
Nature Reviews Neurology

nature reviews neurology https://doi.org/10.1038/s41582-025-01142-2

Perspective  Check for updates

Parkinson disease is a fatty acidopathy
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Abstract

On the basis of extensive mechanistic research over three decades, 
Parkinson disease (PD) and related synucleinopathies have been 
proposed to be combined proteinopathies and lipidopathies. 
Evidence strongly supports a physiological and pathogenic interplay 
between the disease-associated protein α-synuclein and lipids, 
with a demonstrable role for lipids in modulating PD phenotypes 
in the brain. Here, we refine this hypothesis by proposing PD to be 
a disease specifically involving metabolic dysregulation of fatty 
acids, a ‘fatty acidopathy’. We review extensive findings from many 
laboratories supporting the perspective that PD centres on fatty acid 
dyshomeostasis — alterations in the fatty acid-ome — as the critical 
feature of lipid aberration in PD and other α-synucleinopathies. 
This construct places transient α-synuclein binding to fatty acid side 
chains of cytoplasmic vesicles as a principal contributor to the biology 
of PD-relevant α-synuclein–membrane interactions. We propose that 
α-synuclein–fatty acid interactions in the fatty acid-rich brain are 
interdependent determinants of the gradual progression from 
neuronal health to PD, with attendant therapeutic implications.

Sections

Introduction

Phospholipids: headgroups 
and fatty acids determine 
α-synuclein–membrane 
interactions

α-Synuclein affects the 
membrane fatty acid-ome

Fatty acid binding proteins 
and α-synuclein

α-synuclein–membrane 
interactions

Human genetics connects PD 
to the fatty acid-ome

A biomarker outlook

Therapeutic opportunities

Conclusions

1Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and 
Harvard Medical School, Boston, MA, USA. 2These authors contributed equally: Saranna Fanning, Dennis Selkoe. 

 e-mail: sfanning2@bwh.harvard.edu; dselkoe@bwh.harvard.edu

http://www.nature.com/nrneurol
https://doi.org/10.1038/s41582-025-01142-2
http://crossmark.crossref.org/dialog/?doi=10.1038/s41582-025-01142-2&domain=pdf
http://orcid.org/0000-0003-4638-1331
http://orcid.org/0000-0001-8846-9767
mailto:sfanning2@bwh.harvard.edu
mailto:dselkoe@bwh.harvard.edu


Nature Reviews Neurology

Perspective

nervous system24–26. Importantly, diverse lipids have roles in devel-
opment, energy storage, signal transduction, receptor activation, 
neurotransmission, and membrane structure and integrity. Increasing 
evidence suggests that several chronic neurological disorders result 
in considerable part from lipid dysregulation, including Huntington 
disease27,28, Alzheimer disease29–31, epilepsy32 and PD4. CNS lipid metabo-
lism, including the uptake and subcellular distribution of fatty acids, is 
tightly regulated33,34. Membrane phospholipids comprise saturated and 
unsaturated fatty acid chains of differing chain lengths and degrees of 
unsaturation, thereby determining membrane fluidity and function. 
These membrane dynamics regulate protein–protein and protein–lipid 
interactions (for example, α-synuclein–membrane binding).

Phospholipids: headgroups and fatty acids 
determine α-synuclein–membrane interactions
Almost 100 residues of the 140-amino acid α-synuclein protein are 
believed to contribute to its membrane binding17,35–38. Several famil-
ial PD-causing missense mutations are located within this region, 
including A30P, E46K, H50Q (although a study suggests that H50Q 
was identified in population databases without enrichment in PD com-
pared with healthy individuals39), G51D and A53T. These substitutions 
affect α-synuclein–membrane binding, some with opposing effects40–45 
(Fig. 1). α-Synuclein–membrane binding directly affects α-synuclein 
conformation, including the interconversion of monomeric and multi-
meric forms of α-synuclein and its occasional higher-order aggregation 
during ageing and in disease38,46 (reviewed elsewhere47–49 and discussed 
further subsequently) (Fig. 1).

Binding of α-synuclein to the outer surfaces of vesicle membranes 
and its resulting switch in conformation from ‘natively unfolded’ to 
α-helix-rich is partially determined by phospholipid headgroups50–52 
(reviewed elsewhere53–55). However, headgroups are not the sole or nec-
essarily primary determinant of membrane binding. α-Synuclein also 
binds esterified fatty acids and free fatty acids56–59. This property seems 
to be particularly important for α-synuclein–membrane interactions at 
synapses (discussed in detail subsequently). A study using small, highly 
curved unilamellar vesicles and 19F-NMR concluded that fatty acids 
contribute substantially to α-synuclein–membrane binding60. Fatty 
acids can differentially modify α-synuclein aggregation in vitro, includ-
ing eicosapentaenoic acid (20:5n3) and dihomo-gamma-linolenic acid 
(20:3n6) lengthening the lag phase and linoleic acid (18:2n6) shorten-
ing the lag phase61. In addition to altering α-synuclein aggregation, 
differing fatty acid chain lengths and degrees of saturation can alter 
the toxicity and secondary structure of α-synuclein, depending on the 
α-synuclein mutant type (for example, wild-type, A30P or A53T)62. 
However, such studies using pure components in vitro cannot reflect 
the complex milieu of the cytoplasm.

Headgroups contribute, including on the basis of their charge, 
given that α-synuclein preferentially binds headgroups of negative 
over neutral charge17,60,63–65. However, interaction strength varies even 
for phospholipid headgroups of the same charge, reinforcing the idea 
outlined earlier that fatty acids contribute substantially to interactions. 
Membrane dynamics are determined by unsaturated versus saturated 
fatty acid nature and are a determining factor for α-synuclein binding60. 
α-Synuclein has a greater binding preference for polyunsaturated fatty 
acids (PUFAs, such as docosahexaenoic acid (DHA) (22:6n3) and ara-
chidonic acid (20:4n6))52,57,66. This binding preference probably stems 
from the increased chain lengths and double bonds associated with 
PUFAs altering membrane dynamics more extensively than monoun-
saturated fatty acids (MUFAs)67. Fatty acid chain length and saturation 

Key points

	• Parkinson disease (PD) and related α-synucleinopathies have 
increasingly been considered lipidopathies as well as proteinopathies.

	• Extensive evidence reviewed herein supports both physiological 
and pathogenic interplay between α-synuclein and fatty acids as 
determinants of progression from neuronal health to PD.

	• α-Synuclein homeostasis is affected by membrane fatty acid 
composition, and dysregulated fatty acid metabolism alters transient 
α-synuclein membrane binding, including at synaptic vesicles.

	• We propose that PD is a fatty acidopathy, with fatty acid side chain 
dyshomeostasis being a chief contributor to lipid aberrations in 
synucleinopathies.

	• The fatty acid-ome holds promise for identifying and validating  
PD biomarkers and therapeutic targets.

Introduction
Parkinson disease (PD) and other human synucleinopathies have been 
proposed to be lipidopathies as well as proteinopathies1–3. This asser-
tion is founded on several types of data: first, lipidomic analyses of 
patients with PD versus control individuals indicating that lipids are 
altered in the brain, cerebrospinal fluid and plasma of patients with 
PD; second, genetic risk loci for synucleinopathies in lipid pathways 
(reviewed elsewhere1,2,4); third, identification of abundant lipids and/or 
membranes in the α-synuclein-rich Lewy bodies that are the hallmark 
of PD5–10; fourth, physiological and pathogenic interactions between 
α-synuclein and membrane phospholipids that regulate its confor-
mation and assembly state11–17; and fifth, evidence that α-synuclein 
can alter cellular lipid homeostasis18–23. Collectively, these multiple 
lines of evidence strongly support an α-synuclein–lipid interplay 
physiologically and a major role for lipids in mediating PD phenotypes 
in the brain.

The evidence of lipid abnormalities in PD and other synucleinopa-
thies continues to grow. We now refine this hypothesis, proposing PD to 
be a disease more specifically of fatty acid metabolic dysregulation: 
a ‘fatty acidopathy’. This Perspective centres on fatty acid dyshomeo-
stasis, that is, alterations in the fatty acid-ome (the complete collec-
tion of fatty acids in the cell or system), as the critical feature of lipid 
aberration in α-synucleinopathies. Here, we explain the biological and 
genetic basis for our hypothesis, with an emphasis on the transient 
binding of α-synuclein to fatty acids of various lipids, thereby focusing 
on disease-related α-synuclein–membrane interactions at synaptic 
vesicles and certain other membranous organelles. We position fatty 
acids as the predominant contributor to the biology of PD-relevant 
α-synuclein–membrane interactions, postulating that these interac-
tions are interdependent determinants of the movement from neuronal 
health to PD.

The brain is rich in fatty acids. These fatty acids are incorporated 
into lipids such as neutral lipids and phospholipids as well as free fatty 
acids. Throughout this Perspective, we refer to fatty acids specifically 
as those fatty acids incorporated into lipids; free fatty acids are spe-
cifically noted as such. Fatty acids and free fatty acids make a major 
contribution to the extensive diversity and complexity of lipids in the 
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affect membrane α-synuclein dwell time, α-synuclein accumulation 
at membranes and ultimately α-synuclein aggregate formation54,55.

Longer and more unsaturated fatty acids (such as PUFAs) can 
promote α-synuclein aggregate formation and cytotoxicity, whereas 
saturated fatty acids decrease α-synuclein aggregation56,58,68–70. 

Interestingly, the PUFA DHA (22:6n3) interacts with α-synuclein 
to alter the interaction environment by concomitantly increasing 
DHA-containing phospholipids and depleting non-DHA containing 
phospholipids. As a PUFA, DHA forms more lipid packing defects in 
membranes than do MUFAs and saturated fatty acids71 and has been 
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Fig. 1 | α-Synuclein–membrane interactions. a, Under conditions without  
PD or synucleinopathy, unfolded α-synuclein monomers transiently bind to 
and dwell on membranes, acquiring α-helical structure and forming native 
α-synuclein helical tetramers. b, With PD or synucleinopathy, abnormal 
α-synuclein (left; for example, harbouring familial PD α-synuclein mutations) 
and/or abnormal membrane fatty acid composition (right; sometimes 

resulting from effects of α-synuclein overexpression) can result in altered 
α-synuclein–membrane dwell time, with excessive or deficient transient binding. 
This dysregulation of assembly and disassembly might be a foundation for 
α-synuclein fibrillar aggregates. αS, α-synuclein; duplic., duplication; MUFA, 
monounsaturated fatty acid; PD, Parkinson disease; PUFA, polyunsaturated fatty 
acid; triplic., triplication; UTR, untranslated region.
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shown to increase α-synuclein-mediated vesicle clustering72. Fatty acid 
composition influences the physiological and chemical properties of 
membranes, such as permeability, fusions and fluidity, in turn affecting 
protein–lipid and protein–protein interactions73,74. Notably, a contribu-
tor to α-synuclein neuropathology in the mutant glucocerebrosidase 
form of PD is an accumulation of longer chain (≥C22) fatty acids75.

There is further complexity and specificity to fatty acid com-
position in determining α-synuclein–membrane binding. Fatty acid 
chain combinations are important, with some individual fatty acid 
side chains of phosphatidylserine not supporting α-synuclein bind-
ing, whereas a combination of PUFA (20:4 or 22:6) with MUFA (18:1) 
side chains facilitate α-synuclein interaction52. This observation might 
result from α-synuclein recognizing a complex and physiologically 
relevant fatty acid composition. In considering the role of headgroup 
versus fatty acids in α-synuclein–membrane binding, a phosphati-
dylserine headgroup can be swapped for a phosphatidylcholine 
headgroup, with phosphatidylcholine 20:4 and phosphatidylserine 
18:1 facilitating α-synuclein binding52. This complexity suggests that 
fatty acids are a leading factor in mediating α-synuclein–membrane 
interactions, probably by determining membrane phase transitions52. 
Ultimately, fatty acid composition helps to determine the dynamics 
of membranes with which α-synuclein interacts in the cytoplasm. 
Thus, fatty acid side chain identity seems to be a critical factor in both 
α-synuclein physiology and synucleinopathy.

α-Synuclein affects the membrane fatty acid-ome
The combined effect of α-synuclein expression level and its regulation 
of free fatty acid uptake for incorporation into membranes helps to 
regulate membrane phospholipid composition, contributing to 
α-synuclein membrane dwell time and thereby influencing α-synuclein 
folding and conformation (discussed subsequently).

Expression of α-synuclein
α-Synuclein is the primary proteinaceous component of Lewy 
bodies5,6,10,76,77 and affects cytoplasmic fatty acid composition. SNCA 
which encodes α-synuclein, is a genetic risk locus for PD and dementia 
with Lewy bodies (DLB)42,78–86 Expression of human wild-type or familial 
PD mutant α-synuclein increases the levels of MUFAs in human neu-
rons, yeast, primary rat cortical neurons and mouse models of PD18,87–89. 
Patient-derived induced pluripotent stem cell (iPSC)-derived neurons 
expressing familial PD mutations, including α-synuclein locus triplication 
and A53T α-synuclein, also have increased levels of MUFAs90,91.

In turn, conditioning cells in MUFAs (particularly oleic acid (18:1)) has 
the following effects: 1, exacerbates α-synuclein cytotoxicity; 2, decreases 
the physiological α-synuclein tetramer:monomer ratio in human neu-
rons; 3, increases α-synuclein inclusion formation in neuroblastoma cells 
expressing an ‘amplified’ E46K familial PD mutation (‘3K’ α-synuclein); 
4, increases caspase 3/7 activity (indicating increased apoptosis); and  
5, increases levels of pSer129 phosphorylated α-synuclein18,92,93.

The increase in MUFAs caused by α-synuclein expression is specific 
in that chain-length-matched saturated fatty acids (that is, stearic acid 
(18:0) and palmitic acid (16:0)) are not increased in these cellular mod-
els and do not induce PD-relevant neuronal phenotypes18,92. Increased 
stearoyl coenzyme A (CoA) desaturase activity is hypothesized to be 
the mechanism through which aberrant MUFA increase occurs. Fatty 
acid synthase (FASN) might also contribute to increased levels of cellu-
lar MUFAs by producing increased levels of saturated fatty acids that 
are then desaturated by stearoyl CoA desaturase (SCD) (discussed 
subsequently).

Analyses of mice with genetic deletion of α-synuclein did not 
identify a change in total phospholipid mass or in the amounts of 
major phospholipid headgroups, but it did reveal changes in fatty 
acid composition, namely, increased levels of MUFAs and decreased 
levels of PUFAs (with the exception of increased 18:2n6)23. Genetic 
deletion of Snca resulted in a 16% decrease in PUFA:MUFA ratio23. 
Partial similarities in fatty acid phenotypes for knockout and over-
expression of α-synuclein might be analogous to the finding that 
divergent membrane binding of both E46K α-synuclein and G51D 
α-synuclein can be ameliorated by correcting fatty acid saturation 
using an SCD inhibitor94. Thus, α-synuclein expression, overexpression 
and deletion data all clearly support the proposition that α-synuclein 
expression alters cellular fatty acid composition. This regulation at the 
level of expression of the protein is just one way in which α-synuclein 
determines membrane fatty acid composition.

Uptake and incorporation
α-Synuclein further regulates membrane fatty acid composition 
through a role in fatty acid cellular uptake and incorporation19,20,22,95,96. 
For example, mice lacking α-synuclein have reduced uptake and incor-
poration rates of palmitic acid (16:0) and arachidonic acid (20:4) into 
brain phospholipids19,22. Phospholipids in astrocytes derived from 
α-synuclein-ablated mice have decreased esterification of palmitic 
and arachidonic acid, and trafficking of these fatty acids is decreased 
in specific phospholipid classes, such as phosphatidylinositol95. 
Importantly, specificity in α-synuclein-driven deficiency of fatty 
acid uptake and incorporation is observed. For example, deletion of 
α-synuclein did not affect DHA (22:6(n−3)) uptake but did increase 
incorporation of DHA–CoA into specific phospholipids, thereby 
affecting lipid turnover20.

Fatty acid binding proteins and α-synuclein
Fatty acid binding proteins (FABPs) are a functional class of certain 
relatively short polypeptides that have been associated with synucle-
inopathies through direct and indirect connections with α-synuclein 
(reviewed elsewhere97). Serum levels of FABPs are higher in patients 
with PD dementia (PDD) or DLB than in control individuals or in 
patients with Alzheimer disease98. FABPs have been investigated as 
biomarkers for PD, PDD and DLB97,99–101. High FABP3 levels in cerebro-
spinal fluid were reported to be a prognostic biomarker for developing 
PD; moreover, levels of FABP3 protein are increased in the substantia 
nigra of post-mortem brains from individuals with PD98,102,103. Increased 
levels of cellular FABPs might be a direct or indirect response to 
α-synuclein dyshomeostasis and dysregulated fatty acid balance in 
PD. α-Synuclein associates with FABPs such as FABP3 and FABP7, and 
FABPs can alter α-synuclein aggregation and toxicity104–109. FABP3 is 
present in neurons and colocalizes in α-synuclein aggregates in the 
brains of individuals with PD; notably, FABP3 does not colocalize 
with phospho-tau or amyloid β-protein in the brains of individuals 
with Alzheimer disease107. FABP3 deletion prevents MPTP (N-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine) from inducing α-synuclein 
aggregation in dopaminergic neurons105. Furthermore, an FABP3 ligand 
(MF1(4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy)buta-
noic acid)) reduces α-synuclein aggregation and loss of dopaminergic 
neurons in MPTP-treated mice110.

It has been hypothesized that α-synuclein could itself be a FABP 
that transports fatty acids between the aqueous cytosol and phospho-
lipid membranes (premised on similarities in structural and biochemi-
cal properties)57. The lipid-binding nature of α-synuclein, coupled with 
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its α-helical structure upon lipid interaction and its amino acid length 
(140 residues), support the hypothesis that α-synuclein is a FABP57. 
Furthermore, 7 of 11 amino acids in the lipid-interacting repeat domain 
are shared between α-synuclein and apolipoproteins. The C terminus 
of α-synuclein interacts with membranes through interaction with 
these motifs. Other studies suggest that α-synuclein might not be a 
classical FABP, as its binding properties do not sufficiently resemble 
those of FABPs58. Differing spectra of α-synuclein to that of FABPs in 
high-resolution NMR spectroscopy indicate that the high-affinity 
binding of fatty acids to α-synuclein is different from that of FABPs, 
suggesting that α-synuclein is unlikely to be an intracellular transporter 
of free fatty acids58. Rather, α-synuclein seems to principally elicit its 
action with fatty acids through its membrane interactions.

α-synuclein–membrane interactions
Effects on α-synuclein conformation
α-Synuclein folding (and thereby its misfolding in PD) seems to be 
principally determined by α-synuclein–membrane interactions 
(Fig. 1). Misfolding of α-synuclein might promote its aggregation 
and, ultimately, formation of Lewy bodies. α-Synuclein was originally 
described as being a natively unfolded monomer and later shown to 
acquire α-helical structure upon membrane binding17. Endogenous 
α-synuclein examined using non-denaturing conditions from eryth-
rocytes (which have α-synuclein levels rivalling those of neurons), 
neural cells and brain tissue was unexpectedly discovered to also exist 
as an α-helical tetramer, and this form is far less prone to aggrega-
tion in vitro111. Natively unfolded cytosolic monomers are hypoth-
esized to transiently bind to highly curved lipid vesicle membranes 
in the cytoplasm to become α-helical, as originally shown by mixing 
unfolded α-synuclein monomers with small unilamellar vesicles in 
vitro15,112. Four of these α-helical α-synuclein monomers can apparently 
assemble transiently into an energetically favoured α-helical tetramer, 
although the biophysical mechanism underlying this assembly  
is unknown113–117.

Natural disassembly or experimental depolymerization of physio-
logical tetramers in cells leads to accumulation of unfolded monomers; 
this cycling of the tetramer:monomer (T:M) equilibrium occurs physi-
ologically in cells. Destabilization of tetramers with age or in PD and 
DLB is hypothesized to enable more monomers to accumulate, misfold 
and assemble into β-sheet-rich aggregates111,113–116. Substantial experi-
mental evidence indicates a causal relationship between α-synuclein 
T:M disequilibrium and PD-like phenotypes, as all familial PD-causing 
missense mutations tested to date consistently reduce the α-synuclein 
T:M ratio and increase levels of aggregation-prone monomers in cul-
tured cells and in transgenic mouse brain tissue70,91,113,115,118–123. As an 
unexpected finding and new concept, the physiological α-synuclein 
T:M hypothesis has incurred healthy debate, with some laboratories 
continuing to focus solely on unfolded monomeric α-synuclein116,124. 
Similarly, the chronically elevated α-synuclein levels seen in patients 
with familial PD α-synuclein triplication might saturate unknown 
tetramer-stabilizing cytoplasmic factors (possibly fatty acids or mem-
brane vesicles) to allow accumulation of excess unfolded monomers 
prone to Lewy-type aggregation111,115. In short, α-synuclein–membrane 
interactions — regulated in part by membrane fatty acid composition — 
are involved in α-synuclein T:M equilibrium and thus might contribute 
to the aggregation of excess monomers into α-synuclein fibrils, which 
accumulate in disease63,68,125,126 (reviewed elsewhere127).

On the basis of the many studies cited earlier, we postulate that 
re-establishing normal membrane fatty acid composition could help to 

restore native α-synuclein helical conformation and membrane dwell 
time and thus α-synuclein assembly into metastable tetramers. Similar 
to all proteins, α-synuclein's structure and conformation help to deter-
mine its function, and altered conformation and assembly might 
ultimately lead to synucleinopathy.

Impact of membrane curvature
α-Synuclein has particular affinity for small, highly curved 
membranes15,17,68,112,128–132 such as those of synaptic vesicles. Increased 
membrane curvature favours increased α-synuclein associa-
tion15,64,112,133. α-Synuclein senses curvature129,133–135 and can also mod-
ify membrane curvature12,15,135–141. Lipid headgroup size contributes 
to membrane curvature142,143, but curvature is also dictated by mem-
brane fatty acid composition. Membrane curvature involves packing 
defects15,128,137, significantly dictated by fatty acids, which α-synuclein 
can modify directly20,144 or indirectly by affecting fatty acid uptake 
(covered earlier)19. Increased levels of unsaturated lipids result in 
packing defects145. Reducing levels of unsaturated fatty acids (such 
as MUFAs), for example, by reducing SCD, reduces the degree of tran-
sient α-synuclein–membrane association18,92. α-Synuclein membrane 
dwell time is an important determinant of α-synuclein conforma-
tion. A longer membrane dwell time and/or increased α-synuclein–
membrane interaction (for example, α-synuclein triplication resulting 
in more total α-synuclein and hence more α-synuclein at membranes, or 
E46K α-synuclein mutant having longer dwell time owing to increased 
positive charge) or a shorter membrane dwell time and/or less mem-
brane interaction (for example, A30P and G51D mutant α-synuclein, 
both of which have lower affinity for membrane binding owing to 
increased negative charge) have both been shown to have adverse  
consequences12,40,41,44,131,146–152 (Fig. 1).

Interactions at synaptic vesicles
α-Synuclein contributes to regulating vesicle recycling153,154 (Fig. 2). 
Hence, the α-synuclein–membrane interaction is particularly relevant 
to physiology and disease at synaptic vesicle membranes155. α-Synuclein 
is enriched at presynaptic terminals35,37,132,153,156, colocalizes with and 
binds synaptic vesicles118,157 and participates in SNARE (soluble NSF 
attachment protein receptors) assembly16,70,158–169. α-Synuclein might 
control SNAREs without directly interacting with them, instead 
interacting with a SNARE ‘regulator’, arachidonic acid (20:4), which 
modulates the structure and function of both α-synuclein and SNARE 
proteins (and ultimately SNARE complex formation)155,170. This pro-
cess contributes to α-synuclein–synaptic vesicle interactions and 
trafficking. Docking of α-synuclein to synaptic vesicles is influenced 
by vesicle membrane composition51. α-Synuclein–membrane bind-
ing influences synaptic vesicle size, location, structure, recycling and 
neurotransmitter release159,166,171–178 (Fig. 2).

It is well established in vitro that synaptic vesicles with lipid pack-
ing defects attract α-synuclein14,128,130,133. The combination of phos-
pholipid membrane negative charge with the highly curved nature 
of synaptic vesicles is ideal for α-synuclein binding. α-Synuclein also 
regulates the clustering of synaptic vesicles164,179,180, probably through 
its membrane interactions. α-Synuclein has great affinity for negatively 
charged lipid headgroups17,112. In this context, synaptic vesicles are 
enriched in phosphatidylserine headgroups65,181,182, of which a large 
percentage contains a PUFA chain66. However, as discussed, head-
groups might not be as critical to α-synuclein binding to the external 
surface as fatty acid side chains. Interestingly, fatty acids (for example, 
DHA) are enriched at synaptic termini183–190. Establishing the fatty acid 
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composition of synaptic membranes for PD and non-PD vesicles will 
be important for mechanistic understanding of disease and for inves-
tigating α-synuclein–membrane interactions specifically at synaptic 
vesicles.

Human genetics connects PD to the fatty acid-ome
Beyond the familial PD α-synuclein missense mutations outlined 
earlier, several fatty acid-specific risk loci identified in genome-wide 

association studies (GWASs) alter membrane composition, modulating 
α-synuclein interactions with fatty acid tails. Systematic GWAS data 
analysis has identified lipids as common among several PD pathogenic 
processes4,82,86. Several genes in lipid metabolism pathways have been 
identified as PD risk loci81,191 (Table 1). Additionally, the kinase gene 
LRRK2, a PD risk locus, is now being considered for its association 
with lipid pathways. Aberrant pSer129 α-synuclein and α-synuclein 
T:M ratio of both G2019S and R1441C LRRK2 mutations in patient 
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Fig. 2 | α-Synuclein–membrane binding influences neurotransmitter 
release. Restoring synaptic vesicle membrane dynamics by re-establishing 
membrane fatty acid composition is a rational therapeutic approach to correcting 
α-synuclein–membrane interactions and restoring synaptic vesicle phenotypes 
such as docking, priming, fusion and neurotransmitter release. Under disease 
conditions (top), α-synuclein dyshomeostasis and/or fatty acid imbalance can 
modify membrane fatty acid composition and therefore membrane fluidity 
and curvature dynamics. Membranes with aberrant fatty acid composition (for 
example, with increased MUFAs) can alter α-synuclein–membrane interactions 
at synaptic vesicles. Such interactions at synaptic vesicles ultimately determine 
neurotransmitter release. Aberrant synaptic vesicles (elongated, irregular 
diameter) result in dysfunctional docking (in the active zone), priming, fusion 

and neurotransmitter release. Correcting membrane fatty composition corrects 
membrane dynamics and α-synuclein–membrane interactions (bottom). 
Aberrant membrane fatty acid composition could be corrected by targeting fatty 
acid synthesis (FASN or SCD inhibition) to reduce levels of abnormal MUFAs. 
Targeting HSL (HSL reduction) reduces free fatty acid generation through lipid 
droplet degradation. This maintains MUFAs in the lipid droplet, diglyceride (DG) 
and triglyceride (TG) forms resulting in fewer MUFAs in phospholipid membranes. 
Balancing elevated levels of unsaturated fatty acids via diets enriched in saturated 
fatty acids might also correct membrane dynamics. αS, α-synuclein; FA, fatty acid; 
FASN, fatty acid synthase; GWAS, genome-wide association study; HSL, hormone-
sensitive lipase; MUFA, monounsaturated fatty acid; PD, Parkinson disease; PUFA, 
polyunsaturated fatty acid; Sat., saturated; SCD, stearoyl coenzyme A desaturase.

http://www.nature.com/nrneurol


Nature Reviews Neurology

Perspective

iPSC-derived neurons was corrected by SCD inhibition119 (although 
this does not on its own prove that LRRK2-related PD acts principally via  
lipid pathways).

Importantly, SNCA itself is a PD risk locus80,81,83,85,191–196, and, as 
outlined earlier, binds specific fatty acids and modulates fatty acid 
metabolism and uptake. Several PD risk loci specifically determine 
fatty acid composition (Table 1). Interestingly, these cover the full 
suite of synthesis, type determination, localization and membrane 
composition. The first of these is fatty acid synthase (FASN), responsible 
for de novo fatty acid biosynthesis from acetyl-CoA and malonyl-CoA 
with NADPH197. Indeed, the lipid-related risk locus SREBF1 (Table 1) 
can regulate expression of FASN198. Following fatty acid synthesis, the 
next determinant of membrane composition is species type. Initially, 
synthesized fatty acids are elongated to differing chain lengths by 
elongases. The fatty acid elongase gene ELOVL7 is a PD risk locus86,199; 
transcriptional analysis has revealed that regional levels of ELOVL7 
mRNA correlate with Braak PD stage200. ELOVL7 is particularly active 
in elongating fatty acids of C18 chain length201, thereby determining 
membrane fatty acid composition.

Desaturation is another fatty acid modification mechanism. To the 
best of our knowledge, a desaturase has not yet been identified as a PD 
risk locus. However, the risk locus SREBF1 (noted above) is a transcrip-
tional activator of SCD18,87,88,92. Another determinant of membrane 
fatty acid composition is governed by lipases that act on membrane 
phospholipids, hydrolysing acyl and phosphate esters. The phospholi-
pase gene PLA2G6 is a known PD risk factor, with loss of function leading 
to early-onset PD202–207. Although not formally observed as risk loci, 
the roles of other phospholipases in PD continues to be debated208–212. 
Taken together, these genes contribute to our understanding of fatty 
acid dysregulation in PD and strongly support identification of related 
therapeutic pathways for PD.

A biomarker outlook
Studies investigating alterations in the fatty acid-ome in samples from 
patients with PD, including post-mortem brain tissue and biofluids, 
support changes to the fatty acid-ome in PD213–222, with some such 
changes correlating with PD progression219. A key goal of discerning 

the contribution of fatty acids to PD pathobiology is to identify fatty 
acid biomarkers for synucleinopathies. The highly complex dynamics 
of the lipidome are such that a rigorously validated lipid or fatty acid 
biomarker has so far been elusive. Most studies have focused on lipid 
class, species and ratios of certain lipid classes. Studies are now begin-
ning to address lipid subspecies, for example, analysis at the level of 
specific fatty acid alterations. The key to a PD biomarker might lie not 
only in the lipid headgroups but also in the fatty acid composition of 
human biofluids. To date, most studies have not comprehensively 
examined alterations in the fatty acid-ome at the resolution required 
to detect a specific fatty acid biomarker in biofluids. However, those 
that have attempted this task are beginning to identify differences in 
fatty acids and fatty acid metabolites between biofluids from patients 
with PD and individuals as controls (Table 2).

Targeted fatty acid biomarker studies premised on a candidate 
therapeutic target, SCD, have begun223. As this research advances, it 
will be critical to observe longitudinal changes correlating with PD 
progression and to establish to what degree changes in biofluids reflect 
changes in the brain. A potentially major complication of fatty acid 
biomarkers in biofluids such as plasma is the effect of diet. To what 
degree fatty acid changes in the brain arise from fluctuations in daily 
diet is yet to be determined.

Table 1 | Parkinson disease genome-wide association study 
risk loci

Gene Lipid or fatty acid association Refs.

SNCA Binds fatty acids and lipids, modulates 
lipid metabolism

80,81,83,85,191–196

GBA Glycosphingolipid metabolism 254–258

LIMP2 Lipid modulator via GBA 81,82,193

DGKQ Diacylglycerol kinase 191,259,260

SREBF1 Sterol synthesis regulator 193

VPS13C Lipid transporter 82,86,192

CRLS1 Cardiolipin synthase 82

SYNJ1 Phosphoinositide phosphatase 261

FASN Fatty acid synthase 198

ELOVL7 Fatty acid elongase 86,199

PLA2G6 Phospholipase 202–207

RAB29, RAB39B, VPS35 and SYT11 are Parkinson disease genome-wide association study risk 
loci with indirect connections to lipid biology that may affect it, including through lipid droplets.

Table 2 | Emerging fatty acid differences in Parkinson 
disease versus control biofluids

Fatty acid or fatty acid 
metabolite

PD alteration Biofluid Analysis Ref.

Arachidonic acid
13-Hydroxy- 
octadecatrienoic acid
Docosahexaenoic acid
12-Hydroxy- 
eicosatetraenoic acid
Dihydroxy- 
eicosatrienoic acid
Hydroperoxy- 
octadecadienoic acid

Increased
Increased
Decreased
Decreased
Decreased
Decreased

Plasma UPLC-MS 215

Decanoic acid
Valeric acid
Arachidonic acid
Dihomo-y-linoleic acid

Increased
Increased
Increased
Increased

CSF FT-ICR-MS 216

Palmitic acid
Linoleic acid
Oleic acid
Stearic acid
Palmitoleic acid

Decreased
Decreased
Decreased
Decreased
Decreased

Plasma GC-TOFMS 217

Valeric acid
2-Octanoic acid
Docosene

Decreased
Increased
Decreased

Plasma PLC-Q-TOF-MS 218

α-Linoleic acid 
metabolism pathway

Increased Plasma GC-TOFMS 213

Arachidonic acid
Eicosapentaenoic acida

Decreased
Increased

Plasma UPLC-MS/MS 220

Studies compared PD with control samples. FT-ICR-MS, Fourier transform ion cyclotron resonance 
mass spectrometry; GC-TOFMS, gas chromatography time-of-flight mass spectrometry; PD, 
Parkinson disease; PLC-Q-TOF-MS, liquid chromatography quadrupole time-of-flight mass 
spectrometry; UPLC-MS, ultra-performance liquid chromatography mass spectrometry. 
aDerivatives of these fatty acids are also modified in PD ompared with control samples.

http://www.nature.com/nrneurol


Nature Reviews Neurology

Perspective

Therapeutic opportunities
SCD inhibition
Although α-synuclein–fatty acid interactions are recognized as physi-
ologically and pathogenically important, the rational pharmacological 
modification of fatty acid homeostasis for therapy is still in its infancy 
(Fig. 2). Premised on the afore-cited evidence for an α-synuclein-
induced excess of MUFAs, SCD1, the rate-limiting enzyme for MUFA 
synthesis, has emerged as a candidate target that has entered clini-
cal trials for PD. Genetic reduction or pharmacological inhibition of 
SCD can alleviate PD-associated phenotypes in preclinical models, 
including α-synuclein-dependent neurotoxicity and α-synuclein 3K 
(E46K-amplified) inclusion formation. SCD reduction decreased lev-
els of pSer129 α-synuclein in several PD models, including patient-
derived α-synuclein triplication neurons, LRRK2 mutant (G2019S or 
R1441C) iPSC-derived neurons and neurospheres from patient-derived 
α-synuclein A53T neurons18,87,90–94,119,224. Correcting MUFA dysregulation 
by reducing SCD restored the physiological α-synuclein T:M ratio in 
E46K and 3K α-synuclein-expressing human cells and in LRRK2 G2019S 
and R1441C patient neurons18,92,119. Moreover, the increased unfolded 
protein response that occurs in α-synuclein triplication neurons was 
corrected by reducing SCD91,225.

Re-establishing MUFA equilibrium in phospholipid membranes 
also restored α-synuclein–membrane distribution to the physiologi-
cal state18. Reducing the homologous desaturases in Caenorhabditis 
elegans expressing wild-type or A53T α-synuclein or exposed to rote-
none (a mitochondrial complex I inhibitor that damages neurons) 
relieved PD-associated phenotypes and prevented neuronal degenera-
tion18,226. Reducing SCD genetically or pharmacologically (using either 
Pfizer’s ‘5b’ inhibitor or YTX-7739, which has entered clinical trials227) 
ameliorated PD-type neuropathology and dopamine-responsive motor 
deficits (for example, pole climbing) in the 3K α-synuclein mouse 
model87,88,118. In agreement with results in cellular α-synuclein mod-
els, in vivo SCD reduction decreased pSer129 α-synuclein deposits 

in both wild-type and 3K α-synuclein mouse brains, reduced protein-
ase K-resistant α-synuclein aggregates and increased both soluble 
(cytosolic) α-synuclein levels and the α-synuclein T:M ratio87,88. These 
benefits were associated with reduced gait asymmetry, prevention 
of progressive motor deficits, reduced resting tremor and enhanced 
motor skill learning87,88.

HSL reduction
Beyond SCD inhibition, approaches for correcting aberrant mem-
brane MUFA composition involve distinct candidate targets (Fig. 2). 
An increase in PD-associated MUFA synthesis can result in elevated 
levels of diglycerides, triglycerides and lipid droplets that store excess 
fatty acids18. Neutral lipid lipases (for example, hormone-sensitive 
lipase (HSL, encoded by LIPE)) generate free fatty acids from these 
lipid droplets that can be incorporated into phospholipid mem-
branes, adversely affecting α-synuclein–membrane homeostasis. 
Accordingly, HSL reduction decreased several PD-like phenotypes 
in α-synuclein cellular models, including patient-derived α-synuclein 
triplication neurons91. Specifically, HSL inhibition reduced 3K 
α-synuclein inclusion formation, lowered pSer129 α-synuclein lev-
els in E46K-expressing neuroblastoma cells and α-synuclein tripli-
cation neurons, fixed the abnormal unfolded protein response and 
improved α-synuclein T:M equilibrium. The rescue of these PD-like 
phenotypes correlated with re-establishing MUFA homeostasis in 
phospholipid membranes and restoring physiological α-synuclein–
membrane interactions91. Reduced HSL expression in the 3K PD 
model reversed neuropathology and motor deficits principally in 
male mice, which are more symptom-prone than female mice, as in 
human PD228. In contrast to SCD inhibition, HSL inhibition does not 
alter the rate of MUFA synthesis; rather, it maintains MUFAs within 
neutral storage lipids that would otherwise be degraded to release 
MUFAs. These MUFAs are then not available for incorporation into  
phospholipid membranes.

Fig. 3 | Parkinson disease is a fatty acidopathy. Various lines of evidence 
suggest that Parkinson disease and other synucleinopathies might be considered 
fatty acidopathies. αS, α-synuclein; FA, fatty acid; GWAS, genome-wide 

association study; MUFA, monounsaturated fatty acid; PD, Parkinson disease; 
PUFA, polyunsaturated fatty acid; SCD, stearoyl coenzyme A desaturase.

Parkinson disease fatty acidopathy 

Fatty acid binding protein 
abnormality

Non-PD PD

Fatty acid binding 
protein

Fatty acid binding-impacts 
αS: membrane interaction

MUFA 
(esterified)

PUFA 
(esterified)

Folded αS 
monomer

Unfolded
αS monomer

Fatty acid interactions a	ect αS 
conformation 

αS fibrillar aggregates 

αS tetramer

Altered lipid droplet biology

Lipid droplet 

MUFA (free FA) 

αS

Fatty acid GWAS risk loci

Dyshomeostasis 

Aberrant fatty acid-ome in PD vs 
non-PD 

Non-PD PD

A fatty acid target has entered PD 
clinical trials 

SCD ↓

Saturated FA
(free FA)

 Saturated FA

http://www.nature.com/nrneurol


Nature Reviews Neurology

Perspective

PUFA oxidation products
The biological effects of some PUFAs might be elicited through their 
oxidation products, for example, oxylipins55. Targeting of such signal-
ling molecules and byproducts of fatty acid metabolism might have 
therapeutic promise. One example under consideration in preclinical 
studies is reduction of a PUFA peroxidation product, 4-hydroxynon-
enal (4-HNE), using an inhibitor (CU-13001) of 15-lipoxygenase (15-
LO). The complexity and dynamics of PUFA pathways in addition to 
oxylipins has yet to be elucidated in relation to PD; some PUFAs could 
be beneficial and others detrimental. ω3 fatty acids have shown some 
potential as treatments in in vivo models of PD, with a hypothesis that 
the ω6:ω3 PUFA ratio is important when considering PUFA-directed 
therapeutics229–232.

FASN modulators
The fatty acid metabolism GWAS risk locus FASN is a potential thera-
peutic target, with FASN modulators already being tested in cancer 
biology. Dysregulation of FASN can lead to increased fatty acid synthe-
sis resulting in altered membrane composition and increased levels of 
free fatty acids. Correcting fatty acid synthesis through FASN reduc-
tion could rescue PD phenotypes through α-synuclein-dependent and 
α-synuclein-independent mechanisms. Partial FASN loss restored flight 
to PINK1 mutant flies (a model of PD) and corrected their mitochondrial 
ATP levels. FASN inhibition (cerulenin treatment) protected against ATP 
(viability) deficits in PD patient fibroblasts in a PINK1-deficient mouse 
model and in PINK1 patient iPSC-derived dopaminergic neurons233.

Future fatty-acid-focused therapeutic avenues
Abnormal membranous profiles in Lewy bodies and Lewy neurites are 
described as originating partly from vesicles. Future liquid chroma-
tography mass spectrometry studies of Lewy bodies focused on the 
fatty acid species of vesicle membranes will contribute to understand-
ing direct α-synuclein–fatty acid interactions in Lewy bodies. This 
might support targeting of synaptic vesicles with fatty acid treatment5. 
In this regard, longer fatty acid chains are associated with PD-like 
phenotypes75, and shorter fatty acid chains are associated with their 
reduction92. This relationship suggests a therapeutic avenue focused 
on altering membrane fatty acid chain length, for example, by target-
ing certain elongases (that is, ELOVL proteins). Altering dietary lipid 
and fatty acid composition is another avenue for consideration, for 
example, increasing shorter chain fatty acids in membranes through 
consumption of short chain fatty acids (such as myristic acid (C14:0)) 
that cross the blood–brain barrier, and modulating brain–gut axis com-
munications influencing short chain fatty acids, as these are among the 
most abundant microbial metabolites produced in the gut234. Although 
not an absolute therapeutic requirement, advancing the various can-
didate targets discussed earlier to achieve relative brain specificity 
might become a therapeutic priority.

Conclusions
The extensive and rapidly emerging literature reviewed herein suggests 
that approaching PD as a fatty acidopathy is an important new direction 
in uncovering pathogenic mechanisms, therapies and biomarkers of PD 
(Fig. 3 and Box 1). Fatty acids are fundamental mediators of both physio-
logical and pathological α-synuclein–membrane interactions. Focusing 
on the nuances of the fatty acid-ome will be important in progressing 
our understanding of PD and other synucleinopathies. The dynamics 
of fatty acid cellular distribution (for example, in neutral lipid storage 
droplets versus free versus acylated in phospholipid membranes) seem 

to be key to α-synuclein–membrane interactions in health and disease. 
Research focused on fatty acid–α-synuclein interactions in cellular 
and in vivo systems in the context of the endogenous cellular milieu 
will contribute to the advancement of this field. Co-culture and in vivo 
systems will be important analysis models, given the diversity of the 
fatty acid-ome between brain regions and brain cell types, cell crosstalk 
and transport of fatty acids between cell types235–240. Understanding the 
impact of the dynamic fatty acid-ome and fatty acid flux in subcellular 
compartments will also be important for progressing mechanistic 
understanding of the fatty acid–PD relationship. Furthermore, dis-
secting the individual and combined effects of α-synuclein and fatty 
acids on the immune response in PD will be important. Consideration 
will also need to be given to dietary fatty acid intake and the control 
of fatty acid blood–brain barrier penetration. To date, findings on 
associations between different dietary fatty acid consumptions and 
PD have generated conflicting findings241–248.

We view the role of fatty acids in determining α-synuclein–synaptic 
membrane interactions as a key process in health and PD. Aside from 
this direct interaction, fatty acids have been found to affect neurotrans-
mission, including dopaminergic neurotransmission in the nucleus 
accumbens in rats with chronic deficiencies in n−3 PUFAs249. Supple-
mentation with such fatty acids rescued neurotransmission deficits250. 
Indeed, a dynamic relationship exists between fatty acids as precursors 
to certain neurotransmitters and neurotransmitters stimulating fatty 

Box 1 | From research to real-world benefits
 

An urgent need exists to identify mechanism-based disease- 
modifying treatments for Parkinson disease (PD) and associated 
diagnostic and pharmacodynamic biomarkers. An understanding 
of lipid homeostasis in the brains of individuals with PD and the 
relationship between the self-aggregating protein α-synuclein and 
fatty acid metabolism are key emerging topics in the fundamental 
study of PD. Indeed, the pathognomonic Lewy bodies of PD and 
dementia with Lewy bodies (DLB) — long thought to be principally 
composed of fibrils of α-synuclein — have been shown to contain 
abundant altered membrane fragments and other abnormal lipid 
material. Here, we review in detail how fatty acid balance helps 
to regulate α-synuclein conformation and stability, with evidence 
for the special importance of α-synuclein–membrane interactions 
via both lipid headgroups and fatty acyl tails. Approaching PD as a 
fatty acidopathy and a proteinopathy has led to the identification 
of specific fatty acid-related therapeutic targets, for example, the 
enzymes stearoyl coenzyme A (CoA) desaturase and hormone- 
sensitive lipase. An inhibitor of stearoyl CoA desaturase (the rate- 
limiting enzyme for biosynthesis of monounsaturated fatty acids) 
has reached clinical trials in patients with PD. We propose that 
refining the PD lipidopathy paradigm by focusing on fatty acids is a 
strategy for understanding disease progression in PD and DLB and 
might lead directly to approaches for validating novel therapeutic 
compounds and associated biomarkers. As reviewed herein, many 
laboratories have contributed to our growing understanding 
of the role of fatty acid homeostasis — both dependent on and 
independent of α-synuclein — in the pathogenesis of these 
diseases and are advancing candidate therapeutics as well as 
pharmacodynamic biomarkers of target engagement that might 
benefit patients with PD and DLB.
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acid levels in the brain: for example, dopamine increases levels of 
arachidonic acid, and increased levels of arachidonic acid stimulate 
dopamine release251–253.

Mechanistically, future analyses of the vesicle membrane compo-
nents of Lewy bodies to achieve fatty-acid-specific identification will 
contribute to understanding direct α-synuclein–fatty acid interactions 
at synaptic vesicles normally and in PD. We propose that the fatty 
acid-ome holds great promise for the identification of PD biomarkers 
and therapeutic targets.

Published online: xx xx xxxx
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