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Genome-wide association studies have identified thousands of
single-nucleotide variants that are associated with complex traits,
including cardiometabolic diseases, cancers and neurological
disorders. Polygenicrisk scores (PRSs), which aggregate the effects

of these variants, can help to identify individuals who are atincreased
risk of developing such diseases. As PRSs are typically only weakly
associated with conventional risk factors for these diseases, they have
incremental predictive value and are beginning to be incorporated into
clinical practice to guide early detection and preventive strategies.
However, challenges to their use — such as suboptimal precision, poor
transferability across diverse populations and low familiarity among
patients and providers with the concept of polygenic risk — must be
addressed before their broader clinical adoption. This Review explores
the current state of the field, highlights key challenges and outlines
future directions for the use of PRSs to improve risk prediction and
toadvance personalized preventionin clinical care.
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Introduction

Most common human diseases, such as cardiometabolic diseases,
cancers and neurological disorders, result from multiple aetiological
factors, including both genetic and environmental factors. These condi-
tions are leading causes of morbidity and mortality worldwide, and risk
assessment hasacrucial role indevising screening strategies and guid-
ing preventive or therapeutic interventions. Traditionally, risk estima-
tion has relied onrisk factors identified in large cohort studies (such
as age, male sex, smoking, hypertension, diabetes and hypercholes-
terolaemia for coronary heart disease (CHD)), and for some diseases,
validated algorithms are available to estimate absolute risk over defined
time periods based on these factors. However, the accuracy of risk
prediction for common diseases is modest, partly owing to the limited
availability of sufficiently predictive biomarkers. In this context, the
development of polygenic risk scores (PRSs), based on genetic variants
identified in genome-wide association studies (GWAS)"?, representsan
important advance in disease risk assessment®.

A historical perspective

Theorigin of PRSs can be traced back to the principles of complex trait
genetics and statistical genetic prediction, first proposed in the early
twentieth century*. At that time, the scientific divide between biometri-
cians, who analysed continuous variation in traits, and ‘Mendelians’,
who focused on discrete patterns of inheritance, was reconciled by
Ronald Fisher® in a seminal paper published in 1918. Fisher proposed
that complex traits are influenced by the additive effects of many
genetic variants of small effect and that these traits could be studied
using quantitative statistical approaches®. He proposed analysis of
variance as a statistical method to partition phenotypic variationinto
genetic and environmental components, introducing the concept
of heritability. Importantly, these early models of genetic architecture
were based on the analysis of phenotypes among related individuals,
primarily in the context of animal or plantbreeding programmes, with-
out knowledge of genotypes. Traits such as milk yield in cattle or oil
content in maize became the focus of selection experiments, which
provided further insights into quantitative genetics®.

In the mid-twentieth century, population geneticists including
Fisher, JBS Haldane and Sewall Wright advanced theoretical models
to describe how genetic variation is shaped by forces such as drift,
mutation, migration and selection’ (see Fig. 1for a population genetics
background for PRSs). However, it was not until later in the twentieth
century —whengenetic markers across the genome became available —
that the field of disease genetics emerged®. Although linkage analysis
had been successful in identifying loci for rare Mendelian diseases,
it was largely ineffective for complex traits characterized by poly-
genicity and small effect sizes’. Ina1996 commentary, Neil Risch and
Kathleen Merikangas'® proposed a shift in strategy: the genotyping
of common single-nucleotide variants (SNVs) across the genome to
identify associations with complex traits. This vision came to fruition
with the advent of GWAS, catalysed by the availability of the human
genome sequence, Haplotype Map (HapMap) data and genotyp-
ing arrays. Subsequent GWAS, including the landmark study by the
Wellcome Trust Case Control Consortium?, validated this approach,
leading to the discovery of thousands of loci associated with a wide
range of diseases and traits, often implicating many variants for a
single condition™. A logical next step was to aggregate the effects of
multiple trait-associated variants into asingle PRS for that trait — that
is, quantifying anindividual’sinherited susceptibility to disease based
on the cumulative contribution of many common variants>?,

Background

Mathematically, a PRS is the sum of risk alleles at disease-associated
loci weighted by the strength of association of each risk allele with the
trait or disease (which can, for example, be expressed as the log odds
ratio for binary traits or as the slope of the linear regression between
allele count and trait for continuous traits)" (Box 1). Initial PRSs were
constructed from loci identified in GWAS that met the threshold of
statistical significance. However, for many highly polygenictraits, PRSs
perform better when they also include a much larger number of vari-
ants below the threshold" . The source GWAS data (either individual
level or summary statistics) are called the training dataset, and the
parameters (for example, the P-value threshold for statistical signifi-
cancebelow which SNVs areincluded) are selected in anindependent
tuning dataset. The final step of testing is performedinanindependent,
out-of-sample cohort to avoid generating inflated prediction metrics".

The assessment of polygenic disease risk inthis manner is the focus
ofintenseresearch, withincreasing reports of the clinical validation and
implementation of PRSs. For example, PRSs for CHD, type 2 diabetes,
Alzheimer disease and breast and prostate cancers are available for clini-
calapplicationand are being used in clinical settings in several countries
including the USA. In addition, PRSs forimmune-mediated inflamma-
tory diseases (such as type 1diabetes and ankylosing spondylitis)", eye
disorderssuch as glaucoma'® and respiratory diseases (such as chronic
obstructive pulmonary disease)” are being evaluated for clinical use.
Although no guidelines have yet been established for the clinical use of
PRSs, as the field awaits additional studies demonstrating their clinical
utility, thereisrecognition of the potential to improve health outcomes
and the need for further research.

Research consortia studying PRSs include Electronic Medical
Records and Genomics (eMERGE)?° and Polygenic Risk Methods in
Diverse Populations (PRIMED)? in the USA, the former focusing on
clinicalimplementation of PRSs and the latter on reducing the perfor-
mance gap in PRSs between population groups. The All of Us* cohort,
established in the USA with an emphasis on diversity, and the FinnGen*
and UK Biobank?* cohorts from Europe are valuable resources for
validating PRSs. Several additional global genomic data sharing ini-
tiatives are attempting to develop PRSs for diverse groups®?*. The
ClinGen consortiumin the USA includes PRS working groups that have
developed aPRS reporting standard” and are establishing aframework
for curating evidence for the clinical utility of PRSs. Several speciality
societies, such as the American Heart Association®, European Society of
Cardiology” and American College of Medical Genetics and Genomics
(ACMG)*°, as well as a Task Force of the International Common Disease
Alliance", have commented on the clinical use of PRSs.

Although enthusiasm for using PRSsis increasing — asreflected in
theemergence of PRS-focused companies, direct-to-consumer (DTC)
genetic testing services* and academic centre-based genomic initia-
tives — the transition to routine clinical use faces several hurdles. These
include the limited familiarity of patients and clinical service providers
with the probabilistic nature of polygenic risk, the lack of integration
of PRSs into electronic health record (EHR) systems and the paucity
of clinical decision support (CDS) tools to guide the interpretation of
PRSs and the clinical management of patients. Thereis aneed to estab-
lish clinical standards for PRSs and regulatory and policy guidelines,
given the different methods for constructing PRSs and their applica-
tion to different diseases. Moreover, outcome studies are needed to
establish whether the return of aPRS to anindividual improves clinical
decision-making and health outcomes, thereby informing practice
guidelines and supporting the cost-effectiveness of PRS testing.
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Fig.1| Theinfluence of population and evolutionary genetics on polygenic
risk scores. A simplified depiction of how human population genetics

and evolutionary history underly differences in polygenic risk score (PRS)
distributions across continental groups. Both neutral and non-neutral
phenomenainfluence allele frequencies in such groups. The former includes
genetic drift and gene flow facilitated by population migration, and the

latter includes forces of natural selection'””. a, After their originin Africa
around 300,000 years ago, anatomically modern humans were exposed to
diverse environments, pathogens and nutrients, resulting in their genetic
adaptation through natural selection. b, The subsequent migration(s) of humans
out of Africa 50,000 years ago was characterized by a population bottleneck,
whichincreased the effect of genetic drift, followed by explosive population

growth and migration'”>. Again, exposure to diverse environments, pathogens
and nutrients led to the selection of certain genetic variants in different
populations?. ¢, Differencesin allele frequencies and linkage disequilibrium
between populations that have been geographically and culturally separated lead
to differences in genetic architecture and in the distribution of PRSs. Although
causal variants (represented by larger dots within the PRS distributions) may
beshared, the frequency and effect sizes differ between groups. This leads to
variable transferability of a PRS that is based on data from one genetic ancestry
group to other groups. d, To compare effect sizes across different PRSs, traits,
cohorts or studies, when the raw score ranges differ, PRSs from different groups
are standardized to amean of zero and a standard deviation (s.d.) of 1.

This Review focuses on the translational aspects of polygenic risk
assessment; it summarizes the potential use of PRSs in the clinic, with
anemphasis onpractical challenges and the evidence thatisneeded for
their responsibleimplementation. Although other recent reviews have
covered PRS methodology and reporting standards'*”*, the author
focuses here on the next steps required for their clinical adoption,
particularly in the context of improving risk prediction for common
diseases (see Table 1 for potential clinical applications of PRSs). The
current status of PRS testing is discussed within the four domains —
analytical validity, clinical validity, clinical utility and ethical, legal and
social implications — of the ACCE framework™, which is a standard

analytical process adopted by various entities worldwide for evaluating
scientific data on emerging clinical genetic tests. Barriers to PRS use,
including scientific and infrastructure gaps, are highlighted. Future
directionsin dataharmonizationand regulatory frameworks tobridge
the translational divide between genetic discovery and personalized
medicine and to promote the successful clinical implementation of
PRSsare discussed.

Analytical validity of PRSs
Polygenicrisk assessment canbe considered an ‘omic’ technology that
uses genome-wide genetic variationto constructaPRS. Here, the author
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Box 1| Calculating a polygenic risk score

A polygenic risk score (PRS) for a disease or trait in an individual is the
numeric value calculated from a PRS model and may be presented
as a raw score or as an adjusted score in the context of a population
distribution (in other words, as a percentile or standard deviation
from the population mean). The PRS for an individual j is calculated
as follows:

PRS- 3,6, %C)

where ; is the effect size (or B) of the ith genetic variant and G/ is the
genotype of individual j at the ith variant.

A PRS scoring file is a list of genetic variants with their associated
weights (effect sizes) for a particular trait and is typically included in

the Polygenic Score (PGS) Catalog, an open database of polygenic
scores and the relevant metadata. The metadata typically include
additional details such as the studies and populations used to develop
and/or validate the PRS; the method used to calculate the PRS; the
number of genetic variants included in the PRS and the genome build.
The overlap between PRS distributions in cases and controls
(see the figure) — despite the difference in mean PRSs being highly
statistically significant — means that PRSs cannot be used as
standalone screening tests. The relationship between a PRS and risk
for disease is not linear but rather follows a probit function with flared
tails (see the figure, part b). As a result, cases are enriched among
those with very high PRS scores (as shown by the dashed black line
in the inset of figure, part a)'’.

a b
Statistically significant mean difference
4
Cases  Controls %
2
o
PRS PRS

discusses aspects related to the analytic validity of PRSs, including
identifying genetic variants by genotyping arrays or whole-genome
sequencing (WGS), imputation of non-genotyped variants and
methods for constructing PRSs and adjusting for genetic ancestry
and admixture.

Measuring genetic variation

Aninitial step in calculatinga PRSisthe accurate capture of commonly
occurring genetic variation across the genome of the individual.
Genotyping on arrays, followed by statistical imputation of non-
genotyped variants using patterns of linkage disequilibrium, is a
cost-effective way to calculate PRSs. For example, the Global Diversity
Array**includes more than1.8 million SNVs and is optimized for under-
studied groups, such as those of African ancestries or Latino ethnicities.
Array-based genotypingis highly reproducible for common variants,
especially when using the same genotyping platform, rigorous quality
control pipelines and high-quality reference panels for imputation™.
Reproducibility is lower for rare variants, when different genotyping
arrays are used, and in cohorts of diverse genetic ancestries. By con-
trast, WGS can capture both common and rare variants without reliance
on imputation, which could potentially provide more robust input
datafor calculating a PRS. However, the analytical validity of WGS data
usedin PRS calculationsis sensitive to coverage depth, variant calling
algorithms and sequencing error rates®*”. Insufficient coverage or
suboptimal variant calling pipelines can lead to the misclassification
of genotypes, whichin turn may reduce the performance of PRSs that
are calculated from WGS data. At present, genotyping arrays remain the

pragmatic standard in most research settings owing to their scalability
and affordability whereas, for clinical use, low-pass WGS is emerging
asanalternative.

Imputing non-genotyped variants

Genotype imputation — and, by extension, PRS accuracy — is influ-
enced by both genotyping array design and the choice of reference
panel’®. The differences in genotype imputation quality across differ-
entreference panels can be substantial and can affect PRS calculation.
The quality ofimputation depends on several factors, including refer-
ence panel size, sequencing coverage of the reference panel, minor
allele frequency (in the reference panel) of the variant being imputed,
haplotype accuracy inreference and study samples, density of geno-
typing array, match between the study and reference populations
and the imputation algorithm used*. Although the 1000 Genomes
Project reference panel has beenwidely used for genotype imputation,
larger and more diverse panels such as the Trans-Omics for Precision
Medicine (TOPMed) reference panel*’ identify a greater number of
variants. However, linear reference panels derived from short-read
sequences will miss a proportion of the genomic variation in under-
studied populations, which could reduce the performance of PRSsin
these groups®. Recognizing this limitation, the Human Pangenome
Project*? has completed telomere-to-telomere sequencing of 350 indi-
viduals from diverse groups to develop comprehensive reference
panels that capture most of the genetic variation worldwide. This
will enable a more complete ascertainment of genetic variation in
non-European genetic ancestry groups, such as individuals of African
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ancestries or Latino ethnicities, in turn improving the performance
of PRSs for these groups.

Constructing PRSs

PRSs are constructed using two broad categories of method that differ
invariantselection strategy: pruning and thresholding or genome-wide
methods (forexample, LDpred, PRS-CS or SBayesR)". The pruning and
thresholding method chooses a P-value threshold for disease-associated
variants that produces the highest prediction accuracy in a tuning
cohort. Correlated SNVs within an arbitrarily chosen window size for
linkage disequilibrium are removedto select those SNVs that are nearly
independent fromeach other and thus canbe fit additively. By contrast,
genome-wide methods include all SNVs simultaneously, accounting
for linkage disequilibrium between SNVs, using a reference panel to
reduce the risk of overfitting®. Statistical techniques are used to apply
shrinkage or regularization to the GWAS effect sizes, such as penalized
regression (for example, LASSO regression using Lassosum, an R pack-
age that adapts penalized regression to GWAS summary statistics**)
as well as Bayesian approaches (for example, SbayesR or PRS-CS) that
implement shrinkage by specifying a prior distribution of SNV effect
sizes**®. Anindependent validation dataset is typically used to assess
the predictive power and generalizability of SNV weights. The optimal
method (pruning and thresholding or genome-wide) depends on the
genetic architecture of a trait***, Genome-wide methods can adapt to
different geneticarchitectures and tend to performbetter than pruning
and thresholding*’ but are computationally burdensome, motivating
effortstodevelop methods thatimprove both predictionaccuracy and
computational efficiency, particularly in large biobank-scale datasets®**".

Adjusting for genetic ancestry

For clinical application, PRSs must be adjusted to the ancestral
background of the tested individual®. This requires both inference
of the genetic ancestry of the test subject and alignment to appro-
priate reference distributions. One strategy uses principal compo-
nent analysis (PCA) to place an individual within a global ancestry
space’>. The adjustment of PRSs based on PCA should ideally model
both the variance and means of PRSs in an ancestry-dependent
manner>>>*, Alternative methods to adjust for ancestry quantify
genetic distance — for example, using Euclidean metrics — to identify
reference individuals with similar ancestry, such as by a k-nearest-
neighbour algorithm®* or interpolation weights that are based on the
Euclidean distance from ancestry groups in the global PCA space®.
These approaches canimprove PRS adjustment to avoid systematic
misclassification of risk, particularly in individuals of admixed or
under-represented backgrounds.

Clinical validity of PRSs

The clinical validity of a PRS depends on how strongly it is associated
with the trait of interest. Metrics for reporting the clinical validity of
a PRS” include the hazard ratio associated with a1 standard devia-
tionincrease in PRS or with having a high PRS (for example, in the top
5th percentile), the proportion of disease liability*® explained by a PRS
and discrimination as assessed by the area under the receiver operat-
ing curve, which is a composite metric of sensitivity and specificity”.
Additional metrics include reclassification indices and net benefit*™.
Being in the highest range of the distribution of a PRS for certain
diseases may be associated with risk equivalent to that posed by the

Table 1| Potential clinical applications of polygenic risk scores

Application Detail

Disease-specific example

Refine risk prediction for common disease
prediction algorithms®

As one of the inputs into multivariable risk

Inclusion of a PRS in clinical risk algorithms to predict absolute
risk of CHD or breast cancer’**

Refine risk estimates for disease in the
presence of pathogenic or likely pathogenic
variants implicated in monogenic disorders

Polygenic background may influence the
penetrance and expressivity of monogenic
disease™

Among carriers of a monogenic risk variant, the probability

of disease by age 75 years ranged from 17% to 78% for CHD,
13% to 76% for breast cancer, and 11% to 80% for colon cancer,
dependent on polygenic background™'

Understand the genetic basis of conditions
that resemble monogenic disorders but
where no pathogenic variants are identified

Examples include heritable cancer syndromes,
severe hypercholesterolaemia, prolonged QT
syndrome and cardiac hypertrophy'®

In a UK Biobank study of individuals with a prolonged QT
interval (>480ms) on an ECG, 3.4% carried a monogenic variant,
whereas 21% were in the top decile for a PRS'®

Pharmacogenomics, therapeutic targeting

Assess response to drugs or predisposition to
adverse reactions; identify groups who would
benefit the most from drug therapy'®*'®

Participants with a higher PRS for type 2 diabetes had greater
reductions in haemoglobin Alc in response to sulfonylurea
therapy'®®

Targeted recruitment into clinical trials

Enrich clinical trials for higher risk patients to
reduce sample size and cost'®"'*®

In clinical trials of monoclonal antibodies to PCSK9 that lower
LDL-cholesterol, the risk reduction was greater in those with a
high PRS for CHD'®°. An a priori prediction and corresponding
trial design could have led to a roughly fivefold reduction in trial
size by targeting a higher risk subset of patients’’

Interpretation of laboratory tests in diverse
groups

Establish new ranges for laboratory tests in
diverse groups after regressing out polygenic
influence on such measures'”’

A polygenic predisposition to lower white blood cell counts was
associated with a lower risk of identifying pathology on a bone
marrow biopsy performed for a low white blood cell countand a
higher risk of discontinuing azathioprine treatment'”’

Predict disease trajectory or prognosis

PRSs for disease severity and prognosis have not
yet been widely validated given relatively small
study cohorts'®

A PRS for glaucoma predicted glaucoma progression and need
for surgical intervention in prospectively monitored individuals
with early-onset glaucoma™

Identify aetiological pathways activated in
an individual

In theory, enrichment in certain aetiological
pathways could be detected in a PRS for an
individual, with implications for drug therapy'”'

A pathway PRS could distinguish subtypes of inflammatory
bowel disease and bipolar disorder'

CHD, coronary heart disease; ECG, electrocardiogram; LDL, low-density lipoprotein; PRS, polygenic risk score.

Nature Reviews Genetics


http://www.nature.com/nrg

Review article

monogenic form of the disease™. For example, a PRS for CHD in the top
5th percentile is associated with a twofold to threefold higher risk of
CHD than aPRS below this threshold, which is similar to the risk of CHD
from a monogenic disease such as familial hypercholesterolaemia®.
The clinical validity of PRSs in certain settings may be reduced by the
modest performance and variable transferability across genetic ances-
try groups. Additional aspects relevant to the clinical validity of PRSs
include howto calculate absolute risk estimates after incorporating a
PRS; howto combine PRSs with other geneticrisk factors (family history
and monogenic risk), non-genetic risk factors (social, environmental
and lifestyle factors) and known clinical risk factors; and how to assess
the clinicalimpact of PRSs in different contexts such as age and sex.

Improving performance

The performance of aPRSimproves withincreasing size and diversity
of the GWAS training datasets*. The ceiling for such improvement is
setby SNV heritability***® and it is possible that with very large sample
sizes of source GWAS, fine mapping of causal variants and functional
annotation of genetic variants, a PRS could eventually explain most
of the narrow-sense heritability in a trait®. In parallel, innovations in
methodology could alsoimprove PRS performance, such as the inclu-
sion of genome-wide SNVs to calculate a PRS, using linkage disequi-
librium score regression to account for correlation between SNVs.
This approach led to better performing PRSs for diseases with high
polygenicity, such as CHD, but not for breast and prostate cancers, pos-
sibly owing to differing genetic architectures. Additional approaches
to improve PRS performance include: the use of multi-ancestry data
with ancestry-specific linkage disequilibrium information to provide a
moreaccurate estimate of effect sizes and to identify causal variants®>**;
jointly modelling multiple correlated traits to leverage pleiotropy
across traits®*"*’; incorporating rare and structural variants®®*’; and
the use of functional annotation to weight GWAS variants'°,

Transferability across ancestry groups

The performance of PRSs across genetic ancestry groups varies. Meth-
odologicalinnovations canreduce but not eliminate the gap in perfor-
mance of PRSs in non-European genetic ancestry groups, and there is
aneed to increase the size of training datasets for such individuals.
Recognizing this, the PRIMED Consortium* aims to reduce dispari-
ties in polygenic risk assessment by both methods development and
increasing the size of GWAS datasets for individuals of non-European
ancestries. The gapin PRS performanceis widest between individuals
of European genetic ancestries and African genetic ancestries, owing
tothe marked imbalance in the size of available GWAS datasets to train
PRSs for these two groups. Hence, there is a need to establish infra-
structure and biobanks for genotyping on the African continent®*
andtoincrease enrolment of African diaspora populationsin biobanks
and GWAS. These efforts could also lead to novel insights into human
disease genetics, given the greater genetic variation and lower linkage
disequilibriumin African populations. Another group for which there
are limited GWAS datais South Asians, who comprise nearly aquarter
oftheworld’s population. Initial efforts toincrease the representation
of this group in GWAS include the Pakistani Genome Resource” and the
Genes & Health study, which includes 40,000 individuals of Pakistani
and Bangladeshi originliving in East London, UK’%. Biobanking projects
thatare already established or underway across the world*?*”*, as well
asdiversereference panels for genotype imputation and multi-ancestry
GWAS, should eventually lead to improvement in the transferability
of PRSs¢374,

Usein admixed individuals

Inindividuals from admixed populations (for example, Uighursin China
and Latinos and African Americans in the USA”), PRSs are challenging
to calculate and their clinical validity may be reduced as admixture pro-
portions can vary widely from personto person. For example, in Latinos,
the average proportion of European genetic ancestries ranges from
45% in Mexican Americans to 80% in Puerto Ricans’. Approaches to
calculating PRSs in admixed individuals include estimating overall
proportions of genetic ancestries and adjusting the PRS accordingly™.
An alternative approach is to map local genetic ancestry along the
genome’’ and then aggregate the PRS from each segment. However,
thisapproach may be limited by the lack of adequate training datasets
as well as reference panels for one or more of the source populations.
Furthermore, as admixture is pervasive and nearly every human is
‘admixed’ to some degree, individuals may not always discretely map
onto distinct continental ancestry groups used as references. There-
fore, methodsthatincorporate continuous representations of genetic
ancestry may prove useful in calculating PRSs**7,

Joint modelling with other geneticrisk factors

Family history and PRSs provide complementary information on
genetic risk, which can be modelled jointly for a more complete
assessment of disease susceptibility, as demonstrated in analyses of
UK Biobank” and FinnGen®*° datasets. Both common and rare vari-
ants contribute to complex traits®, and accounting for any linkage
disequilibrium between rare and common variants may allow for
their joint inclusion in a PRS. An example of jointly modelling a PRS
using both common and rare genetic variants (as well as non-genetic
risk factors) is the Breast and Ovarian Analysis of Disease Incidence
and Carrier Estimation Algorithm (BOADICEA) model and the cor-
responding CanRisk tool, which is widely used for breast cancer risk
assessment®. However, additional work is needed to determine opti-
mal methods for integrating rare variants into a PRS®. Prospective
cohortsinwhich family history and rare variants were assessed at the
outset and incident disease ascertained at follow-up (for example, as
assessed for UK Biobank and All of Us cohorts) are necessary to gener-
ateweights for multivariable integrated risk models. In addition, most
PRSs comprise genetic variation in the form of SNVs and may capture
only a fraction of the total heritable risk for complex traits. Inclusion
of genetic variation beyond SNVs, such as structural variants, as well
as gene expression, methylation and somatic mosaicism, is likely to
improve risk prediction (Box 2).

Joint modelling with environmental, social and lifestyle factors
Inadditionto genetic factors, the risk of common diseases is strongly
influenced by environmental, social and lifestyle factors, and these
should beincluded when assessing risk™*** (Box 2). However, such vari-
ables have often been inconsistently ascertained in epidemiological
studies and appropriate weights for statistical modelling in risk predic-
tion equations may not be available. Ina subset of All of Us participants®*
who completed a social determinants of health (SDOH) survey, CHD
risk was higher in African Americans than in other self-identified
race/ethnicity (SIRE) groups but not after adjustment for the higher
SDOH burden in African Americans. In the UK Biobank*®, a polysocial
score that included SDOH and psychosocial factors was as strongly
predictive for incident CHD as a PRS. In both studies, non-white indi-
viduals were at higher risk of CHD and this risk appeared to be mediated
by social-environmental factors and SDOH, which supports the con-
ceptofraceasasocial construct. Inaddition, the PRS for CHD was not
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Box 2 | Multiple inputs for assessing risk of a common disease

A polygenic risk score (PRS) is an important input for risk assessment of
common diseases for several reasons. First, a PRS is often comparable
to or a stronger predictor of disease than individual risk factors. For
example, in one study'”®, a PRS had greater discriminatory power for
incident CHD than any of six conventional factors (smoking, diabetes,
hypertension, body mass index, self-reported high cholesterol and
family history). Second, for most diseases, the PRS is orthogonal to
conventional risk factors and adding a PRS to such factors increases
the accuracy of prediction'”. Third, a PRS in the highest percentile may
confer a risk similar to that of a monogenic aetiology™. Finally, a PRS
can be informative relatively early in life, before other risk factors have
manifested®'"”.
Given the complex multifactorial aetiology of common

diseases, multiple inputs, in addition to a PRS, are necessary to
assess disease risk, disease subtypes and temporal profiles'*""%,
These include:

e Conventional risk factors such as age, sex, adiposity and
smoking;
Genetic factors other than a PRS: family history, rare variants,
acquired somatic variants (somatic mosaicism), epigenetic
features, structural variants and gene expression;
Circulating proteomic and/or metabolomic markers;
Lifestyle, social and environmental factors, including social
determinants of health and the exposome;
Electronic health record data, including results of imaging or other
laboratory studies;
Self-reported or objective measures of physical activity, sleep and
other physiological parameters.

Additional factors to consider in assessing disease risk
include: (1) risk factors can change over the life course and
therefore risk estimates are dynamic; (2) risk factors may vary
across different disease subtypes; and (3) single, very strongly
predictive biomarkers (for example, having odds ratios of 20-fold
or higher) are rare. It is more likely that progress in risk prediction
will be made by the continued accretion of low-to-moderate
strength biomarkers that are minimally correlated with established
risk factors.

correlated with SDOH and thus these factors could be jointly modelled
to provide additive risk information.

Clinical utility of PRSs

The clinical utility of agenetic test depends on the adoption of effective
evaluation and treatment conditioned on theresults and is influenced
by factors suchasthe target population (for example, adults of a certain
agerange), the prevalence and public health burden of the disease or
trait of interest and the potential for mitigating high risk if detected®*".
Itisimportant to note that data from a genotyping array for an indi-
vidual canbe used to calculate arange of PRSs to assess susceptibility
to multiple conditions, which raises the question of which PRSs should
be calculated at what time, and when and how these should be reported
to the individual. In phase IV of the eMERGE Network, 20 PRSs that
were considered clinically relevant were proposed by the participat-
ing sites®’; 10 of these PRSs were chosen for clinical implementation

The use of complex, multiple inputs for assessing disease risk may
require machine-learning approaches as well as model calibration, as
described subsequently.

High-dimensional models

Multivariable risk prediction models that include a PRS and clinical,
demographic, lifestyle and ‘omic’ variables can be affected by potential
correlations and interactions between these predictors. In this context,
machine-learning approaches may offer advantages over traditional
regression methods. One such method is elastic net regression, which
enables both variable selection and coefficient shrinkage, thereby
accommodating correlated predictors and enhancing model stability
Predictor weights can be derived in a training dataset and then
validated in an independent test set. By penalizing model complexity,
elastic net regression reduces the risk of overfitting and may improve
the generalizability of PRS-enhanced models to external populations.
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Model calibration

Regardless of the modelling strategy, risk prediction models can be
affected by sources of error such as exposure measurement error
(inaccuracy in assessing an individual's exposure to a particular lifestyle
or environmental factor) and unmeasured confounders (which may
account for the observed association between exposure and outcome).
Consequently, model calibration (the extent to which predicted
probabilities correspond to observed outcome frequencies) is a crucial
and often underappreciated aspect of model evaluation™’. For example,
among individuals assigned a 10% predicted risk of developing
disease over a 10-year period, calibration would be reflected in 10%

of them developing the outcome over this period. Calibration should
be assessed using independent and, ideally, population-representative
cohorts. Importantly, models that are well calibrated in one population
may exhibit poor calibration in another owing to differences in PRS
performance, baseline disease risk and covariate distributions.

When miscalibration is detected, recalibration techniques — such

as updating the baseline hazard or model intercept — may be
necessary. Stratified calibration assessments can also help to identify
and address disparities in model performance across subgroups,
supporting equitable clinical implementation of such models.

based on potential actionability as well as the availability of validated
multi-ancestry PRSs.

Definitions of clinical utility vary: a narrow definition includes
improved health outcomes in an individual, whereas a broader
definition also includes personal utility and utility to the family and
society. The broad definition of clinical utility of a genetic test adopted
by the ACMG s the “effect on diagnosis, therapeutic management, and
prognosis, as well as health and psychological well-being for patients
and their relatives, and economic impacts on health-care systems”®,
These aspects are further discussed subsequently.

Medical decision-making and health outcomes

The narrow definition of clinical utility focuses on whether the use
of a genetic testimproves health outcomes (such as by decreasing
morbidity and mortality) as these end points inform practice guidelines
and decisions about funding for genetic tests by public health systems
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and private insurers®°, However, given the likely long latency between
disclosure of a PRS and health outcomes, surrogate or intermediate
outcomes are often assessed”’’. These include the influence of PRSs
onscreening strategies, risk stratification, therapeutic decisions and
changesin patient behaviour. Anillustrative exampleis a prospective
screening study for prostate cancer’> meninthe top decile of aPRS for
prostate cancer were found to have a higher detection rate of clinically
relevant tumours compared with screening of men guided solely by
prostate-specific antigen levels or MRI*2, Supplementary Table 1lists
examples of diseases that pose a substantial public healthburdenand
for which aPRS, combined with traditional risk algorithms and family
history, couldinformrisk-based screening and preventive care. Of these
conditions, PRSs for CHD, type 2 diabetes, Alzheimer disease and breast
and prostate cancers are already available for use in clinical practice,
although not yet routinely implemented® .

Personal utility and societal considerations

Beyond traditional clinical outcomes, the calculation of anindividual’s
PRS may have personal utility through perceived benefits in psychologi-
calpreparedness, informed life planning and satisfaction fromaccess-
ing personal genomicinformation®°*”, Patients may value information
foritsownsake, eveninthe absence of clinical actionability, and report
impactson lifestyle, long-term care planning and family communica-
tion. At the societal level, PRSs intended for stratifying disease risk
must aim for a population-level health benefit and not solely clinical
or personal utility forindividual patients. Animportant consideration
for policymakers and funders is cost-effectiveness when testing PRSs
atscale. Initial reports based on simulation and modelling indicate that
the use of PRSs for diverse conditions such as cardiovascular disease”,
type 2 diabetes®’, open-angle glaucoma'’° and various cancers'*'%*
is modestly cost-effective. Cost savings could result from targeted
versus uniform screening, offering screening to those at higher risk
and avoiding screening in those at lower risk.

Evidence base for clinical utility

Despite growinginterest in the use of PRSs in the clinic, empirical evi-
dence supporting the clinical utility of PRSs remains limited®>'*>1¢,
Only a small number of randomized controlled trials have been com-
pleted to date'”’. One such study, the myocardial infarction genes
(MI-GENES) trial (ClinicalTrials.gov: NCT01936675), randomized
participants to receive either conventional or PRS-integrated risk
assessments for CHD?. Those who received the PRS-integrated score
had significantly lower LDL-cholesterol levels at 6 months after risk
assessment and, in a post hoc analysis, lower rate of major cardiovas-
cular events at 10 years, likely on the basis of earlier and longer statin
use'®. Other, ongoing, initiatives are expanding the evidence base
for clinical utility of PRSs'°*"°, The Genomic Medicine at Veterans
Affairs (GenoVA) study (ClinicalTrials.gov: NCT04331535) is a rand-
omized clinical trial looking at whether PRSs for six common diseases
(CHD, type 2 diabetes, atrial fibrillation and breast, colorectal and
prostate cancers) alter time to diagnosis'’. PRS-guided mammographic
screening for breast cancer is being tested in the Women Informed
to Screen Depending on Measures of Risk (WISDOM) (ClinicalTrials.
gov:NCT02620852) and Personalized Risk Assessment for Prevention
and Early Detection of Breast Cancer: Integration and Implementa-
tion (PERSPECTIVE I&I) studies™ " In the USA, the eMERGE Network
(ClinicalTrials.gov: NCT05277116) is evaluating near-term outcomes
related to medical decision-making following the clinical deployment
of PRSs for 10 common conditions™. In the UK, the Our Future Health

initiative is incorporating PRSs for several chronic diseases, such as
cancer, cardiovascular disease, Alzheimer disease and diabetes, withina
large (5 millionindividuals) population-based cohort to examine imple-
mentation at scale"*'. Implementation of PRSs in national human
genomics programmes outside the USA and the UK, such as Genome
Canada, Precision Health Research, Singapore (PRECISE), the Danish
National Genome Center (DNGC), the Qatar Genome Program (QGP)
and Australian Genomics, will provide valuable insights into the utility
of PRSs in diverse settings™®.

Although randomized clinical trials remain the gold standard to
assess the clinicalimplementation of PRSs, their feasibility is limited by
cost, complexity and long timelines. A diverse array of study designs is
therefore essential to evaluate the utility of PRSsin real-world settings.
These include prospective and retrospective cohort studies, health
economics modelling, simulation-based analyses, implementation
science studies, case series and observational designs. As evidence
accumulates, standardized reporting will be crucial to compare PRSs
and synthesize the data. Assessment frameworks that evolve with
new technologies and methodological refinements will be neces-
sary to evaluate the utility of PRSs across diverse healthcare settings.
Structured reporting of outcomes and harmonized metrics will be
essential to ensure that emerging evidence can guide the responsible
clinical use of PRSs. The ClinGen PRS Clinical Utility Working Group is
curating evidence for the clinical utility of selected PRSs — beginning
withthose for breast cancer and CHD — with the intention of developing
asystematic framework for assessing clinical utility.

Ethical, legal and social implications

Deploying PRSs in clinical practice has ethical, legal and social impli-
cations not only for individuals but also their family members and
communities'’. Itis crucial to gather diverse perspectives on the poten-
tial benefits and harms of polygenic risk assessment, particularly from
populations historically marginalized by genetic research. Inaddition,
engaging legal experts, ethicists and policymakers can help to establish
an ethical framework for implementing PRSs.

Equity at the population level

Differential performance of PRSs between groups. The predictive
power of PRSs varies widely between and even within demographic
groups"®" andislowerinindividuals of non-European ancestries than
inthose of European genetic ancestries”"®. For example, the odds ratio
for CHD for a 1-standard-deviation increase in PRS was twice as high
inindividuals of European ancestries than in individuals of African
ancestries (1.53 versus 1.27)"¢. This raises an ethical dilemma — should
PRSsbe deployed for routine clinical use for allindividuals regardless of
geneticancestry inthe face of such disparate performance? Itisimpor-
tant to note that despite their lower predictive power inindividuals of
non-European ancestries, PRSs could still provide useful risk reclas-
sification in certain settings, such as for CHD in African Americans"®,
Strategies to enable equitable polygenic risk assessment across the
globe are discussed in more detail in other reviews>,

Race, genetic ancestry and population descriptors. The debate
aboutwhether and howtoincorporate SIREinrisk algorithms for com-
mon diseases is ongoing, despite the consensus that race and ethnicity
arenotbiological constructs but reflect amultitude of factors, mostly
social and environmental®°, Although there is a push to replace race
and ethnicity in clinical risk algorithms with SDOH', it is worth not-
ing that race and ethnicity capture additional important exposures
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that may not be easily quantifiable, such as experiences of racism
and discrimination and exposure to unique environmental factors.
Incorporating genetic ancestry into risk algorithms is also challeng-
ingasindividuals are often divided into discrete continental ancestry
groups, despite the complex and continuous nature of genetic ances-
tries. Overall, the addition of SIRE to PRS models could be useful in
specific groups with sufficient data (for example, African Americans
in the USA) and in certain clinical contexts such as cardiometabolic
disease and cancers'?>'%,

Implications for public health and screening programmes. The
potential application of PRSs at the population level has important
public healthimplicationsrelated to equity in disease prevention and
management. Widespread implementation of a PRS must be accom-
panied by efforts to ensure equitable access to testing and follow-up
care, to avoid worsening of health disparities>*'* and to maximize
population-level benefit by reducing the burden of disease. There are
concerns that increased healthcare expenditures incurred by those
withaccessto PRS testing might divert resources from disadvantaged
individuals®. In addition, the emergence of private companies offer-
ing polygenicrisk assessments for embryos raises concerns regarding
selecting embryos based onlow PRSs for various diseases'”, such as the
promotion of eugenics, the imprecision in polygenic risk prediction
and the possibility of unwanted pleiotropic effects.

Implications for individuals and families

Implications for individuals. At the individual level, relying solely on
a PRS for risk stratification could lead to misclassification — that is,
labelling a person as low risk when they are actually at high risk and
vice versa'”® — although it should be noted that risk misclassification
isinherent to all biomarkers and not unique to PRSs. This could lead
to false reassurance or anxiety, contribute to overdiagnosis as part of
amultivariable risk model or result in unnecessary interventions”.
Patients with a family history of disease who receive a PRS that is not
high may be falsely reassured. Genetic determinism — the belief that
genes define destiny — could distract from the importance of lifestyle
and environmental factors in modulating health outcomes. Individu-
als with a high PRS for conditions such as psychiatric disorders might
perceive asense of inevitability of developing the condition'’ and face
social stigma, which could impact their relationships and employment
opportunities. For diseases with no knownintervention, the potential
benefits (in terms of family planning or altered life plans) should be
weighed against the stresses of receiving the result.

Implications for family members. The PRSs of first-degree family
members are correlated, and in one study, high PRSs for four cardio-
metabolic diseases were concordant among siblings™°. However, unlike
for single-gene disorders, itis difficult to determine exact probabilities
for a high PRS in relatives, as polygenic burden may not segregate
predictably within families owing to meiotic recombinationandinde-
pendent assortment. It is therefore unclear when cascade testing for
relatives of an index case is necessary or whether a clinician should
inform the relatives of an individual with high polygenic risk™'.
Testing children of index cases for PRSs is controversial, and the
American Academy of Pediatrics (AAP) and the ACMG recommend
postponing genetic testing for conditions that manifest later in life
unless immediate actions are necessary'*>. The AAP and the ACMG
consider the age of the child — whether they are an older child or a
mature adolescent — as influencing the decision whether to disclose

results of aPRS. To further explore some of these issues, the eMERGE IV
study returned PRSs for four conditions (type 1and 2 diabetes, obesity

and asthma) to children and their guardians™.

Insurance coverage and genetic discrimination. Individuals and,
potentially, their family members must also be made aware of the
possibleimplications for employment and insurance coverage before
undergoing PRS testing. Measures for protection against genetic dis-
crimination are in place in countries including Australia, Canada, the
USA and UK’ but the effectiveness of such protections can differ from
country to country. For example, in the USA, the Genetic Informa-
tion Nondiscrimination Act protects individuals from discrimination
by employers and health insurers; however, additional protections
arenecessary for life, disability and long-term care insurance, which are
notasyetlegally protectedin the USA. Despite genetic discrimination
being relatively uncommon, the fear of it may deter individuals from
pursuing polygenic risk assessment**'*, Consideration should be
given by policymakers and lawmakers to prohibiting the use of PRSs

in underwriting for different types of insurance'.

Availability of PRS testing. Although reports of the clinical validity and
potential utility of PRSs for predicting common disease risk have gen-
erated enthusiasm for their use in clinical practice, such testingis not
readily available outside the DTC setting”. The commercialization of
PRSs hasbeenrelatively slow for several reasons, including the complex
quality control, bioinformatics and statistical pipelines needed to cal-
culate a PRS from genotype data, which may not be familiar to clinical
laboratory staff. Genotyping arrays are used widely for research GWAS
but not routinely in the clinical setting. Close collaboration among
molecular geneticists, bioinformaticians and statistical geneticists is
necessary to develop and update PRSs for clinical use. For example, a
report from the eMERGE Network highlights the considerable effort
needed to develop and calculate clinical-grade PRSs for a range of
conditions using genotyping array data®.

Owing to the limited availability of PRSs in traditional hospital
or clinic settings, individuals may turn to DTC genetic testing to learn
about their genetic predisposition to disease®. DTC genetic testing
is relatively easy to obtain and may also include access to a genetic
counsellor or a clinician, although follow-up with a clinician is less
likely to occur than when results are returned in a clinical setting®.
Other drawbacksinclude alack of transparency as to how genetic risk
is calculated, lack of access to clinical data and concerns about how
companies handle, store and potentially share genetic data with third
parties (for example, researchers or insurance companies), including
risks of databreaches and commercialization of patient data without
benefitsharing. DTC genetic testingisinastate of fluxanditis unclear
which models will survive going forward™.

Barriers to the clinical use of PRSs

There are several barriers to the widespread clinical use of PRSs.
As discussed earlier, the major barrier is their limited transferability
across diverse ancestry groups, whichcompromises both accuracy and
equity; ongoingefforts aim toincrease the diversity of the genotyping
dataused to construct PRSs, as has been reviewed elsewhere®. In addi-
tion, there is currently alow level of awareness and understanding of
PRSs among patients and healthcare providers, although this would
bethe caseinitially for any novel medical application. Other obstacles
include challenges in communicating probabilistic risk, lack of famili-
arity among providers in the use of PRSs, the inherent imprecision of
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Box 3 | Communicating polygenic risk

When communicating a polygenic risk score (PRS)-informed
disease risk to an individual, several factors should be considered.
(1) Ideally, the risk estimate should be linked to a clinical action

to improve health outcome. (2) Risk estimates may give a false
sense of precision; the uncertainty around such estimates should
be communicated to the patient to facilitate informed and shared
decision-making. (3) Use of visuals such as colour-coded icon
arrays and risk percentile ranks can improve the understanding of
both clinicians and patients (see the figure, for some examples).
Dashboards within a patient’s electronic health record could be used
to display the PRS alongside traditional risk factors (such as family
history, smoking and laboratory test results)'®'. (4) The variation in
levels of understanding among patients, as well as their selective
engagement with the report, should also be considered when
designing PRS reports, to avoid misinterpretation'°. (5) Patients
(as well as care providers) may need guidance on how clinical
variables, family history and monogenic variants were combined
with PRS results.

The risk information in a PRS can be conveyed using three
approaches that are not mutually exclusive'®: absolute risk over a
given period of time, relative risk or odds ratio, or percentile rank
within a given population (see the figure; note that the figure does not
depict uncertainty around estimates).

Absolute risk

PRSs are most useful when integrated into existing clinical equations,
such as those for breast cancer and coronary heart disease (CHD),
that estimate absolute risk over a defined period. The Breast and
Ovarian Analysis of Disease Incidence and Carrier Estimation

Algorithm (BOADICEA) equation for breast cancer risk is the only
clinically used equation that can accommodate a PRS, family history
and rare genetic variants together with clinical risk variables’°.
The pooled cohort equations (PCEs) for CHD have not yet been
modified to include genetic risk factors but as the CHD PRS is
orthogonal to PCE, it can be incorporated in a log additive manner
into the equations’. For most common conditions, such as atrial
fibrillation, abdominal aortic aneurysm, diabetes, colorectal cancer
or neurological diseases, validated algorithms to estimate absolute
risk are typically not in routine clinical use. Here, absolute risk can
be estimated using epidemiological indices of disease incidence,
mortality and prevalence™’. It is worth noting that in many countries,
the lack or paucity of epidemiological data means that absolute risk
estimates may not be available.

Absolute risk estimates are especially useful when linked to
management guidelines from speciality societies. For example,
a 5-year risk of breast cancer of 25% or higher, as calculated by
BOADICEA, would be an indication for regular breast imaging such
that any abnormalities on imaging could lead to decisions about
chemoprevention or surgery to reduce risk. A 10-year risk of CHD 10%
or higher, as calculated by PCEs for CHD, would be an indication to
start a statin medication to lower disease risk (see the figure, part a).

Relative risk

Alternatively, relative risk can be used if absolute risk cannot be
estimated — for example, a twofold higher relative risk of disease
for individuals with a PRS in the top 10th percentile (see the figure,
part b) can be used to translate that information into action.
Clinicians might be able to contextualize this information by

a Icon array to convey absolute risk b Bar graph to convey relative risk C Risk percentile rank
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Risk over 10 years (based on several factors
including your PRS) is shown.

Out of 100 people like you, 19 will have a
heart attack in the next 10 years, 81 will not ,

Your PRS is in a higher category, indicating
that your risk of disease is twice that of a
person with a PRS in the average category.

Your score is higher than average, meaning
that you have increased genetic risk of
disease compared with most people. If

have a heart attack.

P

your polygenic score is in the 95th
percentile, you do not have a 95% chance
of developing the disease. Rather, it means
that — out of 100 people — your polygenic
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(continued from previous page)
comparing the magnitude of effect with other risk factors for which
there are already established guidelines (such as family history).

Percentile rank
A percentile rank compares an individual's PRS with the distribution
of PRSs within a chosen population (see the figure, part c).

individual-level estimates and the evolving nature of risk prediction
as methods improve.

Challenges in communicating probabilistic risk

Patients often hold deterministic views of genetic risk, underestimat-
ing the ability to modify such risk through behavioural or medical
interventions. Cultural beliefs — including concepts of fate, heredity
and kinship — further shape interpretations of risk information™.
Therefore, the effective communication of PRSs must emphasize that
polygenic risk is probabilistic and that disease risk is dynamic, influ-
enced by modifiable factors such as environment, behaviour and social
determinants. Risk communication should be neutral and contextual,
highlighting how interventions such as lifestyle changes or medication
can modify risk trajectories (Box 3). This approach was successfully
implemented in the MI-GENES trial, where a genetic counsellor framed
the risk of cardiovascular disease as being mutable®. However, risk
disclosure by genetic counsellors trained in probabilistic risk communi-
cationisimpractical atscale. Digital communication tools —including
pictograms, animations and videos — tailored according to genomic
literacy, educational attainment and sociocultural background may
improve understanding""*¢,

Lack of familiarity among providers

The implementation of PRSs could initially be centralized in preven-
tive genomics clinics but as PRS testing is increasingly considered
for routine use in preventive medicine, it will likely be introduced in
primary care — asetting in which many providers lack specialized
training in genomics and may be unfamiliar with probabilistic risk
communication”®*"', Furthermore, the simultaneous calculation of
multiple PRSs across a range of common diseases will likely result in
a high proportion of patients being flagged as at increased risk for at
least one condition™’. Without dedicated time, reimbursement and
clear guidelines, healthcare providers may struggle to interpret and
convey suchinformation. CDStools offering guidance oninterpretation
and follow-up may facilitate the use of PRSs in primary care, especially
when algorithms for estimating absolute risk and relevant special-
ity guidelines are unavailable'””. For example, the eMERGE Network
created a genome informed risk assessment (GIRA) tool to help both
patients and providers better understand comprehensive disease risk
profiles that include a PRS'™. In addition, a ‘champion user’ trained in
genetic risk communication could serve as aresource and guide for
PRS testing and interpretation in a primary care practice'*’. To equip
future clinicians for managing PRS results, polygenic risk assessment
should be included as a topic in medical school curricula, in sections
that deal with epidemiology, public health and prevention.

Imprecision of individual-level risk estimates
PRSs developed for the major continental groups may have variable
performance within these groups owing to factors other than direct

However, the percentile rank alone does not enable sufficient clinical
risk contextualization, because it gives no indication of how much of
the overall disease risk is explained by the PRS.

genetic effects, including population structure™”*'*? differing envi-
ronmental factors'*'** and assortative mating'*'*°, The impact of such
factors can be assessed by comparing a PRS based on standard GWAS
with a PRS based on sibling GWAS', and potentially mitigated using
novel statistical methods. Alternately, multiple cohorts in different
regions within a continent could be studied to address this heteroge-
neity. However, the development of PRSs for every geographicregion
may not be feasible, and some degree of imprecision is unavoidable
when extrapolating a PRS derived from a group to an individual (this
problemis not unique to PRSs; most assaysin clinical use have arange
of intra-assay and inter-assay variation).

Figure 2 illustrates the steps in the PRS development process at
which ‘noise’ could be introduced and propagated, thereby leading
toimprecision of risk estimates. A factor contributing to imprecision
is the varying performance of a PRS in the context of factors such as
age, sex and smoking history*”’. For example, the association between
a PRS and disease risk often differs by age group, owing to biological,
environmental and other epidemiological factors. These differences
can affect the interpretation and clinical application of PRSs across
the life course. PRS performance typically decreases with increasing
age andthe predictive utility of aPRS isgreater in younger individuals
thaninolder individuals™®,

These sources of heterogeneity canlead to variability inindividual
risk classifications, even when the population-level performance of a
PRSisrobust.Asaresult, PRSsforagiven disease that perform similarly
inoverall discrimination may diverge inidentifying the sameindividual
as high risk*"*°, necessitating caution in clinical use. One strategy could
be to use consensus risk thresholds — in other words, instead of using
high-risk classification from one score, define high-risk individuals as
thoseranked inthetop tier across more thanonePRS. Another approach
couldbeto aggregate multiple PRSs for the same traitinto acomposite
score, reducing sensitivity to the assumptions of any one method™".

Changes inrisk estimates over time

PRS-based risk predictions may change over time owing to age-related
factors, the emergence of comorbidities or shifts in environmental
exposures, ofteninanonlinear manner™2 Inaddition, methods to con-
struct PRSs are constantly evolving, and risk estimates could change as
PRS performanceimproves. Mechanisms should be in place to periodi-
cally review PRS performance and to estimate risk inadynamic manner.
For such re-analysis of risk, the original genotype or sequencing data for
anindividual must be available to use the most up-to-date PRS method-
ology. This problem is somewhat akin to the re-interpretation of rare
variants of uncertain significance as new information becomes avail-
able. As yet, there is no standard infrastructure for clinical recontact
orre-interpretation of genetic tests'®, although some genetic testing
companies provide an option for a patient to create a portal through
which updates in the interpretation of a genetic test could be com-
municated. Establishing policies and technical systems to support
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dynamicrisk assessment will be essential to fully realizing the clinical
utility of PRSsin the long term.

Infrastructure and regulatory challenges

Expanding the clinical use of PRSs will require not only overcoming
technical and operational barriers but also fostering collaboration
across domains to develop robust infrastructures, harmonized data
standards and adaptable regulatory frameworks. Crucial components
include theintegration of genomic datainto EHRs, interoperable CDS
tools and standardized methods for PRS development, storage and
interpretation’ (Fig. 3).

Storing PRS datain the medical record

Currently, there is no uniform strategy for integrating PRS data — or
genomic data more broadly — into EHR systems. An ideal infrastruc-
ture would consist of a centralized, secure genomics data ecosystem
thatincludes accredited laboratories linked to cloud-based genomic
repositories where validated PRS calculations are performed; an EHR
datawarehouse for aggregating clinical risk factors; and a CDS system
that draws from a frequently updated knowledge base (Fig. 3). These
components canbe connected through application programminginter-
faces, enabling modular system upgrades independently of the EHR. The
Fast Healthcare Interoperability Resources, which is the global standard
for passing healthcare databetween systems, provides aframework for
encodinggenomicdatainastructured, machine-readable format, facili-
tating interoperability between laboratories and EHR platforms®™*, APRS
couldbe calculated on-demand using validated quality control and infor-
matics pipelines that adapt to new data or evidence. Structured PRS out-
putscouldthentrigger CDSsystemalerts, to enableriskstratificationand
support communication between providers™*. Metadataaccompanying

each PRS should document the version of the algorithm used and its
ancestry-specific performance characteristics to ensure interpretability
and traceability.

Data standards and harmonization

Unlike single-gene tests, PRSs are derived from genome-wide variant
datausingawide range of statistical models and assumptions. Although
genotyping and sequencing would be carried out in certified labora-
tories, standardization is also needed for downstream processes —
suchas datastorage, PRS calculation and clinical reporting — to ensure
transparency, reproducibility and comparability across settings.
The Polygenic Score (PGS) Catalog (PGS Catalog) is a centralized,
open-accessrepository for published PRSs, providing score files (alleles
and weights), phenotype definitions and metadata™. However, the
completeness and quality of submitted data canvary, and adoption of
standardized reporting metrics remains uneven. The Social Science
Genetic Association Consortium has published a curated collection of
PRSsfor 47 predominantly behavioural traits, developed using consist-
ent and rigorous methodologies™®. The PGS-Calc tool complements
the PGS Catalog by allowing users to estimate individual risk using
the most appropriate available PRS for a given trait">"’. Continued
development of suchinfrastructures will be essential for the independ-
ent evaluation and scaling needed for the clinical implementation
of PRSs.

Regulatory and policy aspects

Regulatory oversight of PRS testing will have a pivotal role in determin-
ingits pace and extent of clinicaladoption. Regulatory frameworks vary
across regions and countries and must balance innovation with public
trustand health equity. Akey distinction liesin whether a PRS is classified
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asaCDStooloramedical device. Classificationasa CDS tool offers greater
flexibility asthe PRSwould typically be subject to software validationand
quality assurance standards, permitting updates to PRS algorithms with-
outrequiring repeated regulatory review'2. By contrast, designating a PRS
asamedical device would trigger more rigorous oversight, potentially
slowingimplementationandinnovation”">'”, Given the dynamic nature
of PRSmethodologies and evidence for their use, regulatory frameworks
should incorporate mechanisms for the periodic reassessment of clinical
validity and utility of a PRS. Such adaptability will be essential to ensure
thatthe PRSsused in practice reflect the most current knowledge, while
maintaining standards for safety and efficacy. Inthe USA, agencies such as
the FDA and Central Laboratory Improvement Amendments (CLIA) aim to
ensure thatgenetictestsare analytically valid, clinically meaningful and
safe’®, The FDA has, to date, generally deferred regulation of laboratory
developed tests (such as PRSs) to the CLIA process.

Conclusions

The advent of GWAS ushered in an era of remarkable productivity and
discovery inthe field of disease genetics and led to collaborative con-
tributions to large meta-analyses'”. However, this momentum often

came at the expense of methodological rigour. Case and control defi-
nitions were inconsistently applied, convenience sampling (choosing
participants who are readily available and easy to access) was common,
most participants were of European genetic ancestries, and population
stratification and environmental factors were not fully accounted for
(Fig.2). Consequently, the precision of PRSs at the individual level and
their transferability across populations are variable. Although recent
effortsaimtoaddress theseissues throughinnovative statistical meth-
odsand theinclusion of under-represented populations, PRSs — even
in their optimal form — cannot be regarded as standalone predictors
of disease onset. Instead, they are one component in a multifactorial
framework for risk stratification that incorporates clinical variables,
family history, lifestyle and environmental exposures and other omics
data (Box 2). The complex aetiology of common diseases requires
integrative risk models that reflect both genetic predisposition and
environmental context.

Integrating PRSs into routine healthcare delivery presents addi-
tional infrastructure and policy challenges. These include the need
for secure data storage, computational tools for on-demand PRS
calculation and interoperable frameworks for integrating PRSs into
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Whole-genome
sequencing Genotyping

— array
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\/‘

FHIR

Genomic data
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L VCF <—J
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Fig. 3| A framework for integrating polygenic
riskscoresinto the electronic healthrecord.
Genomic data (from whole-genome sequencing
or genotyping array) obtained from anaccredited
laboratory are transmitted to a trusted research
environment (TRE or ‘cloud’), where polygenic risk
scores (PRSs) are calculated. Integrated disease
risk scores are calculated using PRSs plus clinical
variables, family history and social determinants
of health (SDOH) obtained from the electronic
health record (EHR) data warehouse. Absolute risk
estimates are made available to the clinician with
linkage to a clinical decision support (CDS) tool
and relevant knowledge sources. Fast Healthcare
Interoperability Resources (FHIR) specifications
facilitate the exchange of genomic data between
different domains™*. BAM, binary alignment map;
VCF, variant call file.

e Clinical variables
o Family history
* SDOH

Integrated scores that provide absolute risk estimates

Clinical decision FHIR
support
Shared decision-
making
Knowledge sources

=

Nature Reviews Genetics


http://www.nature.com/nrg

Review article

Glossary

Absolute risk

Refers to the actual probability or
likelihood of an event occurring in a
specific population over a defined
time period. It is often expressed

as a percentage or a proportion. By
contrast, relative risk compares the risk
of an event or outcome occurring in
two different groups, typically those
exposed to a certain factor versus those
who are not exposed.

Clinical decision support
(CDS). Refers to various tools and
systems designed to enhance the
decision-making capabilities of
healthcare professionals at the point
of care. These tools provide clinicians
with knowledge and patient-specific
information to help them make
informed decisions about patient care.

Disease liability

The unobserved, continuous measure
of anindividual's predisposition to
disease owing to both genetic and
environmental factors, with disease
manifesting only if liability exceeds a
certain threshold.

Genetic ancestry groups

A set of individuals who share
similar genetic ancestries based on
quantitative measure(s) of genetic
resemblance between individuals.

Genetic architecture

The genetic architecture of a
quantitative trait or phenotype refers to
the number of genetic variants affecting
the trait or phenotype, the magnitude
of the variants’ effects, allele frequencies
of the variants and interactions of
variants with each other and with the
environment, all of which contribute to
heritability. Most common diseases are
highly polygenic or even ‘omnigenic’,
whereby many thousands of genetic
variants of modest effect sizes could

have a cumulative effect on disease
predisposition.

Heritability

A statistic that estimates the degree
of the variation in a trait that is owing
to genetic variation in a population.
Broad-sense heritability represents
the fraction of phenotypic variation
explained by both additive and
dominance effects; narrow-sense
heritability considers additive effects
only and is the proportion of phenotypic
variation owing to additive effects of
multiple genetic variants.

Linkage disequilibrium

The nonrandom association of alleles
at two or more loci on the same
chromosome.

Polygenic risk

Refers to the cumulative contribution
of many genetic variants across the
genome to an individual's risk of
developing a complex trait or disease.
A polygenic risk score quantifies
polygenic risk for an individual.

SNV heritability

A subset of narrow-sense heritability
that refers to the proportion of the
phenotypic variability that is explained
by all single-nucleotide variants (SNVs)
used in a genome-wide association
study. SNV heritability sets a limit on the
predictive accuracy of a polygenic risk
score based on common variants.

Social Determinants of Health
(SDOH). These are environmental
conditions in which people are born,
grow, live, work and age. They include
economic stability, education access
and quality, healthcare access and
quality, neighbourhood and built
environment and social and community
context.

EHRs'. Standards must be established for how PRSs are constructed,
validated, reported and applied across different clinical contexts.
To support the development of clinical practice guidelines, a robust
evidence base is needed to show that PRS testing informs medical
decision-making and improves health outcomes in a cost-effective

manner'?®, Regulatory frameworks must evolve to accommodate the

complexity of PRS-guided care, and endorsement from multiple over-
sightbodies will be essential for the broader adoption of a PRS. Equally
important are the ethical considerations related to the use of race,
ethnicity and geneticancestry in the development and interpretation
of PRSs'”°. Ensuring equitable access to PRS testing, risk communica-
tion and follow-up care, while minimizing the potential for misuse —
such as insurance discrimination or the reinforcement of health
disparities —is paramount. Achieving this balance will require careful
coordination among researchers, clinicians, policymakers and patient
advocacy groups.

Despite these challenges, the emergence of PRSs has reshaped
the landscape of complex trait genetics and represents an important
advance in personalized disease risk prediction. As training datasets
grow insize and diversity, and as analytical methods evolve, the predic-
tive accuracy, precision and cross-population transferability of PRSs
will continue to improve®. Broaderimplementation of PRSs in clinical
research and practice will generate the evidence required to guide
policy and funding decisions. When combined with other modalities —
such as proteomics, metabolomics, imaging and longitudinal EHR
data — PRSs have the potential to markedly improve disease risk pre-
diction, inform screening strategies and support earlier interventions
to reduce risk. Such integrative approaches will have a crucial role in
reducing the global burden of common complex diseases.

Published online: 10 October 2025
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