SYSTEMATIC REVIEW

Clinical Research

Effects of tirzepatide on weight management in patients with and without diabetes: a systematic review and meta-analysis

Eduardo Cerchi 1¹², Paula Arruda do Espírito Santo², Mariana Carvalho de Oliveira³, Carolina Castro Porto Silva Janovsky⁴ and Bruno Halpern 10⁵

© The Author(s), under exclusive licence to Springer Nature Limited 2025

AIMS: To conduct a systematic review and meta-analysis comparing tirzepatide *versus* placebo for weight management, with analyses stratified by diabetes status to precisely assess its efficacy and safety in individuals with and without diabetes. **METHODS:** We systematically searched MEDLINE, Embase, and Cochrane Library for randomized controlled trials comparing onceweekly tirzepatide (5–15 mg) *versus* placebo in adults with or without diabetes for at least 26 weeks. For each subpopulation analysis, the random-effects model was used to calculate pooled risk ratios (RRs) and mean differences (MDs), with their 95% confidence intervals, for dichotomous and continuous endpoints, respectively. Statistical significance was considered at p < 0.05. **RESULTS:** We included five trials (n = 2,174) in patients with diabetes (BMl ≥ 23 kg/m²) and five (n = 4,467) in patients without diabetes (BMl ≥ 27 [≥24 in Asia] kg/m²). Compared with placebo, tirzepatide led to significantly greater relative and absolute weight reductions in patients with (RR −9.54%, p < 0.01; MD −9.06 kg, p < 0.01) and without diabetes (RR −17.15%, p < 0.01; MD −18.11 kg, p < 0.01). In both subpopulations, tirzepatide also significantly increased the probability of achieving weight reductions of ≥5%, ≥10%, and ≥15%, as well as improved BMI, waist circumference, blood pressure, hemoglobin A1c, and lipid levels. Notably, weight-related benefits with tirzepatide were significantly greater in patients without diabetes, whereas its safety was similar across subpopulations and predominantly consisted of mild to moderate, well-tolerated adverse events.

CONCLUSIONS: Compared with placebo, tirzepatide resulted in statistically significant and clinically meaningful weight reduction, especially in patients without diabetes (with overweight/obesity), with an acceptable safety profile.

International Journal of Obesity; https://doi.org/10.1038/s41366-025-01920-4

INTRODUCTION

Obesity is a chronic, relapsing, and progressive disease, constituting a public health problem associated with serious comorbidities and complications [1, 2]. Due to its multifactorial nature, a comprehensive therapeutic approach is recommended, encompassing lifestyle modifications and, optionally, pharmacological treatment to assist in weight loss and its long-term maintenance [3, 4]. Currently available anti-obesity medications result in mean weight reductions of 5–10%, improving metabolic, health, and quality of life parameters. However, these gains still fall short of patient and healthcare professional expectations [5–8]. Additionally, several drugs have been withdrawn due to unacceptable side effects [7, 8], intensifying the search for more effective and safer anti-obesity pharmacotherapies in recent decades [5, 6].

Originally developed for the management of type 2 diabetes, tirzepatide is a novel peptide molecule that combines glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) receptor agonism. In addition to reducing

glucose levels, it has demonstrated positive effects on other metabolic parameters, such as weight reduction, improvement in lipid levels, and blood pressure control [9, 10]. These findings prompted regulatory agencies to approve tirzepatide also for obesity management in several countries [11–13]. To optimize its clinical applicability, tirzepatide use in patients with overweight/obesity across different clinical scenarios is being extensively investigated [14–19]. Thus, conducting novel meta-analyses is imperative, as they can provide additional insights that individual studies are unable to offer.

Prior meta-analyses compared tirzepatide *versus* placebo for weight control, encompassing patients with and without diabetes in a unified analysis [20–24]. However, studies with other anti-obesity drugs have shown that weight loss is significantly lower in individuals with diabetes [25–29]. For this reason, a unified analysis may yield effect estimates that do not accurately reflect tirzepatide's impact in each specific scenario. Moreover, since those meta-analyses were published, novel large-scale

Department of Medicine, Universidade Evangélica de Goiás, Anápolis, Brazil. Diagnostic Imaging and Specialized Diagnosis Unit, Hospital Universitário da Universidade Federal de São Carlos, São Carlos, Brazil. Department of Endocrinology, Universidade de Araraquara, Araraquara, Brazil. Cilnical and Epidemiological Research Center, Universidade de São Paulo, São Paulo, Brazil. Department of Endocrinology, Obesity Unit, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil. Contact@ecerchi.com

Received: 31 October 2024 Revised: 3 September 2025 Accepted: 18 September 2025

Published online: 27 September 2025

randomized controlled trials (RCTs) with longer treatment periods have been published [14–17] and therefore were not incorporated into earlier meta-analyses. Given the significant number of new patients and the possibility of conducting analyses that have not been explored, we aimed to assess the efficacy and safety of tirzepatide (5–15 mg) versus placebo for weight management over at least 26 weeks. Analyses were stratified by diabetes status to enable a precise assessment of tirzepatide's effects in individuals with and without diabetes.

METHODS

Study design and protocol

We performed a systematic review and meta-analysis following the Cochrane Handbook for Systematic Reviews of Interventions and structured it according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) recommendations [30, 31]. The study protocol was prospectively registered (PROSPERO ID: CRD42024583763).

Search strategy

Independent examiners (EC and PAES) conducted a systematic search in MEDLINE, Embase, and Cochrane Library from inception to August 27, 2024. The complete search strategy is presented in Supplementary Table 1. Subsequently, study selection was conducted as described in Supplementary Methods.

Eligibility criteria

Inclusion was restricted to double-blind RCTs comparing onceweekly subcutaneous tirzepatide (5–15 mg) *versus* placebo in ≥18-year-old patients with or without diabetes, extending over at least 26 weeks, and reporting at least one outcome of interest. We included only original, peer-reviewed RCTs published in English with full-text availability. There was no restriction regarding publication date.

We excluded studies that (i) had overlapping populations; (ii) involved participants using another medication that causes weight loss; (iii) did not include a placebo group; (iv) had incomplete data or unavailable full texts; (v) included patients with and without diabetes in a unified analysis; or (vi) were post-hoc analyses, trial registry records, conference abstracts, comments, or brief reports.

We opted not to exclude studies that had a lead-in, open-label, non-randomized, and non-controlled phase, followed by a double-blind, randomized, placebo-controlled phase; however, only data from the second treatment period were used in our analyses. Similarly, trials assessing alternative tirzepatide doses and/or control conditions were not excluded, provided they also included treatment arms meeting our eligibility criteria; in such cases, only data from patients treated with tirzepatide at 5–15 mg or placebo were pooled in our analyses.

Outcomes

The prespecified primary outcome was the percentage change in body weight from baseline to endpoint. Secondary outcomes were: (i) the probability of achieving weight reduction thresholds of \geq 5%, \geq 10%, \geq 15%, \geq 20%, and \geq 25%; (ii) the absolute change from baseline to endpoint in body weight, BMI, and waist circumference; and (iii) the risk of experiencing any adverse event (AE), individual AEs (diarrhea, constipation, nausea, vomiting, dyspepsia, and gastrointestinal events [severe/serious]), any serious AE, death, and any AE leading to treatment discontinuation.

Additional outcomes were: (i) the percentage change from baseline to endpoint in lipid levels (total cholesterol, high-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, triglycerides, and free fatty acids); (ii) the absolute change from baseline to endpoint in systolic and diastolic blood

pressure, hemoglobin A1c (HbA1c), and physical function-related scores (Short Form Health Survey 36 Version 2 Physical Functioning Domain Score and Impact of Weight on Quality of Life-Lite-Clinical Trials Version Physical Function Composite Score); and (iii) the risk of experiencing other individual AEs (eructation, abdominal pain, decreased appetite, cholelithiasis, acute cholecystitis, coronavirus diasease-19, upper respiratory tract infection, dizziness, injection site reaction, hepatic events [severe/serious], gallbladder disease [severe/serious], pancreatitis [adjudicationconfirmed], renal events [severe/serious], major adverse cardiovascular events [adjudication-confirmed], arrhythmias or cardiac conduction disorders [severe/serious], malignancies, hypersensitivity [severe/serious], hypoglycemia [blood glucose <54 mg/dL], and major depressive disorder or suicidal behavior/ideation), and individual AEs leading to treatment discontinuation (nausea, vomiting, diarrhea, and abdominal pain).

Data extraction

Two independent authors (EC and MCO) performed standardized data extraction, as detailed in Supplementary Methods.

Main statistical analyses

For each subpopulation analysis, the DerSimonian and Laird random-effects model was used to calculate the pooled estimates along with their 95% confidence intervals (95%Cls). Risk ratios (RRs) for dichotomous outcomes were estimated using the Mantel-Haenszel method, while mean differences (MDs) for continuous outcomes were calculated using the Inverse-Variance method. We also computed the pooled proportion (mean or percentage) of each arm for primary and secondary outcomes. Heterogeneity was tested using the Cochran's Q test and quantified by the I^2 statistics. In the presence of substantial heterogeneity (p < 0.1 for Cochran's Q test and $I^2 > 50\%$), we conducted a leave-one-out sensitivity analysis for those outcomes involving at least three studies. Statistical significance was considered at p < 0.05.

Interaction and meta-regression analyses

We conducted a test for interaction to assess whether the treatment effect differed between patients with and without diabetes. This analysis was performed only for primary and secondary outcomes that were evaluated in both subpopulations (i.e., outcomes assessed exclusively in one subgroup were not included). In accordance with Cochrane's guidelines [31], a p-value less than 0.10 in the interaction test was considered indicative of a statistically significant interaction between subpopulations.

However, it is important to note that the included studies involving patients with diabetes had different baseline BMI cutoffs compared with those enrolling individuals without the disease. Thus, potential differences between subpopulations may be partially explained by variations in baseline BMI rather than by diabetes status alone. To explore this hypothesis, we performed a meta-regression for primary and secondary outcomes, using the mean baseline BMI from each study as the explanatory variable. A p-value less than 0.05 in the test of moderators was considered indicative of a statistically significant linear association [31]. Stratification by diabetes status was not retained in this analysis, as our aim was to assess the independent effect of baseline BMI. R software (version 4.2.1; R Foundation for Statistical Computing, Vienna, Austria) was used exclusively for this analysis, whereas all other statistical procedures were executed using Review Manager (version 5.4.1; Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark).

Subgroup and sensitivity analyses

A predefined subgroup analysis was also performed according to tirzepatide dose (5, 10, and 15 mg) for all primary and secondary outcomes. P-values less than 0.10 were considered statistically

significant for the test of subgroup interaction, in line with Cochrane's recommendations [31].

Lastly, we conducted a sensitivity analysis by excluding the SURMOUNT-3 [15] and -4 [14] trials from all weight-related outcomes. The former [15] included only individuals who had already lost 5% of body weight through lifestyle intervention prior to randomization, potentially attenuating subsequent weight loss during pharmacological treatment. The latter [14] randomized only participants who had tolerated and completed 36 weeks of tirzepatide, characterizing a maintenance phase with an expected lower total weight loss. This sensitivity analysis aimed to assess whether the inclusion of these trials significantly affected effect estimates and/or contributed to heterogeneity.

Risk of bias assessment

Two authors (EC and PAES) independently assessed the overall risk of bias based on judgments from individual domains, according to the Cochrane Risk of Bias 2 (RoB 2) tool [32]. Given that each subpopulation analysis in our study comprised only five studies, publication bias assessment using funnel plots could not be performed, as this method lacks adequate statistical power when fewer than ten studies are involved [33].

RESULTS Study selection

The initial search yielded 1,125 records. After removing duplicates (n = 515), we screened 610 records by title and abstract. Subsequently, we fully reviewed 24 references and included 10 of them, encompassing a total of 6,641 patients [14–17, 34–39]. We excluded 13 studies (14 references) because they either had treatment durations shorter than 26 weeks [9, 40–44], did not include a placebo group [45–51], or included patients with and without diabetes in a unified analysis [19] (Supplementary Fig. 1).

Study and patient characteristics

Baseline characteristics of the included studies are summarized in Table 1 and detailed in Supplementary Tables 2 and 3.

Patients with diabetes (with $BMI \ge 23 \text{ kg/m}^2$). A total of 2,174 patients were enrolled across five RCTs [35–39], of whom 1,545 (71.1%) were randomly assigned to tirzepatide and 629 (28.9%) to placebo, with treatment duration ranging from 26–72 weeks. Within the tirzepatide group, 292 (18.9%) patients were treated with 5 mg, 603 (39.0%) with 10 mg, and 650 (42.1%) with 15 mg. Two trials (1,011 [46.4%] patients) [37, 38] recruited participants with baseline BMI ≥ 25 kg/m², whereas the remaining three studies (1,163 [53.6%] patients) [35, 36, 39] set the inclusion threshold at BMI ≥ 23 kg/m².

Patients without diabetes (with overweight/obesity). A total of 4,467 patients were included across five RCTs [14–17, 34], of whom 2,893 (64.8%) were randomized to tirzepatide and 1,574 (35.2%) to placebo, with treatment duration ranging from 52–72 weeks. In the tirzepatide arm, 630 (21.8%) patients were treated with 5 mg, 706 (24.4%) with 10 mg, 701 (24.2%) with 15 mg, and 856 (29.6%) with the maximum tolerated dose (10 or 15 mg). All trials [14–17, 34] involved patients with obesity (BMI ≥ 30 [≥ 27 in Asia] kg/m²) or overweight (BMI ≥ 27 [≥ 24 in Asia] kg/m²) along with at least one weight-related complication, excluding diabetes.

Main analyses

Patients with diabetes (with $BMI \ge 23 \text{ kg/m}^2$). In individuals with diabetes, tirzepatide resulted in a mean weight reduction of 12.1% (10.3 kg), while placebo led to a reduction of 2.6% (1.5 kg; Table 2; Supplementary Fig. 2). Compared with placebo, tirzepatide provided a statistically greater reduction in body weight, both in

relative (MD -9.54%; 95%CI -11.55, -7.53%; p < 0.01; l² = 79%) and absolute terms (MD -9.06 kg; 95%CI -10.48, -7.63 kg; p < 0.01; l² = 76%; Table 2; Supplementary Fig. 3). Leave-one-out sensitivity analyses are described in Supplementary Table 4.

The percentages of patients who achieved weight reductions of ≥5%, ≥10%, and ≥15% with tirzepatide were 71.3%, 46.7%, and 28.7%, respectively; while the corresponding percentages for individuals receiving placebo were 20.8%, 5.3%, and 1.3% (Table 2; Supplementary Fig. 2). Compared with the placebo group, the tirzepatide group had a statistically higher probability of achieving weight reductions of ≥5% (RR 6.03; 95%Cl 2.39, 15.21; p < 0.01; $l^2 = 91\%$), ≥10% (RR 19.85; 95%Cl 4.70, 83.89; p < 0.01; $l^2 = 69\%$), and ≥15% (RR 19.02; 95%Cl 10.09, 35.84; p < 0.01; $l^2 = 0\%$; Table 2; Supplementary Fig. 4). Leave-one-out sensitivity analyses are presented in Supplementary Table 4. Pooled analyses for weight reductions of ≥20% and ≥25% were not feasible due to only one study [37] reporting these outcomes in patients with diabetes.

Tirzepatide was associated with a mean reduction of 4.1 kg/m² in BMI and 11.1 cm in waist circumference, while placebo reduced 0.6 kg/m² and 3.0 cm, respectively (Table 2; Supplementary Fig. 2). Compared with placebo, tirzepatide use resulted in a statistically greater absolute reduction in BMI (MD -3.38 kg/m²; 95%CI -4.10, -2.66 kg/m²; p < 0.01; I² = 44%) and waist circumference (MD -7.59 cm; 95%CI -9.94, -5.25 cm; p < 0.01; I² = 74%; Table 2; Supplementary Fig. 3). Leave-one-out sensitivity analyses are presented in Supplementary Table 4.

The percentages of patients in the tirzepatide and placebo groups who experienced each safety-related outcome are shown in Table 2 and Supplementary Fig. 2. Compared with placebo, tirzepatide provided a statistically higher risk of diarrhea (RR 1.85; 95%CI 1.21, 2.83; p < 0.01; $I^2 = 48\%$), constipation (RR 2.62; 95%CI 1.58, 4.36; p < 0.01; $I^2 = 0\%$), nausea (RR 2.79; 95%CI 1.56, 4.97; p < 0.01; $I^2 = 61\%$), vomiting (RR 3.58; 95%Cl 2.18, 5.89; p < 0.01; $I^2 = 0\%$), and dyspepsia (RR 2.28; 95%CI 1.39, 3.74; p < 0.01; $l^2 = 0\%$). There were no significant differences between both groups in terms of any AE (RR 1.10; 95%CI 0.98, 1.23; p = 0.12; $1^2 = 66\%$), any serious AE (RR 0.97; 95%CI 0.67, 1.39; p = 0.85; $l^2 = 0\%$), death (RR 0.32; 95%CI 0.04, 2.71; p = 0.30; $l^2 = 27\%$), and any AE leading to treatment discontinuation (RR 1.54; 95%CI 0.75, 3.14; p = 0.24; I^2 = 43%; Table 2; Supplementary Fig. 5). Leave-oneout sensitivity analyses are described in Supplementary Table 4. Pooled analyses for severe/serious gastrointestinal events was not feasible due to only one study [37] reporting this outcome in patients with diabetes.

For additional outcomes, compared with placebo, tirzepatide use granted: (i) a statistically greater improvement in blood pressure, HbA1c, and lipid levels; and (ii) a statistically higher risk of eructation and decreased appetite (Supplementary Table 5).

Patients without diabetes (with overweight/obesity). In individuals without diabetes, tirzepatide resulted in a mean weight reduction of 16.8% (13.0 kg), while placebo led to an increase of 1.8% (6.6 kg; Table 2; Supplementary Fig. 2). Compared with the placebo group, the tirzepatide group had a statistically greater reduction in body weight, both in relative (MD -17.15%; 95%Cl -19.38, -14.92%; p < 0.01; l² = 87%) and absolute terms (MD -18.11 kg; 95%Cl -24.62, -11.61 kg; p < 0.01; l² = 97%; Table 2; Supplementary Fig. 3). Leave-one-out sensitivity analyses are described in Supplementary Table 6.

The percentages of individuals who achieved weight reductions of $\geq 5\%$, $\geq 10\%$, $\geq 15\%$, $\geq 20\%$, and $\geq 25\%$ with tirzepatide were 88.2%, 76.2%, 61.7%, 45.5%, and 28.0%, respectively; while the corresponding percentages for patients receiving placebo were 34.0%, 15.6%, 7.1%, 2.8%, and 1.5% (Table 2; Supplementary Fig. 2). Compared with placebo, tirzepatide provided a statistically higher probability of achieving weight reduction of $\geq 5\%$ (RR 2.59; 95%CI 2.33, 2.87; p < 0.01; $I^2 = 0\%$), $\geq 10\%$ (RR 5.45; 95%CI 3.25, 9.14; p < 0.01; $I^2 = 85\%$), $\geq 15\%$ (RR 11.22; 95%CI 5.52, 22.78;

Treatment duration, wk 4 56 72 28 4 52 72 72 22 52 Tirzepatide dose, mg 15 15 5, 10, or 15 5, 10, or 15 ō 15 ō 15 15 10 or 15 10 or 15 5, 10, 6 10 or 10 or 5, 10, 10 or 15 Waist circumference, cm^a (SD) 104.8 (10.5) 114.9 (14.4) 97.5 (15.1) 114.1 (15.2) 121.0 (14.6) 109.4 (15.0) 뚱 뚱 Æ Æ 36.1 (6.6) 30.5 (6.4) 35.9 (6.3) 32.3 (3.8) 38.0 (6.8) 38.9 (6.5) kg/ (SD) 33.4 (6.1) 32.5 (5.9) 31.6 (4.6) 31.9 (6.6) BMI, m^{2a}, Body weight, kg^a (SD) 101.9 (21.4) 95.2 (21.6) 100.7 (21.1) 91.8 (16.0) 91.5 (21.0) 85.9 (19.8) 85.2 (21.1) 104.8 (22.1) 95.9 (14.3) 115.1 (22.8) Female, n (%) (48.3) 211 (44.4) 95 (45.2) 476 (50.7) 21 (28.8) 473 (70.6) 1714 (67.5) 364 (62.9) 103 (49.0) 142 (30.3) 231 Age, yra (SD) 60.7 (10.0) 54.2 (10.6) 54.1 (11.9) 48.5 (12.5) 44.9 (12.5) 49.8 (11.4) 45.6 (12.2) (0.6) 56.8 (8.6) 60.8 (7.3) 36.1 Sample size, n 2539 475 210 938 478 670 469 579 210 73 RCT multicenter multicenter RCT dual Design center RCT Baseline characteristics of the included studies. Multinational Multinational Multinational Multinational Multinational Multinational Multinational Multinational Patients without diabetes (with overweight/obesity) Germany Country China Patients with diabetes (with BMI≥ 23 kg/m²) NCT04657003 (SURMOUNT-2) NCT04660643 (SURMOUNT-4) NCT04657016 (SURMOUNT-3) NCT04039503 (SURPASS-5) NCT05412004 (SURMOUNT-OSA) NCT05024032 (SURMOUNT-CN) NCT03954834 (SURPASS-1) (SURMOUNT-1) NCT03131687 NCT03951753 NCT04184622 Study ID Garvey et al. Rosenstock et al. [39] Aronne et al. [14] Frias et al. [36] Heise et al. Jastreboff et al. [34] Dahl et al. Wadden et al. [15] Malhotra et al. [17] Zhao et al. [16] Table 1. Source

BID twice daily, cm centimeter, ID identification number, kg kilograms, kg/m² kilograms per square meter, mg milligrams, n number, NR not reported, RCT randomized controlled trial, SD standard deviation, wk weeks, yr year(s). ^aMean.

Outcome	×	Tirzepatide arm (proportion ^a /total)	Placebo arm (proportion ^a /total)	Effect estimate (95%CI)	P-value	P, %
Change in body weight, %						
Patients with diabetes	2	-12.1/986	-2.6/430	MD -9.54 (-11.55, -7.53)	<0.0001	79
Patients without diabetes	2	-16.8/2893	1.8/1574	MD -17.15 (-19.38, -14.92)	<0.0001	87
Change in body weight, kg						
Patients with diabetes	2	-10.3/1545	-1.5/629	MD -9.06 (-10.48, -7.63)	<0.0001	9/
Patients without diabetes	က	-13.0/763	969/99	MD -18.11 (-24.62, -11.61)	<0.0001	6
Weight reduction of ≥5%						
Patients with diabetes	4	71.3%/1070	20.8%/125	RR 6.03 (2.39, 15.21)	0.0001	91
Patients without diabetes	2	88.2%/2037	34.0%/712	RR 2.59 (2.33, 2.87)	<0.0001	0
Weight reduction of ≥10%						
Patients with diabetes	4	46.7%/1500	5.3%/601	RR 19.85 (4.70, 83.89)	<0.0001	69
Patients without diabetes	3	76.2%/2324	15.6%/1004	RR 5.45 (3.25, 9.14)	<0.0001	85
Weight reduction of ≥15%						
Patients with diabetes	4	28.7%/1500	1.3%/601	RR 19.02 (10.09, 35.84)	<0.0001	0
Patients without diabetes	က	61.7%/2324	7.1%/1004	RR 11.22 (5.52, 22.78)	<0.0001	2/9
Weight reduction of ≥20%						
Patients without diabetes	2	45.5%/2183	2.8%/935	RR 16.03 (10.94, 23.48)	<0.0001	0
Weight reduction of ≥25%						
Patients without diabetes	2	28.0%/2183	1.5%/935	RR 18.72 (11.07, 31.64)	<0.0001	0
Change in BMI, kg/m²						
Patients with diabetes	3	-4.1/1137	-0.6/486	MD -3.38 (-4.10, -2.66)	<0.0001	4
Patients without diabetes	3	-4.8/763	2.5/696	MD -6.70 (-8.83, -4.56)	<0.0001	86
Change in WC, cm						
Patients with diabetes	2	-11.1/782	-3.0/366	MD -7.59 (-9.94, -5.25)	<0.0001	74
Patients without diabetes	4	-14.7/2659	-0.1/1339	MD -12.44 (-13.79, -11.09)	<0.0001	19
Any AE						
Patients with diabetes	2	73.3%/1545	70.7%/629	RR 1.10 (0.98, 1.23)	0.1200	99
Patients without diabetes	5	79.5%/2893	70.3%/1574	RR 1.12 (1.08, 1.16)	<0.0001	0
Diarrhea						
Patients with diabetes	5	18.1%/1545	9.1%/629	RR 1.85 (1.21, 2.83)	0.0050	48
Patients without diabetes	5	22.0%/2893	7.7%/1574	RR 2.84 (2.35, 3.43)	<0.0001	0
Constipation						
Patients with diabetes	2	7.3%/1545	2.5%/629	RR 2.62 (1.58, 4.36)	0.0002	0
Patients without diabetes	3	16.2%/2417	5.6%/1170	RR 3.02 (2.34, 3.90)	<0.0001	0
Nausea						
Patients with diabetes	5	19.1%/1545	6.4%/629	RR 2.79 (1.56, 4.97)	0.0005	61
Patients without diabetes	2	27.7%/2893	8.5%/1574	RR 3.07 (2.58, 3.66)	<0.0001	0
Vomiting						
Patients with diabetes	2	9.7%/1545	2.7%/629	RR 3.58 (2.18, 5.89)	<0.0001	0
Patients without diabetes	2	11.1%/2893	1.8%/1574	RR 6.04 (4.11, 8.87)	<0.0001	0

Table 2. continued						
Outcome	k	Tirzepatide arm (proportion ^a /total)	Placebo arm (proportion ^a /total)	Effect estimate (95%CI)	P-value	P, %
Dyspepsia						
Patients with diabetes	2	6.9%/1545	2.9%/629	RR 2.28 (1.39, 3.74)	0.0010	0
Patients without diabetes	3	9.6%/2417	3.3%/1170	RR 2.66 (1.90, 3.71)	<0.0001	0
Severe/serious GI events						
Patients without diabetes	2	3.0%/2893	0.9%/1574	RR 3.16 (1.81, 5.51)	<0.0001	0
Any serious AE						
Patients with diabetes	2	5.9%/1545	6.4%/629	RR 0.97 (0.67, 1.39)	0.8500	0
Patients without diabetes	2	5.9%/2893	5.9%/1574	RR 0.93 (0.73, 1.20)	0.6000	0
Death						
Patients with diabetes	2	0.1%/1545	0.3%/629	RR 0.32 (0.04, 2.71)	0.3000	27
Patients without diabetes	2	0.3%/2893	0.4%/1574	RR 0.69 (0.24, 1.95)	0.4800	0
Any AE (treatment discontinuation)	_					
Patients with diabetes	2	6.1%/1545	3.7%/629	RR 1.54 (0.75, 3.14)	0.2400	43
Patients without diabetes	2	5.6%/2893	2.4%/1574	RR 2.23 (1.22, 4.06)	0.0000	49
			•			

onfidence interval, AE adverse event, BMI body mass index, cm centimeter, GI astrointestinal, kg kilograms, kg/m² kilograms per square meter, MD mean difference, n number, RR risk ratio, WC waist patients in the arm). φ number total ž total number of events in the arm, ш each study, mean value of each study, Nn number of patients of ž percentage ŏ circumference.

p < 0.01; $I^2 = 76\%$), $\ge 20\%$ (RR 16.03; 95%CI 10.94, 23.48; p < 0.01; $I^2 = 0\%$), and $\ge 25\%$ (RR 18.72; 95%CI 11.07, 31.64; p < 0.01; $I^2 = 0\%$; Table 2; Supplementary Fig. 4). Leave-one-out sensitivity analyses are presented in Supplementary Table 6.

Tirzepatide was associated with a mean reduction of 4.8 kg/m^2 in BMI and 14.7 cm in waist circumference, while placebo increased 2.5 kg/m^2 and reduced 0.1 cm, respectively (Table 2; Supplementary Fig. 2). Compared with the placebo group, the tirzepatide group had a statistically greater absolute reduction in BMI (MD -6.70 kg/m^2 ; 95%CI -8.83, -4.56 kg/m^2 ; p < 0.01; $I^2 = 98\%$) and waist circumference (MD -12.44 cm; 95%CI -13.79, -11.09 cm; p < 0.01; $I^2 = 61\%$; Table 2; Supplementary Fig. 3). Leave-one-out sensitivity analyses are described in Supplementary Table 6.

The percentages of individuals in the tirzepatide and placebo groups who experienced each safety-related outcome are shown in Table 2 and Supplementary Fig. 2. Compared with placebo, tirzepatide provided a statistically higher risk of any AE (RR 1.12; 95%Cl 1.08, 1.16; p < 0.01; $l^2 = 0\%$), diarrhea (RR 2.84; 95%Cl 2.35, 3.43; p < 0.01; $l^2 = 0\%$), constipation (RR 3.02; 95%Cl 2.34, 3.90; p < 0.01; $l^2 = 0\%$), nausea (RR 3.07; 95%Cl 2.58, 3.66; p < 0.01; $l^2 = 0\%$), vomiting (RR 6.04; 95%Cl 4.11, 8.87; p < 0.01; $l^2 = 0\%$), dyspepsia (RR 2.66; 95%Cl 1.90, 3.71; p < 0.01; $l^2 = 0\%$), severe/serious gastrointestinal events (RR 3.16; 95%Cl 1.81, 5.51; p < 0.01; $l^2 = 0\%$), and any AE leading to treatment discontinuation (RR 2.23; 95%Cl 1.22, 4.06; p < 0.01; $l^2 = 49\%$). There were no significant differences between both groups in terms of any serious AE (RR 0.93; 95%Cl 0.73, 1.20; p = 0.60; $l^2 = 0\%$) and death (RR 0.69; 95%Cl 0.24, 1.95; p = 0.48; $l^2 = 0\%$; Table 2; Supplementary Fig. 6).

For additional outcomes, compared with placebo, tirzepatide use resulted in: (i) a statistically greater improvement in blood pressure, HbA1c, lipid levels, and physical function-related scores; and (ii) a statistically higher risk of eructation, abdominal pain, decreased appetite, dizziness, injection site reaction, and nausea leading to treatment discontinuation (Supplementary Table 5).

Interaction and meta-regression analyses

In contrast to patients with diabetes, those without the disease showed significantly more pronounced reductions in BMI (-6.70 versus -3.38 kg/m²), waist circumference (-12.44 versus -7.59 cm), and body weight, both in relative (-17.15 versus -9.54%) and absolute terms (-18.11 versus -9.06 kg), as confirmed by the test for interaction (p < 0.10; Fig. 1; Table 3). Furthermore, the probabilities of experiencing diarrhea and achieving a weight reduction of $\geq 5\%$ and $\geq 10\%$ were significantly higher in patients without diabetes (Table 3).

In short, the meta-regression analysis showed no significant relationships according to BMI (test of moderators with p-value ≥ 0.05), except for the probability of achieving weight reduction of $\geq 15\%$ (p < 0.01). For this outcome, increasing baseline BMI was associated with a reduced magnitude of tirzepatide's effect relative to placebo (Supplementary Table 7).

Subgroup and sensitivity analyses

Subgroup analyses revealed no significant differences in safety outcomes across tirzepatide doses, regardless of diabetes status. On the other hand, its efficacy on weight loss over placebo increased proportionally with the administered dose. Heterogeneity was reduced or eliminated in most analyses (Supplementary Tables 8 and 9).

Sensitivity analyses omitting the SURMOUNT-3 [15] and/or -4 [14] trials indicated no significant change in pooled effect estimate or heterogeneity for weight-related outcomes among individuals without diabetes. Exceptionally, excluding the SURMOUNT-3 [15] trial eliminated heterogeneity for the ≥10% weight-loss outcome, yet tirzepatide remained statistically favored (Supplementary Table 10).

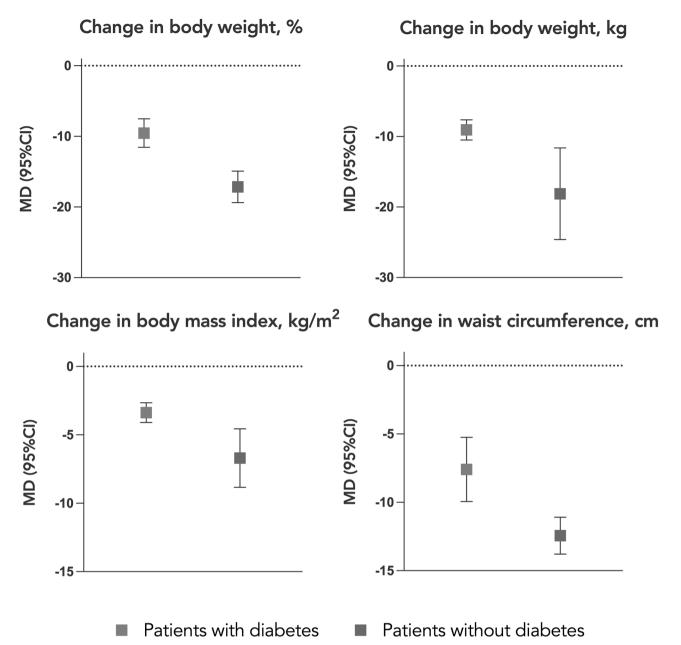


Fig. 1 Graphical summary of pooled mean differences (95%CI) comparing tirzepatide versus placebo for changes in body weight (relative and absolute), body mass index, and waist circumference, stratified by diabetes status. Greater reductions were observed in patients without diabetes, as confirmed by statistically significant interaction tests. 95%CI 95% confidence interval, cm centimeter, kg kilograms, kg/m^2 kilograms per square meter, MD mean difference.

Risk of bias assessment

As shown in Supplementary Fig. 7, some concerns emerged for one RCT [38] due to deviations from the intended intervention, and for two others [15, 17] owing to dropout rates exceeding 20%. All remaining trials [14, 16, 34–37, 39] were at low overall risk of bias, according to the RoB 2 tool [32].

DISCUSSION

This systematic review and meta-analysis enrolling 6,641 participants compared tirzepatide (5–15 mg) *versus* placebo for weight management over 26–72 weeks. Analyses were stratified by diabetes status, enabling precise assessment of tirzepatide's effects in individuals with and without diabetes. Across both subpopulations, tirzepatide significantly outperformed placebo,

yielding: (i) greater relative and absolute weight reductions; (ii) higher probability of achieving weight-loss thresholds of ≥5%, ≥10%, and ≥15%; and (iii) greater improvements in BMI, waist circumference, blood pressure, HbA1c, and lipid levels. These benefits were accompanied by an acceptable safety profile, characterized by predominantly mild to moderate, well-tolerated AEs. Notably, tirzepatide led to significantly greater weight-related improvements in patients without diabetes, while safety outcomes were statistically similar across subpopulations.

Given that included patients with diabetes had a baseline $BMI \ge 23 \text{ kg/m}^2$ and those without diabetes ≥ 27 ($\ge 24 \text{ in Asia}$) kg/m², we considered that differences in treatment response between these subpopulations might be attributable not only to diabetes status but also to baseline BMI. However, our metaregression analysis did not support a significant association

Table 3. Results from interaction assessment.

Outcome	k	Tirzepatide arm, n	Placebo arm, n	Effect estimate (95%CI)	<i>l</i> ² , %	<i>P</i> -valu
Change in body weight, %						<0.000
Patients with diabetes	2	986	430	MD -9.54 (-11.55, -7.53)	79	
Patients without diabetes	5	2893	1574	MD -17.15 (-19.38, -14.92)	87	
Change in body weight, kg						0.008
Patients with diabetes	5	1545	629	MD -9.06 (-10.48, -7.63)	76	
Patients without diabetes	3	763	696	MD -18.11 (-24.62, -11.61)	97	
Weight reduction of ≥5%						0.070
Patients with diabetes	4	1070	125	RR 6.03 (2.39, 15.21)	91	
Patients without diabetes	2	2037	712	RR 2.59 (2.33, 2.87)	0	
Weight reduction of ≥10%						0.098
Patients with diabetes	4	1500	601	RR 19.85 (4.70, 83.89)	69	
Patients without diabetes	3	2324	1004	RR 5.45 (3.25, 9.14)	85	
Weight reduction of ≥15%						0.280
Patients with diabetes	4	1500	601	RR 19.02 (10.09, 35.84)	0	
Patients without diabetes	3	2324	1004	RR 11.22 (5.52, 22.78)	76	
Change in BMI, kg/m²						0.004
Patients with diabetes	3	1137	486	MD -3.38 (-4.10, -2.66)	44	
Patients without diabetes	3	763	696	MD -6.70 (-8.83, -4.56)	98	
Change in WC, cm						0.000
Patients with diabetes	2	782	366	MD -7.59 (-9.94, -5.25)	74	
Patients without diabetes	4	2659	1339	MD -12.44 (-13.79, -11.09)	61	
Any AE						0.780
Patients with diabetes	5	1545	629	RR 1.10 (0.98, 1.23)	66	
Patients without diabetes	5	2893	1574	RR 1.12 (1.08, 1.16)	0	
Diarrhea						0.070
Patients with diabetes	5	1545	629	RR 1.85 (1.21, 2.83)	48	
Patients without diabetes	5	2893	1574	RR 2.84 (2.35, 3.43)	0	
Constipation						0.630
Patients with diabetes	5	1545	629	RR 2.62 (1.58, 4.36)	0	
Patients without diabetes	3	2417	1170	RR 3.02 (2.34, 3.90)	0	
Nausea				(, , , , , , , , , , , , , , , , , , ,		0.750
Patients with diabetes	5	1545	629	RR 2.79 (1.56, 4.97)	61	
Patients without diabetes	5	2893	1574	RR 3.07 (2.58, 3.66)	0	
Vomiting				(====, ====,	-	0.100
Patients with diabetes	5	1545	629	RR 3.58 (2.18, 5.89)	0	51.5
Patients without diabetes	5	2893	1574	RR 6.04 (4.11, 8.87)	0	
Dyspepsia	_			(,,	-	0.620
Patients with diabetes	5	1545	629	RR 2.28 (1.39, 3.74)	0	0.020
Patients without diabetes	3	2417	1170	RR 2.66 (1.90, 3.71)	0	
Any serious AE		= ,,,	, , , •	2.00 ()0/ 5.// 1/		0.890
Patients with diabetes	5	1545	629	RR 0.97 (0.67, 1.39)	0	0.050
Patients without diabetes	5	2893	1574	RR 0.93 (0.73, 1.20)	0	
Death	,	2073	1374	111 0.23 (0.73, 1.20)	J	0.530
Patients with diabetes	5	1545	629	RR 0.32 (0.04, 2.71)	27	0.550
Patients with diabetes Patients without diabetes	5	2893	1574	RR 0.69 (0.24, 1.95)	0	
Any AE (treatment discontinuation)	5	2093	13/4	MN 0.09 (0.24, 1.93)	U	0.440
•	E	1545	620	DD 1 54 (0.75, 3.14)	42	0.440
Patients with diabetes	5 5	1545 2893	629 1574	RR 1.54 (0.75, 3.14) RR 2.23 (1.22, 4.06)	43 49	

95%CI 95% confidence interval, AE adverse event, BMI body mass index, cm centimeter, GI gastrointestinal, kg kilograms, kg/m^2 kilograms per square meter, MD mean difference, n number, RR risk ratio, WC waist circumference.

^aInteraction test.

between higher baseline BMI and greater weight-loss response. These findings underscore that individuals with diabetes tend to experience reduced improvements in weight-related outcomes with weight-loss treatments [25–29]. The reason for this discrepancy is not yet fully understood, despite the existence of several theories [52–56]. However, it does not seem to represent a significant limitation for tirzepatide use in patients with diabetes, as even modest weight reductions are sufficient to achieve improvements in metabolism, risk factors, and quality of life for this population [56–61]. Furthermore, tirzepatide leads to a clinically significant reduction in HbA1c in people with diabetes, which indicates that its benefits in this population extend far beyond weight loss.

Another noteworthy finding is that tirzepatide increases the probability of achieving different percentages of weight loss compared with placebo. Currently, there is a significant long-term difficulty in attaining these weight reductions through non-pharmacological strategies, particularly at thresholds of ≥15% and ≥20% [3, 62, 63]. These results enable physicians to inform patients that the likelihood of reaching certain weight loss goals is higher with tirzepatide than with lifestyle modifications alone. Notably, this advantage is even more relevant for those seeking more ambitious goals.

Our safety analyses revealed that, overall, tirzepatide is associated with a higher incidence of AEs compared with placebo in both subpopulations. Nevertheless, these events were generally referred as mild to moderate and the most common AEs – diarrhea and nausea – were predominantly reported as well tolerated by patients. This is backed up by the low occurrence of treatment discontinuation due to diarrhea (<1.0%) and nausea (<2.0%). On the other hand, while there was a non-significant difference in any serious AEs in both subpopulations, tirzepatide showed a statistically increased risk of severe/serious gastrointestinal events in patients without diabetes, though these were infrequent (3.0%). Therefore, tirzepatide use often results in AEs that are generally well tolerated and of mild to moderate intensity. Severe and poorly tolerated events may also occur, but less frequently.

Subgroup analyses by tirzepatide dose also provided clinically relevant findings. In patients with and without diabetes, a consistent safety pattern was observed across the entire dose spectrum, while weight reduction increased proportionally with the dose. This suggests that higher doses could be used to achieve greater efficacy without compromising the safety profile.

To the best of our knowledge, this is the first systematic review and meta-analysis stratified by diabetes status comparing tirzepatide *versus* placebo for weight management. Separate analyses were adopted to address the distinct biological characteristics and therapeutic needs of individuals with and without diabetes [52–56]. This methodological approach offers deeper insights into tirzepatide's effects, identifies subgroup-specific benefits and risks, and guides individualized clinical decision-making.

The current study presents additional advantages over previous meta-analyses. It incorporates the four most recent RCTs [14–17], adding 1928 patients to the evidence base, thereby increasing the robustness and statistical power of our analyses. Additionally, we included only trials lasting ≥26 weeks to enhance analytical homogeneity, given tirzepatide's markedly distinct weight-loss pattern – with more pronounced reductions before week 24 and an attenuated phase thereafter toward a plateau [64]. We also restricted the intervention to the 5–15 mg dose range, in line with regulatory provisions [11]. Lastly, safety analyses were broadened to include clinically relevant outcomes such as major adverse cardiovascular events and cardiac rhythm disorders.

This study has several limitations. First, we were unable to assess how different diet and exercise regimens prescribed in the included RCTs may have influenced participant outcomes. Second,

it was unfeasible to conduct treatment comparisons in long-term outcomes, as the included studies had a limited treatment duration. Third, our pooled analysis was based on published study-level data rather than real-world patient data; therefore, this may have contributed to a potential overestimation of tirzepatide's clinical benefits. Fourth, some outcomes had significant between-study heterogeneity; however, additional analyses could identify the source of heterogeneity in most cases. Fifth, the absence of stratified data in the primary studies precluded analysis of tirzepatide response by other baseline variables, including sex despite prior reports suggesting greater tirzepatide-induced weight loss in women [65, 66]. Lastly, it is important to note as a limitation the specific designs of two included studies [14, 15], as they included a preparation period before randomization; however, sensitivity analyses excluding these studies showed consistent results.

To conclude, tirzepatide resulted in statistically significant and clinically meaningful weight reduction compared with placebo, especially in patients without diabetes (with overweight/obesity), while maintaining an acceptable safety profile in both subpopulations. In addition, higher tirzepatide doses could be used to achieve greater efficacy without compromising the safety profile. Further RCTs are needed to overcome the limitations identified.

REFERENCES

- Pan X-F, Wang L, Pan A. Epidemiology and determinants of obesity in China. Lancet Diab Endocrinol. 2021;9:373–92. https://doi.org/10.1016/S2213-8587(21) 00045-0.
- Koliaki C, Liatis S, Kokkinos A. Obesity and cardiovascular disease: revisiting an old relationship. Metabolism. 2019;92:98–107. https://doi.org/10.1016/j.metabol.2018.10.011.
- 3. Bray GA, Ryan DH. Evidence-based weight loss interventions: individualized treatment options to maximize patient outcomes. Diab Obes Metab. 2021;23:50–62. https://doi.org/10.1111/dom.14200.
- Apovian CM, Aronne LJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U, et al. Pharmacological management of obesity: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015;100:342–62. https://doi.org/10.1210/ jc.2014-3415.
- Chakhtoura M, Haber R, Ghezzawi M, Rhayem C, Tcheroyan R, Mantzoros CS. Pharmacotherapy of obesity: an update on the available medications and drugs under investigation. EClinicalMedicine. 2023;58:101882. https://doi.org/10.1016/ j.eclinm.2023.101882.
- Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov. 2022;21:201–23. https://doi.org/ 10.1038/s41573-021-00337-8.
- Halpern B, Halpern A. Why are anti-obesity drugs stigmatized?. Expert Opin Drug Saf. 2015;14:185–9. https://doi.org/10.1517/14740338.2015.995088.
- Halpern B, Mancini MC. Should the same safety scrutiny of antiobesity medications be applied to other chronic usage drugs?. Obesity. 2020;28:1171–2. https:// doi.org/10.1002/oby.22810.
- Coskun T, Sloop KW, Loghin C, Alsina-Fernandez J, Urva S, Bokvist KB, et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol Metab. 2018;18:3–14. https://doi.org/10.1016/j.molmet.2018.09.009.
- Min T, Bain SC. The role of tirzepatide, dual GIP and GLP-1 receptor agonist, in the management of type 2 diabetes: the SURPASS clinical trials. Diab Ther. 2021;12:143–57. https://doi.org/10.1007/s13300-020-00981-0.
- US FDA. ZEPBOUNDTM (tirzepatide) injection, for subcutaneous use. Prescribing information. 2023. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/ 217806s000lbl.pdf.
- Reuters. Lilly weight-loss drug gets US, UK approval to rival Wegovy. 2023. https://www.reuters.com/business/healthcare-pharmaceuticals/us-fda-approves-lillys-weight-loss-drug-2023-11-08/.
- Eli Lilly and Company. MOUNJARO® (tirzepatide) injection, for subcutaneous use. Prescribing information. 2023. https://pi.lilly.com/us/mounjaro-uspi.pdf?s=pi.
- Aronne LJ, Sattar N, Horn DB, Bays HE, Wharton S, Lin W-Y, et al. Continued treatment with tirzepatide for maintenance of weight reduction in adults with obesity: the SURMOUNT-4 randomized clinical trial. JAMA. 2024;331:38. https:// doi.org/10.1001/jama.2023.24945.
- Wadden TA, Chao AM, Machineni S, Kushner R, Ard J, Srivastava G, et al. Tirzepatide after intensive lifestyle intervention in adults with overweight or obesity: the SURMOUNT-3 phase 3 trial. Nat Med. 2023;29:2909–18. https://doi.org/10.1038/s41591-023-02597-w.

- Zhao L, Cheng Z, Lu Y, Liu M, Chen H, Zhang M, et al. Tirzepatide for weight reduction in Chinese adults with obesity: the SURMOUNT-CN randomized clinical trial. JAMA. 2024. https://doi.org/10.1001/jama.2024.9217.
- Malhotra A, Grunstein RR, Fietze I, Weaver TE, Redline S, Azarbarzin A, et al. Tirzepatide for the treatment of obstructive sleep apnea and obesity. N Engl J Med. 2024:NEJMoa2404881. https://doi.org/10.1056/NEJMoa2404881.
- Eli Lilly and Company. A study of tirzepatide (LY3298176) in participants with heart failure with preserved ejection fraction (HFpEF) and obesity: the SUMMIT trial. ClinicalTrials.gov ID: NCT04847557. 2024.
- Loomba R, Hartman ML, Lawitz EJ, Vuppalanchi R, Boursier J, Bugianesi E, et al. Tirzepatide for metabolic dysfunction–associated steatohepatitis with liver fibrosis. N Engl J Med. 2024;391:299–310. https://doi.org/10.1056/NEJMoa2401943.
- De Mesquita YLL, Pera Calvi I, Reis Marques I, Almeida Cruz S, Padrao EMH, Carvalho PEDP, et al. Efficacy and safety of the dual GIP and GLP-1 receptor agonist tirzepatide for weight loss: a meta-analysis of randomized controlled trials. Int J Obes. 2023;47:883–92. https://doi.org/10.1038/s41366-023-01337-x.
- Qin W, Yang J, Ni Y, Deng C, Ruan Q, Ruan J, et al. Efficacy and safety of onceweekly tirzepatide for weight management compared to placebo: an updated systematic review and meta-analysis including the latest SURMOUNT-2 trial. Endocrine. 2024. https://doi.org/10.1007/s12020-024-03896-z.
- Tan B, Pan X-H, Chew HSJ, Goh RSJ, Lin C, Anand VV, et al. Efficacy and safety of tirzepatide for treatment of overweight or obesity. A systematic review and metaanalysis. Int J Obes. 2023;47:677–85. https://doi.org/10.1038/s41366-023-01321-5.
- Lin F, Yu B, Ling B, Lv G, Shang H, Zhao X, et al. Weight loss efficiency and safety
 of tirzepatide: a systematic review. PLoS ONE. 2023;18:e0285197. https://doi.org/
 10.1371/journal.cone.0285197.
- Cai W, Zhang R, Yao Y, Wu Q, Zhang J. Tirzepatide as a novel effective and safe strategy for treating obesity: a systematic review and meta-analysis of randomized controlled trials. Front Public Health. 2024;12:1277113. https://doi.org/ 10.3389/fpubh.2024.1277113.
- Greenway FL, Fujioka K, Plodkowski RA, Mudaliar S, Guttadauria M, Erickson J, et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2010;376:595–605. https://doi.org/10.1016/S0140-6736(10)60888-4.
- Hollander P, Gupta AK, Plodkowski R, Greenway F, Bays H, Burns C, et al. Effects of naltrexone sustained- release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diab Care. 2013;36:4022–9. https://doi.org/10.2337/dc13-0234.
- Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384:989–1002. https://doi.org/10.1056/NEJMoa2032183.
- Davies M, Færch L, Jeppesen OK, Pakseresht A, Pedersen SD, Perreault L, et al. Semaglutide 2-4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet. 2021;397:971–84. https://doi.org/10.1016/S0140-6736(21)00213-0.
- Lingvay I, Agarwal S. A revolution in obesity treatment. Nat Med. 2023;29:2406–8. https://doi.org/10.1038/s41591-023-02538-7.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021:n71. https://doi.org/10.1136/bmj.n71.
- Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions version 6.4 (updated August 2024). Cochrane. 2024. www.cochrane.org/handbook.
- Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019:l4898. https://doi.org/10.1136/bmj.l4898.
- Lau J, Ioannidis JPA, Terrin N, Schmid CH, Olkin I. The case of the misleading funnel plot. BMJ. 2006;333:597–600. https://doi.org/10.1136/bmj.333.7568.597.
- Jastreboff AM, Aronne LJ, Ahmad NN, Wharton S, Connery L, Alves B, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022;387:205–16. https://doi.org/10.1056/NEJMoa2206038.
- Dahl D, Onishi Y, Norwood P, Huh R, Bray R, Patel H, et al. Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: the SURPASS-5 randomized clinical trial. JAMA. 2022;327:534. https://doi.org/10.1001/jama.2022.0078.
- Frias JP, Nauck MA, Van J, Kutner ME, Cui X, Benson C, et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet. 2018;392:2180–93. https://doi.org/10.1016/S0140-6736(18)32260-8.
- Garvey WT, Frias JP, Jastreboff AM, Le Roux CW, Sattar N, Aizenberg D, et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2023;402:613–26. https://doi.org/10.1016/S0140-6736(23)01200-X.

- Heise T, Mari A, DeVries JH, Urva S, Li J, Pratt EJ, et al. Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: a multicentre, randomised, doubleblind, parallel-arm, phase 1 clinical trial. Lancet Diab Endocrinol. 2022;10:418–29. https://doi.org/10.1016/S2213-8587(22)00085-7.
- Rosenstock J, Wysham C, Frías JP, Kaneko S, Lee CJ, Fernández Landó L, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet. 2021;398:143–55. https://doi.org/10.1016/S0140-6736(21) 01324-6.
- 40. Frias JP, Nauck MA, Van J, Benson C, Bray R, Cui X, et al. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: a 12-week, randomized, double-blind, placebo-controlled study to evaluate different dose-escalation regimens. Diab Obes Metab. 2020;22:938–46. https://doi.org/10.1111/dom.13979.
- Furihata K, Mimura H, Urva S, Oura T, Ohwaki K, Imaoka T. A phase 1 multipleascending dose study of tirzepatide in JAPANESE participants with type 2 diabetes. Diab Obes Metab. 2022;24:239–46. https://doi.org/10.1111/dom.14572.
- 42. Urva S, Coskun T, Loghin C, Cui X, Beebe E, O'Farrell L, et al. The novel dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP -1) receptor agonist tirzepatide transiently delays gastric emptying similarly to selective long-acting GLP -1 receptor agonists. Diab Obes Metab. 2020;22:1886–91. https://doi.org/10.1111/dom.14110.
- 43. Feng P, Sheng X, Ji Y, Urva S, Wang F, Miller S, et al. A phase 1 multiple dose study of tirzepatide in Chinese patients with type 2 diabetes. Adv Ther. 2023;40:3434–45. https://doi.org/10.1007/s12325-023-02536-8.
- Bagherzadeh-Rahmani B, Marzetti E, Karami E, Campbell BI, Fakourian A, Haghighi AH, et al. Tirzepatide and exercise training in obesity. Clin Hemorheol Microcirc. 2024;87:465–80. https://doi.org/10.3233/CH-242134.
- Frías JP, Davies MJ, Rosenstock J, Pérez Manghi FC, Fernández Landó L, Bergman BK, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021;385:503–15. https://doi.org/10.1056/NEJMoa2107519.
- Del Prato S, Kahn SE, Pavo I, Weerakkody GJ, Yang Z, Doupis J, et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet. 2021;398:1811–24. https://doi.org/10.1016/S0140-6736(21)02188-7.
- 47. Ludvik B, Giorgino F, Jódar E, Frias JP, Fernández Landó L, Brown K, et al. Onceweekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): a randomised, open-label, parallel-group, phase 3 trial. Lancet. 2021;398:583–98. https://doi.org/10.1016/S0140-6736(21)01443-4.
- Kadowaki T, Chin R, Ozeki A, Imaoka T, Ogawa Y. Safety and efficacy of tirzepatide as an add-on to single oral antihyperglycaemic medication in patients with type 2 diabetes in Japan (SURPASS J-combo): a multicentre, randomised, open-label, parallel-group, phase 3 trial. Lancet Diab Endocrinol. 2022;10:634–44. https:// doi.org/10.1016/S2213-8587(22)00187-5.
- Rosenstock J, Frías JP, Rodbard HW, Tofé S, Sears E, Huh R, et al. Tirzepatide vs insulin lispro added to basal insulin in type 2 diabetes: the SURPASS-6 randomized clinical trial. JAMA. 2023;330:1631. https://doi.org/10.1001/jama.2023.20294.
- Inagaki N, Takeuchi M, Oura T, Imaoka T, Seino Y. Efficacy and safety of tirzepatide monotherapy compared with dulaglutide in Japanese patients with type 2 diabetes (SURPASS J-mono): a double-blind, multicentre, randomised, phase 3 trial. Lancet Diab Endocrinol. 2022;10:623–33. https://doi.org/10.1016/S2213-8587(22)00188-7.
- Gao L, Lee BW, Chawla M, Kim J, Huo L, Du L, et al. Tirzepatide versus insulin glargine as second-line or third-line therapy in type 2 diabetes in the Asia-Pacific region: the SURPASS-AP-Combo trial. Nat Med. 2023;29:1500–10. https://doi.org/ 10.1038/s41591-023-02344-1.
- Wilding JPH. Medication use for the treatment of diabetes in obese individuals. Diabetologia. 2018;61:265–72. https://doi.org/10.1007/s00125-017-4288-1.
- Lundgren JR, Janus C, Jensen SBK, Juhl CR, Olsen LM, Christensen RM, et al. Healthy weight loss maintenance with exercise, liraglutide, or both combined. N Engl J Med. 2021;384:1719–30. https://doi.org/10.1056/NEJMoa2028198.
- Lingvay I, Sumithran P, Cohen RV, Le Roux CW. Obesity management as a primary treatment goal for type 2 diabetes: time to reframe the conversation. Lancet. 2022;399:394–405. https://doi.org/10.1016/S0140-6736(21)01919-X.
- Jensterle M, Rizzo M, Haluzík M, Janež A. Efficacy of GLP-1 RA approved for weight management in patients with or without diabetes: a narrative review. Adv Ther. 2022;39:2452–67. https://doi.org/10.1007/s12325-022-02153-x.
- Bays HE. Why does type 2 diabetes mellitus impair weight reduction in patients with obesity? A review. Obes Pillars. 2023;7:100076. https://doi.org/10.1016/ j.obpill.2023.100076.
- 57. ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 8. Obesity and weight management for the prevention and treatment of Type 2

- diabetes: standards of care in diabetes—2023. Diab Care. 2023;46:S128–39. https://doi.org/10.2337/dc23-5008.
- 58. Wing RR, Lang W, Wadden TA, Safford M, Knowler WC, Bertoni AG, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diab Care. 2011;34:1481–6. https:// doi.org/10.2337/dc10-2415.
- Fujioka K. Benefits of moderate weight loss in patients with type 2 diabetes. Diab Obes Metab. 2010;12:186–94. https://doi.org/10.1111/j.1463-1326.2009.01155.x.
- 60. Halpern B, Mancini MC, Melo MED, Lamounier RN, Moreira RO, Carra MK, et al. Proposal of an obesity classification based on weight history: an official document by the Brazilian Society of Endocrinology and Metabolism (SBEM) and the Brazilian Society for the Study of Obesity and Metabolic Syndrome (ABESO). Arch Endocrinol Metab. 2022. https://doi.org/10.20945/2359-3997000000465.
- Halpern B, Mancini MC. Metabolic surgery for the treatment of type 2 diabetes in patients with BMI lower than 35 kg/m²: why caution is still needed. Obes Rev. 2019;20:633–47. https://doi.org/10.1111/obr.12837.
- Wadden TA, Tronieri JS, Butryn ML. Lifestyle modification approaches for the treatment of obesity in adults. Am Psychol. 2020;75:235–51. https://doi.org/ 10.1037/amp0000517.
- American College of Cardiology/American Heart Association Task Force on Practice Guidelines, Obesity Expert Panel, 2013. Expert panel report: guidelines (2013) for the management of overweight and obesity in adults. Obesity. 2014;22 Suppl 2:541-5410. https://doi.org/10.1002/oby.20660.
- 64. Horn DB, Kahan S, Batterham RL, Cao D, Lee CJ, Murphy M, et al. Time to weight plateau with tirzepatide treatment in the surmount -1 and surmount -4 clinical trials. Clin Obes. 2025;15:e12734. https://doi.org/10.1111/cob.12734.
- 65. Małecki MT, Batterham RL, Sattar N, Levine JA, Rodríguez Á, Bergman BK, et al. Predictors of ≥15% weight reduction and associated changes in cardiometabolic risk factors with tirzepatide in adults with type 2 diabetes in SURPASS 1–4. Diab Care. 2023;46:2292–9. https://doi.org/10.2337/dc23-1135.
- Aronne LJ, Horn DB, Le Roux CW, Ho W, Falcon BL, Gomez Valderas E, et al. Tirzepatide as compared with semaglutide for the treatment of obesity. N Engl J Med. 2025;393:26–36. https://doi.org/10.1056/NEJMoa2416394.

AUTHOR CONTRIBUTIONS

EC: design, conduct/data collection, analysis, writing manuscript. PAES: design, conduct/data collection, analysis. MCO: conduct/data collection, analysis. CCPSJ: design, analysis, writing manuscript. BH: design, analysis, writing manuscript.

COMPETING INTERESTS

BH is on the Advisory Board of Novo Nordisk, Eli-Lilly, Astra Zeneca, Merck S/A, and received speaker honoraria from Novo Nordisk, Eli-Lilly, Astra Zeneca, Boehringer Ingelheim, Merck S/A and Abbott Nutrition. BH is Primary Investigator in BrTrials, and has conducted clinical trials by Eli-Lilly, Novo Nordisk and Boehringer Ingelheim. EC, PAES, MCO, and CCPSJ have no conflicts of interest to declare.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41366-025-01920-4.

Correspondence and requests for materials should be addressed to Eduardo Cerchi.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.