disease risk (see the figure, part a).

Relative risk
Alternatively, relative risk can be used if absolute risk cannot be 
estimated — for example, a twofold higher relative risk of disease 
for individuals with a PRS in the top 10th percentile (see the figure, 
part b) can be used to translate that information into action. 
Clinicians might be able to contextualize this information by 

a   Icon array to convey absolute risk b   Bar graph to convey relative risk
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individual-level estimates and the evolving nature of risk prediction 
as methods improve.

Challenges in communicating probabilistic risk
Patients often hold deterministic views of genetic risk, underestimat-
ing the ability to modify such risk through behavioural or medical 
interventions. Cultural beliefs — including concepts of fate, heredity 
and kinship — further shape interpretations of risk information136. 
Therefore, the effective communication of PRSs must emphasize that 
polygenic risk is probabilistic and that disease risk is dynamic, influ-
enced by modifiable factors such as environment, behaviour and social 
determinants. Risk communication should be neutral and contextual, 
highlighting how interventions such as lifestyle changes or medication 
can modify risk trajectories (Box 3). This approach was successfully 
implemented in the MI-GENES trial, where a genetic counsellor framed 
the risk of cardiovascular disease as being mutable95. However, risk 
disclosure by genetic counsellors trained in probabilistic risk communi-
cation is impractical at scale. Digital communication tools — including 
pictograms, animations and videos — tailored according to genomic 
literacy, educational attainment and sociocultural background may 
improve understanding137,138.

Lack of familiarity among providers
The implementation of PRSs could initially be centralized in preven-
tive genomics clinics but as PRS testing is increasingly considered 
for routine use in preventive medicine, it will likely be introduced in 
primary care —  a setting in which many providers lack specialized 
training in genomics and may be unfamiliar with probabilistic risk 
communication128,131. Furthermore, the simultaneous calculation of 
multiple PRSs across a range of common diseases will likely result in 
a high proportion of patients being flagged as at increased risk for at 
least one condition139. Without dedicated time, reimbursement and 
clear guidelines, healthcare providers may struggle to interpret and 
convey such information. CDS tools offering guidance on interpretation 
and follow-up may facilitate the use of PRSs in primary care, especially 
when algorithms for estimating absolute risk and relevant special-
ity guidelines are unavailable17,95. For example, the eMERGE Network 
created a genome informed risk assessment (GIRA) tool to help both 
patients and providers better understand comprehensive disease risk 
profiles that include a PRS113. In addition, a ‘champion user’ trained in 
genetic risk communication could serve as a resource and guide for 
PRS testing and interpretation in a primary care practice140. To equip 
future clinicians for managing PRS results, polygenic risk assessment 
should be included as a topic in medical school curricula, in sections 
that deal with epidemiology, public health and prevention.

Imprecision of individual-level risk estimates
PRSs developed for the major continental groups may have variable 
performance within these groups owing to factors other than direct 

genetic effects, including population structure119,141,142, differing envi-
ronmental factors143,144 and assortative mating145,146. The impact of such 
factors can be assessed by comparing a PRS based on standard GWAS 
with a PRS based on sibling GWAS145, and potentially mitigated using 
novel statistical methods. Alternately, multiple cohorts in different 
regions within a continent could be studied to address this heteroge-
neity. However, the development of PRSs for every geographic region 
may not be feasible, and some degree of imprecision is unavoidable 
when extrapolating a PRS derived from a group to an individual (this 
problem is not unique to PRSs; most assays in clinical use have a range 
of intra-assay and inter-assay variation).

Figure 2 illustrates the steps in the PRS development process at 
which ‘noise’ could be introduced and propagated, thereby leading 
to imprecision of risk estimates. A factor contributing to imprecision 
is the varying performance of a PRS in the context of factors such as 
age, sex and smoking history147. For example, the association between 
a PRS and disease risk often differs by age group, owing to biological, 
environmental and other epidemiological factors. These differences 
can affect the interpretation and clinical application of PRSs across 
the life course. PRS performance typically decreases with increasing 
age and the predictive utility of a PRS is greater in younger individuals 
than in older individuals148.

These sources of heterogeneity can lead to variability in individual 
risk classifications, even when the population-level performance of a 
PRS is robust. As a result, PRSs for a given disease that perform similarly 
in overall discrimination may diverge in identifying the same individual 
as high risk149,150, necessitating caution in clinical use. One strategy could 
be to use consensus risk thresholds — in other words, instead of using 
high-risk classification from one score, define high-risk individuals as 
those ranked in the top tier across more than one PRS. Another approach 
could be to aggregate multiple PRSs for the same trait into a composite 
score, reducing sensitivity to the assumptions of any one method151.

Changes in risk estimates over time
PRS-based risk predictions may change over time owing to age-related 
factors, the emergence of comorbidities or shifts in environmental 
exposures, often in a nonlinear manner152. In addition, methods to con-
struct PRSs are constantly evolving, and risk estimates could change as 
PRS performance improves. Mechanisms should be in place to periodi-
cally review PRS performance and to estimate risk in a dynamic manner. 
For such re-analysis of risk, the original genotype or sequencing data for 
an individual must be available to use the most up-to-date PRS method-
ology. This problem is somewhat akin to the re-interpretation of rare 
variants of uncertain significance as new information becomes avail-
able. As yet, there is no standard infrastructure for clinical recontact 
or re-interpretation of genetic tests128, although some genetic testing 
companies provide an option for a patient to create a portal through 
which updates in the interpretation of a genetic test could be com-
municated. Establishing policies and technical systems to support 

comparing the magnitude of effect with other risk factors for which 
there are already established guidelines (such as family history).

Percentile rank
A percentile rank compares an individual’s PRS with the distribution  
of PRSs within a chosen population (see the figure, part c).  

However, the percentile rank alone does not enable sufficient clinical 
risk contextualization, because it gives no indication of how much of 
the overall disease risk is explained by the PRS.

(continued from previous page)
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dynamic risk assessment will be essential to fully realizing the clinical 
utility of PRSs in the long term.

Infrastructure and regulatory challenges
Expanding the clinical use of PRSs will require not only overcoming 
technical and operational barriers but also fostering collaboration 
across domains to develop robust infrastructures, harmonized data 
standards and adaptable regulatory frameworks. Crucial components 
include the integration of genomic data into EHRs, interoperable CDS 
tools and standardized methods for PRS development, storage and 
interpretation153 (Fig. 3).

Storing PRS data in the medical record
Currently, there is no uniform strategy for integrating PRS data — or 
genomic data more broadly — into EHR systems. An ideal infrastruc-
ture would consist of a centralized, secure genomics data ecosystem 
that includes accredited laboratories linked to cloud-based genomic 
repositories where validated PRS calculations are performed; an EHR 
data warehouse for aggregating clinical risk factors; and a CDS system 
that draws from a frequently updated knowledge base (Fig. 3). These 
components can be connected through application programming inter-
faces, enabling modular system upgrades independently of the EHR. The 
Fast Healthcare Interoperability Resources, which is the global standard 
for passing healthcare data between systems, provides a framework for 
encoding genomic data in a structured, machine-readable format, facili-
tating interoperability between laboratories and EHR platforms154. A PRS 
could be calculated on-demand using validated quality control and infor-
matics pipelines that adapt to new data or evidence. Structured PRS out-
puts could then trigger CDS system alerts, to enable risk stratification and 
support communication between providers154. Metadata accompanying 

each PRS should document the version of the algorithm used and its 
ancestry-specific performance characteristics to ensure interpretability  
and traceability.

Data standards and harmonization
Unlike single-gene tests, PRSs are derived from genome-wide variant 
data using a wide range of statistical models and assumptions. Although 
genotyping and sequencing would be carried out in certified labora-
tories, standardization is also needed for downstream processes — 
such as data storage, PRS calculation and clinical reporting — to ensure 
transparency, reproducibility and comparability across settings. 
The Polygenic Score (PGS) Catalog (PGS Catalog) is a centralized, 
open-access repository for published PRSs, providing score files (alleles 
and weights), phenotype definitions and metadata155. However, the 
completeness and quality of submitted data can vary, and adoption of 
standardized reporting metrics remains uneven155. The Social Science 
Genetic Association Consortium has published a curated collection of 
PRSs for 47 predominantly behavioural traits, developed using consist-
ent and rigorous methodologies156. The PGS-Calc tool complements 
the PGS Catalog by allowing users to estimate individual risk using 
the most appropriate available PRS for a given trait155,157. Continued 
development of such infrastructures will be essential for the independ-
ent evaluation and scaling needed for the clinical implementation  
of PRSs.

Regulatory and policy aspects
Regulatory oversight of PRS testing will have a pivotal role in determin-
ing its pace and extent of clinical adoption. Regulatory frameworks vary 
across regions and countries and must balance innovation with public 
trust and health equity. A key distinction lies in whether a PRS is classified 

Factors contributing to imprecision of a PRS

• Variability or error in case ascertainment
• Case–control imbalance
• Variability in genetic ancestry and admixture
• Variability in genotyping arrays, imputation and tagging of causal SNVs
• Prevalence, survivor and participation biases
• Population stratification
• Variability in adjustment for environmental and other confounding factors

• Overfitting due to hidden overlap
• Related individuals in the data set

• Suboptimal adjustment for genetic ancestry and admixture
• Not accounting for contexts such as age, sex, adiposity and smoking

Construction and calculation
of a PRS

GWAS

Validated PRS

Individual risk assessment

Cases

• Use of an older, less precise PRS

Controls

(summary statistics or
individual-level data)

Training dataset

Tuning dataset

Testing dataset

Fig. 2 | Potential sources of imprecision in a 
polygenic risk score for an individual. Shown are 
the steps — from genome-wide association study 
(GWAS)-based training data to the construction 
of a polygenic risk score (PRS) and the calculation 
of an individual PRS — at which ‘noise’ could be 
introduced, leading to imprecision of risk estimates. 
SNV, single-nucleotide variant.
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as a CDS tool or a medical device. Classification as a CDS tool offers greater 
flexibility as the PRS would typically be subject to software validation and 
quality assurance standards, permitting updates to PRS algorithms with-
out requiring repeated regulatory review112. By contrast, designating a PRS 
as a medical device would trigger more rigorous oversight, potentially 
slowing implementation and innovation17,112,117. Given the dynamic nature 
of PRS methodologies and evidence for their use, regulatory frameworks 
should incorporate mechanisms for the periodic reassessment of clinical 
validity and utility of a PRS. Such adaptability will be essential to ensure 
that the PRSs used in practice reflect the most current knowledge, while 
maintaining standards for safety and efficacy. In the USA, agencies such as 
the FDA and Central Laboratory Improvement Amendments (CLIA) aim to 
ensure that genetic tests are analytically valid, clinically meaningful and 
safe158. The FDA has, to date, generally deferred regulation of laboratory 
developed tests (such as PRSs) to the CLIA process.

Conclusions
The advent of GWAS ushered in an era of remarkable productivity and 
discovery in the field of disease genetics and led to collaborative con-
tributions to large meta-analyses159. However, this momentum often 

came at the expense of methodological rigour. Case and control defi-
nitions were inconsistently applied, convenience sampling (choosing 
participants who are readily available and easy to access) was common, 
most participants were of European genetic ancestries, and population 
stratification and environmental factors were not fully accounted for 
(Fig. 2). Consequently, the precision of PRSs at the individual level and 
their transferability across populations are variable. Although recent 
efforts aim to address these issues through innovative statistical meth-
ods and the inclusion of under-represented populations, PRSs — even 
in their optimal form — cannot be regarded as standalone predictors 
of disease onset. Instead, they are one component in a multifactorial 
framework for risk stratification that incorporates clinical variables, 
family history, lifestyle and environmental exposures and other omics 
data (Box 2). The complex aetiology of common diseases requires 
integrative risk models that reflect both genetic predisposition and 
environmental context.

Integrating PRSs into routine healthcare delivery presents addi-
tional infrastructure and policy challenges. These include the need 
for secure data storage, computational tools for on-demand PRS 
calculation and interoperable frameworks for integrating PRSs into 

PatientAccredited
genomic
laboratory

Genomic data
in a TRE

Shared decision-
making

EHR data warehouse
FHIR

FHIR

FHIR

or

Whole-genome
sequencing Genotyping

array

PRS

Integrated scores that provide absolute risk estimates

VCF

BAM file Raw genotype data

EHR

• Clinical variables
• Family history
• SDOH

Clinical decision
support

Knowledge sources

Fig. 3 | A framework for integrating polygenic 
risk scores into the electronic health record. 
Genomic data (from whole-genome sequencing 
or genotyping array) obtained from an accredited 
laboratory are transmitted to a trusted research 
environment (TRE or ‘cloud’), where polygenic risk 
scores (PRSs) are calculated. Integrated disease 
risk scores are calculated using PRSs plus clinical 
variables, family history and social determinants 
of health (SDOH) obtained from the electronic 
health record (EHR) data warehouse. Absolute risk 
estimates are made available to the clinician with 
linkage to a clinical decision support (CDS) tool 
and relevant knowledge sources. Fast Healthcare 
Interoperability Resources (FHIR) specifications 
facilitate the exchange of genomic data between 
different domains154. BAM, binary alignment map; 
VCF, variant call file.
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EHRs128. Standards must be established for how PRSs are constructed, 
validated, reported and applied across different clinical contexts. 
To support the development of clinical practice guidelines, a robust 
evidence base is needed to show that PRS testing informs medical 
decision-making and improves health outcomes in a cost-effective 

manner128. Regulatory frameworks must evolve to accommodate the 
complexity of PRS-guided care, and endorsement from multiple over-
sight bodies will be essential for the broader adoption of a PRS. Equally 
important are the ethical considerations related to the use of race, 
ethnicity and genetic ancestry in the development and interpretation 
of PRSs120. Ensuring equitable access to PRS testing, risk communica-
tion and follow-up care, while minimizing the potential for misuse —  
such as insurance discrimination or the reinforcement of health 
disparities — is paramount. Achieving this balance will require careful 
coordination among researchers, clinicians, policymakers and patient 
advocacy groups.

Despite these challenges, the emergence of PRSs has reshaped 
the landscape of complex trait genetics and represents an important 
advance in personalized disease risk prediction. As training datasets 
grow in size and diversity, and as analytical methods evolve, the predic-
tive accuracy, precision and cross-population transferability of PRSs 
will continue to improve25. Broader implementation of PRSs in clinical 
research and practice will generate the evidence required to guide 
policy and funding decisions. When combined with other modalities — 
such as proteomics, metabolomics, imaging and longitudinal EHR 
data — PRSs have the potential to markedly improve disease risk pre-
diction, inform screening strategies and support earlier interventions 
to reduce risk. Such integrative approaches will have a crucial role in 
reducing the global burden of common complex diseases.

Published online: xx xx xxxx
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Absolute risk
Refers to the actual probability or 
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time period. It is often expressed 
as a percentage or a proportion. By 
contrast, relative risk compares the risk 
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Genetic ancestry groups
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Genetic architecture
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of the variants’ effects, allele frequencies 
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environment, all of which contribute to 
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predisposition.

Heritability
A statistic that estimates the degree 
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by all single-nucleotide variants (SNVs) 
used in a genome-wide association 
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predictive accuracy of a polygenic risk 
score based on common variants.

Social Determinants of Health
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conditions in which people are born, 
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and quality, healthcare access and 
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context.
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