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Generative artificial intelligence in medicine
 

Zhen Ling Teo    1,2,15, Arun James Thirunavukarasu    3,15, Kabilan Elangovan1,2, 
Haoran Cheng1,4, Prasanth Moova1,2, Brian Soetikno5, Christopher Nielsen6, 
Andreas Pollreisz1,7, Darren Shu Jeng Ting1,4,8,9,10, Robert J. T. Morris    11,12, 
Nigam H. Shah    13, Curtis P. Langlotz    14 & Daniel Shu Wei Ting1,2,5 

Generative artificial intelligence (GAI) can automate a growing number 
of biomedical tasks, ranging from clinical decision support to design and 
analysis of research studies. GAI uses machine learning and transformer 
model architectures to generate useful text, images and sound data 
in response to user queries. While previous biomedical deep-learning 
applications have used general-purpose datasets and enormous volumes 
of labeled data for training, evidence now suggests that GAI models may 
perform better while requiring less training data—for example, using 
smaller, domain-specific datasets. Moreover, AI techniques have progressed 
from fully supervised training to less label-intensive approaches, such as 
weakly supervised or unsupervised fine-tuning and reinforcement learning. 
Recent iterations of GAI, such as agents, mixture-of-expert models and 
reasoning models, have further extended their capabilities to assist with 
complex and multistage tasks. Here, we provide an overview of recent 
technical advancements in GAI. We explore the potential of the latest 
generation of models to improve healthcare for clinicians and patients, 
and discuss validation approaches using specific examples to illustrate 
challenges and opportunities for further work.

Generative artificial intelligence (GAI) employs new types of 
machine-learning models to answer questions, interpret images and 
deliver results in the form of newly generated original text, images 
and sound—with remarkable quality and speed. This technology is 
used by hundreds of millions of users worldwide, such as for speeding 
up writing, answering medical questions and assisting with technical 
work, such as coding1,2. In healthcare, researchers are exploring GAI 
applications for many tasks, such as improving patient care and assist-
ing with primary biomedical research. With its ability to process and 

generate content instantaneously, GAI could potentially reduce costs 
and improve the quality of healthcare processes ranging from clinical 
encounters and patient self-help to administrative processes, such as 
appointment scheduling, billing and record-keeping1,3.

Clinical interest in GAI technology was initially piqued by the 
success of large language models (LLMs), such as GPT-3.5, PaLM 2 and 
LLaMA, which exhibited unprecedented abilities to answer challenging 
medical questions at the level of qualified doctors4,5. Subsequently, 
multimodal foundation models (for example, GPT-5, Gemini 2.5 Pro, 
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data—a common issue in clinical research18. A growing number of 
machine-learning techniques have been developed to generate syn-
thetic data that best represent the population of interest, representing 
the simplest form of GAI19. More advanced models can generate entire 
datasets without including patient-identifiable data, making them 
suitable for development and teaching purposes20. Among the more 
commonly used architectures are variational autoencoders (VAEs) 
and generative adversarial networks (GANs). VAEs isolate latent vari-
ables from training data and use them to reconstruct new synthetic 
data21. This pixel-by-pixel approach often results in blurred images, 
limiting medical applications22. By contrast, GANs use a competitive 
strategy involving two neural networks: one generating synthetic 
images, and another classifying real and synthetic images. The first 
network is trained by the second to generate synthetic images that 
cannot be distinguished from real ones, enabling the production of 

Claude 4 and Grok 4), which can process images in addition to text, have 
increased the utility of GAI, including in biomedical settings6. Alpha-
fold and its updated daughter models have revolutionized structural 
analysis of proteins and molecular interactions, paving the way for 
the drug discovery7–9. Reasoning and agentic models, such as o1 and 
DeepSeek-R1, exhibit enhanced ability to solve multistage problems 
through decomposition, iteration and use of external tools10. These 
models have achieved state-of-the-art performance in various cogni-
tive tasks—including biomedical challenges—enabling clinicians to 
work together with AI teammates to boost accuracy and efficiency10,11.

Traditionally, the management plan has been developed through 
a collaboration between patients and practitioners. However, a doc-
tor–patient–AI triad could augment this process to provide optimal 
evidence-based, patient-centered care12,13. Diagnosis involves integrat-
ing patient-centric information (clinical history, laboratory results and 
imaging) with applicable medical knowledge (existing in up-to-date 
clinical articles, guidelines and textbooks), synthesized into a relevant 
and specific narrative, conclusion and plan. Dialog-based interfaces can 
maximize the utility of GAI in this context, through follow-up questions 
to clarify queries, reasoning and implications of conclusions. Similarly, 
GAI can be incorporated into biomedical scientists’ workflow to acceler-
ate discovery, hypothesis generation and reporting. Possible functions 
range from simple tasks, such as reformatting text, to assistance with 
technical tasks, such as coding and even modeling to simulate experi-
ments and thereby maximize the efficiency of bench work14.

In this Review, we explore recent developments in GAI, with an 
emphasis on new emergent abilities, as well as biomedical applica-
tions with a growing evidence base supporting their deployment and 
use. LLMs, foundation models and agentic systems are all discussed 
as examples of GAI applications in biomedical settings (see Box 1 for 
brief definitions of key technical terms used in the text). We specifi-
cally explore more and less successful deployments of GAI, aiming to 
help others learn from negative results and implementation failures. 
Careful, thoughtful adoption is necessary to unlock the opportuni-
ties conferred by GAI to improve the accessibility, cost, and quality 
of healthcare.

Technical evolution of generative artificial 
intelligence
Deep learning has revolutionized computational applications in medi-
cine, particularly with respect to unstructured data, such as free text 
and images. Put simply, deep learning describes the data-driven tuning 
of relationships between virtual ‘neurons,’ represented in complex 
networks, to fulfill a defined task—such as classification of fundus 
photographs as normal or pathological15. Deep neural network archi-
tectures can represent any function: that is, any transformation of 
inputs into useful outputs16. Recently, the use of attention networks 
and the invention of transformers resulted in a breakthrough in natural 
language processing. There has since been a rapid evolution from super-
vised training (requiring enormous amounts of labeled data), to less 
label-intensive approaches using weakly and unsupervised pretraining 
and fine-tuning. To automate a cognitive task, AI developers design a 
related training task and challenge their model with that task across 
masses of data to improve its performance. The primary schemata for 
recent GAI development (Fig. 1) have involved pretraining to develop an 
ability to generate text, image or other data formats that are coherent; 
and fine-tuning (such as through reinforcement learning with expert 
human or AI feedback) to improve the usefulness of generated output in 
response to user queries3. Users can also use prompt engineering with 
deployed models to direct and optimize output to meet their needs17.

Synthetic data systems and rule-based AI
Since 2008, there has been a growing prevalence of studies that use 
imputation or generate synthetic data to replace missing elements 
from large datasets, to facilitate analyses in the context of missing 

BOX 1

Glossary of key terms
Agentic model: an AI model capable of autonomous 
decision-making with limited or no human intervention required.

Attention network: an AI model that uses an ‘attention mechanism’ 
to identify more and less important parts of the input data, such as 
by assigning more or less weight to certain words.

Diffusion model: a GAI model that adds or ‘diffuses’ noise into 
an image and then reverses this process sequentially, thereby 
generating synthetic data with characteristics common to an initial 
training dataset.

Foundation model:an AI model trained initially on very large 
datasets to confer broad functionality across the modality of the 
training data. Subsequent fine-tuning may be undertaken to improve 
performance in a more specific task. Examples include LLMs.

Generative adversarial network (GAN): a machine-learning 
framework that pits generator and discriminator neural networks 
against one other to generate new synthetic data with close 
resemblance to an original dataset. The generator modifies input 
data, and the discriminator predicts whether the generated data 
output belongs in the original dataset.

Large language models (LLMs): text-based GAI foundation models 
trained and fine-tuned to provide useful responses to user queries.

Neural network: the architectural basis of modern artificial 
intelligence, with computationally represented nodes (artificial 
‘neurons’), usually arranged in layers, that have tunable relationships 
between one another to transform data for useful purposes.

Reasoning model: a subset of foundation models that are 
fine-tuned to solve multi-step reasoning tasks, such as by enforcing 
chain-of-thought narration in model processing or output.

Retrieval augmented generation: the technique of mandating 
reference to a specified information source (such as clinical practice 
guidelines) to improve the accuracy and relevance of GAI output.

Transformers model (transformers): a neural-network-based 
architecture, which is the technical basis for most widely 
disseminated foundation models, that allows for entraining of 
sequential construction of useful data on the basis of lexical tokens 
or other component parts of larger data elements.

Variational autoencoder (VAE):  a subset of artificial neural 
network architectures which maps information into a latent 
space before reconstructing information into similar but different 
information, generating new synthetic data.
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highly detailed, realistic images23. However, statistical ‘noise’ leads to 
inconsistent fidelity of generated images, and there is a risk of reproduc-
ing patient-identifiable features from images used during training24.

Diffusion models have recently emerged as state-of-the-art archi-
tectures for generating images that closely resemble real examples 
(such as of radiographs or computed tomography images). These 
models work by sequentially adding noise to and subtracting it from an 
image, generating variation through loss and stochastic replacement 
of information25. This two-step procedure results in better-quality 
images with a broader variety than those generated by GANs or 
VAEs25,26. Although its computation tends to be slower than that of 
lighter-weight architectures, it can still be run locally. Commonly used 
diffusion-model applications, including Stable Diffusion 3 and DALL-E 
3, perform poorly when tasked with biomedical imaging; specific 
training of bespoke models is needed to use these types of model to 
generate realistic synthetic medical imaging27,28. With this training, 
diffusion models can generate synthetic images with realistic anatomi-
cal details—even for three-dimensional modalities, such as computed 
tomography and magnetic resonance imaging, providing valuable data 
for training diagnostic algorithms27,29.

Many rule-based GAI applications are already used for clinical 
purposes that involve natural language processing. These rule-based 
bots prioritize safety over flexibility, making them particularly effec-
tive in formulaic or algorithmic contexts, as well as in situations with 
established techniques for steering conversations (such as cognitive 
behavioral therapy). Indeed, more than 10,000 mental-health applica-
tions collectively have millions of users who often pay subscription fees 
Relatively few of these applications undergo formal clinical validation, 
but examples of trialed platforms include https://www.wysa.com/ and 
https://woebothealth.com/ (ref. 30). Another successful example is Dora, 
an automated telephone-call system for cataract surgery follow-up. Dora 
uses a predetermined set of conversational elements and management 
options to identify patients in need of clinical follow-up in multiple hos-
pitals in the United Kingdom31. Although emerging foundation models 
might have enhanced flexibility and broader capabilities, some develop-
ers are actively delaying the replacement of existing rules-based systems 
until there are better safety assurances32.

Foundation models with growing capabilities
Foundation models now represent the frontier of GAI. In general, foun-
dation models exhibit large transformer-based architectures and are 
trained on large datasets of one or more modalities, developing abilities 

to produce new but coherent information in these same modalities5. 
The weakly supervised or unsupervised pretraining and fine-tuning 
processes that underpin foundation models distinguish them from 
previous machine-learning architectures. The earliest iteration of 
foundation model that gained widespread attention and use was the 
LLM, which was the initial technical underpinning for chatbot applica-
tions such as ChatGPT and Google Bard. LLMs provide an instructive 
example of development paradigms which apply to foundation models 
more generally3 (Fig. 2).

Pretraining involves tasking an LLM with a word-related task across  
voluminous text-based datasets. Tasks require the model to pre-
dict missing words or portions of words (‘tokens’) in human-written 
material33,34. Datasets are generated by extracting text from 
internet-based and private resources, including clinical practice guide-
lines, peer-reviewed journal articles and medical textbooks, as well as 
non-medical text. Subsequent fine-tuning aims to promote genera-
tion of useful output in response to user queries. Fine-tuning may use 
illustrative input–output pairs produced by humans, or automate 
this process through reinforcement learning from human feedback 
(RLHF)35. In RLHF, discrete evaluation models are trained using data 
from humans who score a limited set of outputs in response to inputs. 
These models can then replicate human-like scoring to assess and 
fine-tune LLM responses. Furthermore, human involvement in RLHF 
can itself be automated, in reinforcement learning from AI feedback 
(RLAIF)36. Conversely, state-of-the-art mixture-of-expert models (for 
example, DeepSeek-R1) dispense with the critic model required for 
RLHF or RLAIF, in favor of a group relative policy optimization (GPRO) 
process—in which multiple outputs are directly compared with one 
another to encourage production of outputs with favored characteris-
tics, such as accuracy and relevance37. This promotes selective recruit-
ment of portions of the model architecture on the basis of user queries 
to efficiently provide an optimal response10. All these fine-tuning pro-
cesses may be tailored depending on the desired characteristics of the 
model, such as factuality, relevance and tone.

Similar processes can be applied to develop vision–language 
models, audio-language models and other multimodal foundation 
models (Fig. 2). For instance, foundation models have been pre-
trained on various formats of clinical imaging (with word-based 
tokens replaced by other forms of information) and can be fine-tuned 
to perform classification tasks with performance comparable to 
that of state-of-the-art conventional deep-learning methods. An 
early example is RETFound, which was trained in a ‘fill in the blank’ 

Pretraining
Knowledge learning phase

Unlabeled data sources:
• Medical literature and

textbooks
• Clinical guidelines and

research papers
• Administrative

documentation
• Educational materials

and curricula
• Operational policies

and procedures
• Healthcare industry reports

Unsupervised learning
• Self-supervised training
• Next-token prediction
• Large-scale language

modeling
• Multi-modal pre-training

Foundation model

Fine-tuning
Domain alignment phase

Labeled healthcare data:
• Electronic health records
• Clinical notes and
• diagnostic data
• Administrative workflows

and billing
• Educational assessments

and curricula
• Operational metrics and KPIs
• Quality measures and

compliance data
• Financial and resource

allocation data

Supervised learning
• Task-specific training
• Domain adaptation
• Healthcare knowledge

integration

Domain-specific model

Reinforcement learning
Expert feedback integration

RLHF process:
• Healthcare expert evaluations
• Safety and bias alignment
• Preference learning
• Ethical compliance validation

Policy optimization
• PPO/TRPO algorithms
• Reward modeling
• Constitutional AI principles

Expert-aligned model

Downstream deployment

Implementation strategies:
• Further fine-tuning for institution-specific adaptation
• Prompting with healthcare examples and chain-of-

thought reasoning
• Retrieval-augmented generation with medical

knowledge bases

Clinical
• Diagnostic support
• Clinical documentation
• Treatment planning
• Patient monitoring

Operations
• Workflow optimization
• Resource allocation
• Quality management
• Supply-chain optimization

Administration
• Policy automation
• Compliance monitoring
• Financial analysis
• Risk management

Medical education
• Personalized learning
• Assessment tools
• Curriculum development
• Simulation training

Task-integrated model

Fig. 1 | Overview of the GAI development pipeline. The figure shows key steps from initial foundation model development to their deployment in specialized 
healthcare applications across clinical care, operations, administration and medical education. KPIs, key performance indicators; PPO, proximal policy optimization; 
TRPO, trust region policy optimization.
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image-modeling task in which the model was exposed to fundus 
photographs with missing portions and tasked with reconstructing 
the missing pixels38,39. Other foundation models have been developed 
to work with computed tomography, optical coherence tomography, 
pathology slides, ultrasounds and X-ray images40–45. Many proprietary 
models—including those used to drive popular chatbots—are trained 
and fine-tuned with multimodal data, allowing interoperability and 
diversification of tasks that applications can assist with46–48. This 

allows users to input speech and images in addition to text, and also 
expands the range of application outputs.

Early anecdotal evidence and more recent formal studies of LLMs 
have revealed that they perform better at many cognitive tasks in 
which prompts mandated ‘chain of thought’ reasoning (explicitly 
processing problems and solutions in a logical, step-by-step manner)49. 
Researchers have since incorporated chain-of-thought reasoning into 
fine-tuning to promote this behavior, improving reasoning ability as 

Pretraining Fine-tuning Reinforcement learning Deployment
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• Medical literature textbooks
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• Medical-question answering
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• Medical-bias evaluation
• Ethical-compliance review
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• Proximal policy optimization
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• Clinical decision support
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Image

Data sources:
• Medical imaging datasets
• X-rays, CT scans
• Pathology-slide images
• Histopathology slides

Techniques:
• Vision transformer (ViT)
• Masked autoencoders (MAE)
• Contrastive learning

Image fine-tuning

Clinical data:
• Annotated X-rays, radiographs
• Labeled MRI CT scans
• Pathology slide annotations
• Dermatology image datasets

Techniques:
• Medical-image classification
• Semantic segmentation
• Object-detection localization

Image RLHF

Human feedback:
• Radiologist evaluations
• Diagnostic accuracy assessment
• Clinical relevance scoring
• Visual attention validation

Techniques:
• Vision-based PPO
• Human preference ranking
• Visual attention alignment

Image deployment

Applications:
• Radiology AI assistants
• Pathology analysis systems
• Dermatology screening tools
• Medical image generation

Deployment techniques:
• Zero-shot classification
• Visual prompting
• Few-shot adaptation

Data sources:
• Surgical procedure videos
• Diagnostic microscopy
• Medical training footage
• Patient consultation videos

Techniques:
• Video transformers (ViViT)
• Three-dimensional
   convolutional networks
• Temporal modeling

Clinical data:
• Annotated surgical videos
• Labeled endoscopy clips
• Motion-tracking clinical data
• Gait analysis datasets

Techniques:
• Action recognition
• Temporal segmentation
• Motion pattern analysis

Human feedback:
• Surgeon technique assessment
• Temporal accuracy evaluation
• Patient safety scoring
• Clinical workflow validation

Techniques:
• Video-based PPO
• Temporal reward modeling
• Sequence preference learning

Applications:
• Surgical guidance systems
• Endoscopy AI assistants
• Patient-monitoring tools
• Rehabilitation monitoring

Deployment techniques:
• Real-time video analysis
• Temporal prompting
• Motion-pattern recognition

Data sources:
• Heart sounds murmurs
• Respiratory recordings
• Patient interview recordings
• Voice biomarker datasets

Techniques:
• Audio transformers
• Mel-frequency analysis
• Spectral masking

Audio fine-tuning

Clinical data:
• Labeled heart murmurs
• Annotated lung sounds
• Speech biomarker annotations
• Clinical audio transcripts

Techniques:
• Audio classification
• Signal filtering
• Acoustic feature learning

Audio RLHF

Human feedback:
• Clinician audio assessment
• Diagnostic quality scoring
• Pattern-recognition accuracy
• Clinical relevance scoring

Techniques:
• Audio-based PPO
• Signal-quality modeling
• Acoustic preference learning

Audio deployment

Applications:
• Cardiac monitoring AI
• Respiratory analysis systems
• Voice-based diagnostics
• Clinical transcription AI

Deployment techniques:
• Audio prompting
• Signal preprocessing
• Few-shot audio learning

Data sources:
• Text–image pairs
• Video–audio datasets
• Multi-modal clinical records
• Cross-modal annotations

Techniques:
• CLIP-style learning
• Cross-modal attention
• Unified transformers

Multimodal fine-tuning

Clinical data:
• Radiology reports and images
• Clinical notes and audio
• Surgery videos and text
• Patient records and biomarkers

Techniques:
• Vision–language tasks
• Multi-modal fusion
• Joint representation learning

Multimodal RLHF

Human feedback:
• Cross-modal consistency
• Integrated clinical reasoning
• Holistic patient assessment
• Multi-modal safety scoring

Techniques:
• Multi-modal PPO
• Cross-modal alignment
• Joint preference optimization

Multimodal deployment

Applications:
• Comprehensive clinical AI
• Integrated diagnostic systems
• Multi-modal medical assistants
• Holistic patient monitoring

Deployment techniques:
• Cross-modal prompting
• Fusion optimization
• Integrated decision support

Video Video fine-tuning Video RLHF Video deployment

Audio

Multimodal

Fig. 2 | GAI development pipeline based on specific modalities. The key steps 
in development pipeline of GAI models include: (1) pretraining with careful 
selection of data sources; (2) fine-tuning with clinical data and context-specific 
information; (3) reinforcement learning, which relies on human input (required) 

to evaluate for aspects such as accuracy, relevance and bias; and (4) deployment, 
which are crucial steps for clinical translation. CT, computed tomography; MRI, 
magnetic resonance imaging; CLIP, contrastive language–image pretraining; 
RAG, retrieval-augmented generation.
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well as capabilities of leveraging external tools to generate solutions10. 
Reasoning models such as DeepSeek-R1, Gemini 2.5 Pro, GPT-5, Claude 4 
and Grok 4 are trending examples of ‘agentic’ AI, which require less user 
feedback and can autonomously solve problems and complete tasks50. 
Agentic models can query search engines to retrieve relevant informa-
tion, implement code in a virtual workspace to trial solutions or even 
leverage automated machine learning to build AI models specifically 
for a given task51,52. In the field of medicine, there is hope that agentic 
AI will work collaboratively with clinicians, patients and scientists to 
tackle complex problems and promote innovation11,53–56.

Model distillation for clinical tasks
The ongoing development of models with growing reasoning and 
response abilities has generated optimism that ‘generalist’ medical AI—
essentially medical foundation models that can automate diverse medi-
cal tasks with little or no specific training—will begin to be deployed in 
clinical contexts57. However, because close oversight is needed to safe-
guard patients from potential harm caused by autonomous systems, 
GAI is likely to be initially implemented in small, siloed functions with 
carefully and narrowly defined boundaries. Therefore, a more efficient 
and practical solution for healthcare settings could rely on smaller 
models that are developed specifically to optimize performance in a 
highly specific medical task58.

Smaller models with comparable performance to that of indus-
trial flagship foundation models can be engineered relatively sim-
ply through a process called model distillation, whereby a small, 
open-source language model is fine-tuned on a set of outputs generated 
by flagship models59,60. Domain-specific fine-tuning can facilitate supe-
rior performance in clinical tasks relative to state-of-the-art models61. 
Such fine-tuning is typically limited by lack of access to patient data 
owing to data-privacy governance, although ongoing efforts aim to 
broaden access to large, multimodal clinical datasets62.

The potential benefits of smaller GAI models are manifold. Smaller 
models are less computationally expensive than are industrial LLMs 
or other foundation models; therefore, lower associated costs could 
broaden access, particularly in lower-income settings63. In addition, 
smaller models can be deployed locally in air-gapped systems in clinical 
organizations, minimizing security risk and privacy concerns associ-
ated with uploading data online64. A modular approach using small 
models for well-defined functions could also facilitate troubleshooting 
without compromising broader systems, because component models 
can be interrogated individually (in contrast to relying on a single 
large model with broader functionality). However, local deployment 
entails costs and requires infrastructure that might not be accessible, 
potentially leading to a need to rationalize expenditures by reducing 
other clinical investments65.

The technical limitations of smaller foundation models can be 
overcome in part by users applying validated techniques during 
prompting. One limitation is that smaller models tend to have a lower 
context length—meaning they have a stricter limit on the amount of 
text that can be inputted or processed at one time. Users can utilize 
chunking strategies, processing information in smaller segments, 
to overcome this limitation66. Smaller models also tend to produce 
less-desirable outputs in terms of responding appropriately and flex-
ibly to queries, as well as raw recall of accurate specialist knowledge67. 
Prompt-engineering strategies, such as encouraging chain of thought, 
negative bounding to inhibit undesirable behavior and retrieval aug-
mented generation, can mitigate these issues17,68. Specific education 
of clinicians and patients can be undertaken to teach these techniques, 
to help ensure that tools maximize their potential69,70.

Clinical applications of generative artificial 
intelligence
GAI applications are yet to be accepted and used widely in autono-
mous clinical roles, but are used widely for administrative tasks, and 

by patients and practitioners for medical conversations through chat-
bots (rather than internet search engines)71–73. Most validation stud-
ies of GAI evaluate a narrow subset of potential roles (such as clinical 
decision-making or documentation), and although there are many 
examples of GAI exceeding clinician performance in individual tasks, 
this is not grounds for replacing clinicians in their complex, holistic 
roles12. Moreover, small retrospective studies are liable to bias and over-
fitting that limits generalizability, and model performance in studies 
may not translate into real-world settings74. Nonetheless, GAI’s assistive 
role in healthcare is growing, and considering existing applications and 
barriers to deployment can help inform research and development of 
more useful systems.

Clinical support
Medical GAI garnered initial interest after LLM chatbots achieved 
passing level marks in examinations taken by medical students and 
doctors75,76. Since then, developers have undertaken specific training 
and fine-tuning to improve GAI performance in these examinations; 
the latest models are now approaching or exceeding the performance 
of expert clinicians4,77,78. Although examination performance is a poor 
surrogate for actual clinical ability, one study directly compared a GAI 
model and clinicians in responding to patient enquiries posted on a 
social-media forum—and found that the model provided higher-quality 
and more-empathetic responses than clinicians did (assessed in a 
blinded fashion by healthcare professionals)79. Since then, a growing 
number of studies have evaluated GAI’s potential for providing clini-
cal advice in different contexts. Although these models offer greater 
scalability than do human clinicians, many of the studies are poorly 
conducted (lacking standardized evaluation processes) and reported 
(inaccessible models and absent description of prompt engineering), 
and offer little useful information to guide implementation and sub-
sequent development80.

Early results from a prospective study illustrate the strengths and 
weaknesses of GAI in providing clinical advice and guidance81. For exam-
ple, clinicians and AI, challenged with virtual-reality cardiopulmonary 
resuscitation scenarios, performed best when clinicians oversaw AI 
that provided management guidance; this scenario was superior to 
clinicians working alone or autonomous AI82. Similarly, an economic 
analysis of clinical AI in specific contexts, such as diabetic retinopathy 
screening, suggests that AI–human collaboration is superior to either 
working alone83. However, LLMs tasked with making challenging diag-
noses based on a documented history, examination and laboratory 
results did not improve physicians’ performance, indicating that GAI 
could be less useful in situations lacking specific algorithms to guide 
reasoning84. Experiments with radiologists also suggest that clinicians 
undervalue and separate AI predictions from their own reasoning, 
limiting the benefits of AI predictions even where these predictions 
are highly accurate85. When the diagnostic reasoning of LLMs is spe-
cifically interrogated, deficiencies relative to experienced clinicians 
are revealed even where LLMs reach the correct answer, illustrating an 
important gap requiring further development and validation work86. 
The advent of reasoning models—which are specifically trained to 
better mimic logical thought processes recognizable by humans—has 
improved performance in complicated cognitive tasks, such as clinical 
reasoning; further improvement might be possible by teaching clini-
cians how best to prompt models to optimize responses10,69,87.

GAI clinical functions outside question-answering and provision 
of advice are relatively understudied80,88. However, researchers are 
applying foundation models to tasks that could improve healthcare 
quality. Foresight is a predictive clinical transformer trained with 
electronic health records (EHRs) to forecast future medical events, 
procedures and diagnoses with high accuracy61. Foresight 2 exhibits 
superior performance over an industrial foundation model (GPT-4), 
highlighting the value of using domain-specific data with smaller mod-
els, rather than relying on flagship proprietary platforms89. However, 
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Foresight’s development has been halted owing to concerns regarding 
unauthorized data use—highlighting the ongoing deliberation and 
negotiation of stakeholders to navigate preservation of data privacy 
while promoting innovation.

Other, better-studied GAI applications concern text-based chat-
bots, which are widely used in mental-health counseling and surgical 
follow-up30,31. These can be used with or without clinician administra-
tion, empowering patients to take charge of their care and obtain 
prompt access to psychological interventions90. Foundation models 
offer opportunities to develop chatbot platforms with greater capa-
bilities and flexibility91,92. However, substantial risks merit careful 
validation and monitoring. For instance, a report of a chatbot user 
committing suicide after being encouraged by GAI has highlighted 
significant concerns about the potential consequences of automated 
mental-health counseling93. A safer deployment plan could use GAI as 
an advisory tool for counselors or therapists, potentially increasing 
their efficiency and capacity to consult patients while retaining human 
oversight of dialogue94,95.

Medical education
Currently, clinicians in training learn through self-directed study and 
supported training with lectures, small-group tutorials and simulated 
or real patients. GAI can assist with all of these scenarios, leveraging 
its indefatigability and flexibility with regards to tone and level of dis-
course91. Medical students given feedback from GAI chatbots exhib-
ited superior performance to their peers who were working on the 
same training sessions but did not receive GAI feedback. Differences 
emerged after just four sessions—highlighting the potential of founda-
tion models to improve the provision of tailored clinical education96.

A recent rapid review of the literature base indicated that more 
papers opined on potential use-cases, rather than reporting experi-
mental tests of GAI in educational contexts97. Studies most commonly 
appraise GAI for personalized tutoring or as a medical search engine, 
for content development for educators and for simulation of patient 
interactions to facilitate low-stakes communication practice97. GAI 
‘tutors’ for anatomy education and case-based teaching have been 
developed, although there is limited robust validation to justify deploy-
ment for medical students or doctors in training98,99. Important risks 
include hallucination and propagation of inaccurate, harmful informa-
tion; this problem is more common when models are required to recall 
specific facts, such as supporting references100. In addition, to minimize 
any risk of compromising medical education, proving that students 
benefit from GAI is essential before mandating or endorsing its use.

Administrative assistance
Clinicians are plagued by growing administrative responsibilities, 
including documentation, billing, coding, scheduling and inventory 
management. Administrative burdens impact healthcare professionals 
by reducing job satisfaction and increasing the likelihood of errors that 
might affect patient care101. GAI can streamline these tasks and thereby 
improve how clinicians use their time. Because many of these tasks do 
not directly affect clinical care, it can be argued that validation require-
ments for GAI deployment in these settings should be lower81. However, 
the dramatically increased administrative burden that came with EHR 
deployment in healthcare demonstrates the critical importance of 
evidence-based deployment to ensure that workflow interventions 
improve clinicians’ experience at work102.

GAI excels at processing and producing text at superhuman scale 
and speed and might therefore help alleviate the documentation 
burden in healthcare. Potential applications range from on-demand 
chart review and note generation, to automation of EHR functions, 
such as generation of medical histories and clinical coding103. Studies 
of ambient GAI scribes—that process speech during consultations 
to produce draft documentation—suggest that clinicians highly 
approve of this use of technology, owing to work and time-savings, 

good quality of documentation and empowerment to be more present 
with patients104,105. GAI exhibits remarkable summarization ability, with 
one study demonstrating superiority to clinicians in terms of quality 
and efficiency106. In general, GAI appears to produce highly readable 
documentation that contains the most-important points that clinicians 
wish to emphasize, which has been tested in discharge summaries and 
informed-consent notes107,108.

Clinical coding is a labor-intensive administrative task and is cru-
cial for recordkeeping, public health, research and billing109. Because 
codes must conform exactly to dictionaries, such as the International 
Classification of Diseases 10, hallucination or other failures lead to 
unacceptable performance. Proprietary LLMs, including GPT-3.5, 
GPT-4, Gemini Pro and Llama 2, exhibit match rates lower than 50%, 
likely owing to the tokenization process during training—in which text 
is split into small units around the same size as words or clinical codes, 
but without preserving the intrinsic structure of the coding system109,110. 
To enhance performance, specific training and fine-tuning of sym-
bolic foundation models that process clinical codes as discrete units 
separate from natural language, is essenetial111. Downstream benefits 
of improved coding models could extend to other processes, such as 
audit, insurance claims, cost calculation and research, all of which 
depend on faithful documentation of diagnoses and intervention.

Three important risks must be considered with deploying GAI for 
administrative clinical tasks, even in instances in which performance 
seems superior to clinical experts. First, performance is liable to deg-
radation in non-English languages, largely because most pretrain-
ing and fine-tuning data are in English3,108. In addition, because LLMs 
struggle with ambiguity—in which source text is non-specific—as well 
as hallucinations or invented facts, delegation to GAI entails a risk of 
generating and promulgating false information. Mitigating strategies 
could include a human-in-the-loop, who has clinical oversight and 
responsibility; having another or the same GAI system verify outputs ‘in 
parallel’; or leveraging chains of GAI ‘in series’ to improve text quality112. 
Finally, owing to the idiosyncratic formatting and storage structures 
in EHRs, performance validated in ‘ideal’ test settings with reproduced 
data might not reflect real-world settings, particularly with different 
EHR platforms113. Ideally, models should be trained, fine-tuned and 
validated specifically in EHR platforms—which is challenging owing to 
information governance policies and the need for access to sufficient 
computing resources—to ensure that models can work effectively 
with patient data.

Primary research
GAI is accelerating biomedical research by automating key components, 
such as hypothesis generation, study design, data analysis and report 
writing. Various proof-of-concept implementations demonstrate GAI’s 
potential in research: appraising and designing new machine-learning 
architectures, linking with a robotic system to fully automate theoriz-
ing and proving structure–function relationships of proteins, and even 
designing therapeutics that could treat disease14,114,115. With the avail-
ability of automated machine learning, GAI systems might be able to 
autonomously construct deep-learning models for an unlimited vari-
ety of tasks52,116. GAI agents could thereby function as virtual research 
collaborators, broadening access to multidisciplinary expertise by 
taking advantage of their general training, which spans across all fields 
of academic study117. Not all of the impact of this automation will be 
positive: a dramatic increase in formulaic reports of studies analyzing 
publicly available datasets has been observed since the proliferation 
of GAI chatbots, with many of these studies being of poor quality and 
likely originating from paper mills and citation farms118.

Synthetic data produced by GAI could facilitate more-ambitious 
studies than are currently feasible. For instance, synthetic data might 
augment, or even replace, sensitive datasets derived from patient 
records, permitting research that can inform clinical practice—such 
as randomized control trials, which frequently struggle to enroll a 
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sufficient number of participants—or aid development of new inter-
ventions, such as computational systems that require data to train 
or validate20. However, there are potential problems with relying on 
synthetic data, which is, by definition, not collected from real patients. 
Synthetic data might not contain the full range of idiosyncratic dif-
ferences between individuals, and the performance of models that 
are trained exclusively on synthetic data tends to degrade with more 
training119. Because synthetic data are frequently derived from real 
text, imaging and other information from patients, they can contain 
patient-specific features and thereby release confidential information 
that could be identifiable120.

GAI has also formed the technical basis for new research tools that 
have permitted unprecedented research in molecular biology. Alpha-
Fold and its daughter models accurately predict protein structures and 
can now model protein–protein interactions on-demand; these investi-
gations previously required extensive laboratory experimentation7,8,121. 
ESM3 is a multimodal GAI model that reasons over protein sequences, 
structures and functions. ESM3 demonstrates abilities to engineer 
new proteins with similar functions to existing species and can be 
customized by users providing free-text prompts. ESM3 has been 
used to generate new fluorescent proteins whose structures are sig-
nificantly different from those of any existing species, indicative of 
genuine creation rather than imitation122. Evo and Evo 2 are genomic 
foundation models that leverage training on 300 billion nucleotides to 
generate and analyze DNA sequences at the whole-genome scale. Evo 
can thereby design and predict the efficacy of gene-editing systems 
such as CRISPR–Cas9, enhancing the potential of genetic engineering 
to lead to new medical therapies123,124. Use of data gathered from large 
numbers of experiments—many of which do not lead to published 
results—could conceivably lead to proliferation of foundation models 
that can augment laboratory and clinical research.

Finally, GAI can assist methodological research, literature review 
and report writing by accelerating literature searches, abstract screen-
ing and narrative syntheses of published results. LLMs exhibit compa-
rable performance in identifying papers relevant to a review question 
when compared with authors of Cochrane Library systematic reviews 
who have domain-specific expertise112. Various research models offer 
synthesis functionality to provide a preliminary overview of any field 
of inquiry, and comparative results suggest that these overviews are 
of comparable quality to summaries produced by humans, such as 
on Wikipedia articles125. Ongoing work will integrate these abilities to 
develop agentic models that can generate useful hypotheses and design 
and simulate methods to answer important scientific questions126,127. 
An early multi-agent ‘AI co-scientist’ built around Gemini 2.0 has dem-
onstrated the ability to identify new pharmacological targets, and 
even to design new drugs with promising in vitro activity, suggesting 
that GAI can accelerate biomedical discovery and development of new 
therapeutics128.

Evaluation and quality assurance
Establishing a robust evaluation framework that encompasses techni-
cal, clinical, regulatory and ethical aspects is essential for ensuring 
that GAI interventions are safe, effective and reliable, with appropriate 
return on investment to justify integration into existing or new work-
flows. A step-wise approach, analogous to the process of clinical train-
ing with increasing responsibility, provides an instructive framework129. 
Evaluation of clinical applications will likely need to go beyond mere 
‘task-based certification’ to encompass comprehensive frameworks 
that assess real-world clinical impact130.

Preclinical evaluation (research and development phase)
Standardized testing and artificial but instructive clinical scenarios 
may be used to prove that an application can provide useful assis-
tance, and that its functionality is not compromised at predictable 
‘pain points’. Most published studies involving GAI currently fall into 

these categories, with few studies involving real patient data, and even 
fewer being prospective clinical studies80,131.

For quantitative evaluation, conventional statistical measures, 
including accuracy, sensitivity, specificity, area under the receiver oper-
ating characteristic curve), precision, recall and F1 score, may be used 
for amenable tasks132. However, while task-specific algorithms can still 
be evaluated with conventional metrics, these methods frequently fail 
to capture the performance of foundation models. Qualitative assess-
ment may be required to provide a more holistic assessment of GAI 
applications (see Table 1 for examples of qualitative and quantitative 
metrics)78,79. These metrics could also be grouped as intrinsic metrics, 
extrinsic metrics and emerging metrics specific to multimodal clinical 
foundation models.

Intrinsic metrics use principles borrowed from the field of lin-
guistics to measure coherence and meaningfulness of output133. 
These methods may provide a statistical score based on overlapping 
words (for example, BLEU (Bilingual Evaluation Understudy), ROUGE 
(Recall-Oriented Understudy for Gisting Evaluation) or METEOR (Met-
ric for Evaluation of Translation with Explicit Ordering)), the frequency 
of characters that should be replaced to optimize coherency (for exam-
ple, Levenshtein distance) or sentence structure (for example, CIDEr 
(Consensus-based Image Description Evaluation))134–139. However, the 
objectivity and reliability of these algorithmic scoring systems comes 
at the expense of specificity to context and task.

Conversely, extrinsic metrics incorporate the context of the task 
and stakeholder perspectives to provide a more insightful score, gener-
ally at the expense of increased subjectivity and indeterminate scor-
ing133. For instance, expert human raters could be tasked with assessing 
GAI output with reference to one or more desired characteristics, as 
exemplified by the SCORE (safety, consensus, objectivity, reproduc-
ibility, explainability) framework140 (Table 1).

Alternatively, LLMs can themselves be used to apply extrinsic met-
rics, either by automating calculation of linguistic metrics (for example, 
BERT-SCORE141), or through more-sophisticated analysis of adherence 
to defined ground truths (for example, systematic reviews, clinical 
practice guidelines, reputable primary sources) with logical consist-
ency and relevance to the subject at hand142–147. There is growing interest 
in this role of ‘LLM as a judge,’ which offers a cost-effective, consistent 
and scalable approach to evaluation of complex task performance148. 
A recent validation of LLM-as-a-judge for evaluation of GAI-generated 
summaries of EHRs exhibited strong inter-rater reliability compared 
with expert human evaluators, even in cases that required advanced 
clinical reasoning and domain-specific expertise149. Further work is 
necessary to enable interpretability of automatic extrinsic metrics, as 
well as to develop validation benchmarks to justify their use.

With the emergence of multimodal foundation models, there 
is a demand for updated metrics to facilitate evaluation of clinical 
applications. For a comprehensive overview of foundational metrics 
for clinical GAI assessment, Abbasian et al. have provided a summary 
grouped under the headings of accuracy, trustworthiness, empathy 
and performance150. A multi-metric approach to evaluation is very 
likely necessary to overcome the limitations of any single system151. 
This can allow researchers to highlight strengths and weaknesses of a 
new application with greater specificity, helping to guide subsequent 
development work and anticipate issues with clinical deployment.

Clinical evaluation and implementation
Once an application has demonstrated good performance in test set-
tings and there is a clear plan for implementation, clinical validation is 
necessary. Initially, close oversight is recommended, particularly for 
systems that influence clinical decision-making129. For clinical interven-
tions that impact diagnosis, investigation or treatment, randomized 
clinical trials, which permit objective assessment of the effectiveness 
and safety of a new system, will be likely necessary to justify deploy-
ment 81. Many previous trials of AI-based interventions were relatively 
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small (often single-center), used non-clinical endpoints and provided 
limited information on demographics—making it difficult to evaluate 
generalizability152. Larger studies with clinical primary endpoints (for 
example, mortality or morbidity) and transparent reporting would 
represent the most convincing evidence supporting deployment of 
GAI. Once validated robustly, autonomous deployment with less direct 
oversight can be planned, with structured revalidation and surveillance 
for potential adverse consequences, analogous to longitudinal stage 4 

clinical trials129. To improve the standard of study design, conduct and 
reporting, many reporting guidelines—some specific to GAI—have been 
developed through expert consensus-seeking exercises, such as those 
published by the EQUATOR Network153–156. In addition, the development 
of a multicentric benchmarking framework (MedHELM) by researchers 
at Stanford University allows researchers to evaluate their models on 
a broad range of real-world tasks157.

For non-clinical interventions aimed at improving clinicians 
productivity’ or quality of working life, it could be argued that ran-
domized trials are not necessary81. For instance, models that draft 
correspondence while clinicians retain responsibility and oversight 
can be evaluated using extrinsic metrics79. However, prospective 
randomization is the most definitive way to analyze causal relation-
ships related to a new intervention, and comparable A/B testing has 
been well established in adjacent fields158,159. These types of study 
are important before deploying GAI systems at scale, because even 
well-intentioned technological ‘solutions’ can inadvertently lead to 
problems such as inefficiency, degraded quality of documentation 
and clinician burnout160.

Thorough evaluation of concerns about bias and fairness is essen-
tial for clinical GAI applications, to avoid inequitable benefits and 
potential harm to patients, for example, due to algorithmic bias as a 
result of under-representation of marginalized groups, or inequitable 
access to beneficial interventions owing to socioeconomic factors or 
variable mistrust in GAI among different communities. A growing num-
ber of initiatives to promote active consideration and action to remedy 
these inequities are available to support clinicians, researchers and 
policymakers, including STANDING-TOGETHER, FUTURE-AI, CARE-AI 
and SCORE161–163. Through standardization of high-quality work in these 
domains, there is hope that the field as a whole will advance in address-
ing problems concerning bias and fairness. A promising approach is 
the creation of shared benchmarking datasets that test performance 
in specific clinical tasks.

In addition to quantitative and qualitative assessments of GAI 
model performance, it is important to evaluate application safety in 
terms of the risks that deployment entails. These risks vary with the 
type of model (closed versus open source), data input (and related 
consent or de-identification procedures) and plan for ongoing moni-
toring to exclude performance drift. Finally, health economic analysis 
is an essential precursor to deployment—particularly in view of the 
substantial resource requirement for many GAI systems164. Many GAI 
systems require justification of considerable upfront investment for 
information technology, manpower, governance and ongoing updates. 
Understanding the cost of implementation and relating this to other 
potential uses of resources ensures that decisions are rationalized on 
the basis of what benefits patients most. Considering the anticipated 
return of investment in direct and indirect domains is important—
particularly for interventions that substantially change workflows or 
patient outcomes.

Future opportunities
Although GAI has revolutionized many industries, including finance, 
education, retail, transportation and technology, uptake in medicine 
has been relatively slow165. This is likely in part owing to the difficulty 
in engineering models with sufficient performance to match that of 
clinicians in a complicated and frequently ambiguous field, which also 
depends on the trust of patients and practitioners, without leading to 
adverse or inequitable outcomes. Research and development efforts 
should be directed in four broad areas to translate technology into 
useful clinical applications.

First, although much attention has been placed on model devel-
opment, subsequent deployment in real-world settings is relatively 
understudied80,152,166. Robust clinical validation in pragmatic trials and 
ongoing monitoring—to mitigate any performance degradation and 
unintended consequences of deployment—will be essential81. Second, 

Table 1 | Quantitative and qualitative evaluation metrics for 
GAI

Metricsa Purpose Units

Quantitative evaluation

AUROC (area under the 
receiving operating 
curve)

To evaluate the model’s ability to 
discriminate classes across different 
thresholds.

0 to 1

AUPRC (area under the 
precision-recall curve)

To evaluate the model’s ability to 
discriminate the positive (usually 
minority) class.

0 to 1

Precision (positive 
predictive value)

The proportion of model-identified 
elements that are relevant.

0 to 1

Sensitivity (recall) The proportion of true positive 
elements that are correctly identified 
by the model.

0 to 1

Specificity The models’ ability to correctly 
identify elements without a condition 
(true negatives).

0 to 1

F1 score A metric combining precision and 
recall.

0 to 1

Dice coefficient Also known as the Dice similarity 
coefficient, this statistical metric 
is used to measure the similarity 
between two sets.

0 to 1

BLEU Evaluates machine translation quality 
by measuring n-gram precision: how 
many n-grams (sequences of words) 
in the AI-generated text appear in the 
reference text.

0 to 1

ROUGE Designed for text summarization. 
Measures overlap between 
AI-generated text and reference text 
using recall.

0 to 1

METEOR Evaluates machine translation 
quality incorporating linguistic 
features and placing more emphasis 
on recall.

0 to 1

BERT-SCORE Computes a similarity score between 
AI-generated and reference text 
using contextual embeddings 
(semantic equivalence).

0 to 1

Qualitative evaluation

Safetyb Evaluate the degree of hallucination.

Likert 
Scale 1–5
1, Strongly 
disagree
2, Disagree
3, Neutral
4, Agree
5, Strongly 
agree

Consensus and contextb Response is aligned with clinical 
evidence, professional consensus 
and context.

Objectivityb Response is objective and unbiased 
against any condition, device or 
demographic.

Reproducibilityb Contextual consistency of responses 
after repeated generation to the 
same question.

Explainabilityb Justification of response, including 
reasoning process and additional 
supplemental information.

This list includes metrics that are frequently used in existing studies, but it is not exhaustive. 
aLinguistic metrics are not strictly distinct from one other and can cover overlapping aspects 
of model evaluation bThere is currently no gold-standard evaluation method for these metrics.
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opaque and unclear reporting is a widespread concern. To maximize 
transparency, methodology and datasets used in GAI model develop-
ment should ideally be made available, detailing which models were 
used, how they were customized and what infrastructure was used to 
deploy them. This will allow researchers to replicate results and build 
on other teams’ work155,167. Third, improving AI literacy will enable clini-
cians and patients to make the best use of GAI tools, but this requires 
targeted efforts from medical schools and throughout clinical train-
ing69. Finally, comprehensive and coherent governance structures are 
required to allow developers to invest in GAI development and deploy-
ment without fears regarding future permissibility. The European 
Union Artificial Intelligence Act provides an early example, requiring 
providers of high-risk AI systems to report serious incidents to active 
market surveillance authorities168.

GAI technology continues to evolve with new advancements, 
such as large concept models, allowing for superior reasoning and 
contextual understanding169, and agentic GAI with greater autonomy170. 
Further work is necessary to develop GAI applications that integrate 
into existing clinical workflows, address ethical and privacy concerns, 
as well as to agree a system of governance that preserves incentive 
structures for researchers and developers while ensuring that patients 
remain safe and clinicians benefit from evidence-based changes to 
their work patterns.
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