nature metabolism

Review article

https://doi.org/10.1038/s42255-025-01404-9

The neuron–astrocyte metabolic unit as a cornerstone of brain energy metabolism in health and disease

Received: 13 January 2025

Accepted: 2 October 2025

Published online: 30 October 2025

Check for updates

Juan P. Bolaños ^{1,2,3} ≥ & Pierre J. Magistretti ⁴ ≥

Over the past years, substantial advances have deepened our understanding of the cellular and molecular drivers of brain energy metabolism. Enabled by transformative technologies offering cellular-level resolution, these insights have revealed a highly regulated and dynamic metabolic interplay among brain cell types, particularly between neurons and astrocytes. In this Review, we shed light on the intricate ways in which neurons and astrocytes operate as a metabolically coupled unit, optimized to sustain the energetic demands of neurotransmission while ensuring neuroprotection. We highlight intercellular cooperation as a key determinant of brain function and provide examples of how disruption of the neuron–astrocyte metabolic unit contributes to numerous diseases of the nervous system, underscoring the critical importance of continued fundamental research to dissect the regulatory principles and vulnerabilities of this intercellular metabolic axis and identify potential therapeutic targets.

Seminal positron emission tomography (PET) functional imaging studies in humans by Fox and Raichle revealed that, during sensory activation, glucose utilization and oxygen consumption are uncoupled, suggesting the presence of aerobic glycolysis, that is, a transient non-oxidative consumption of glucose despite the presence of sufficient oxygen^{1,2}. This phenomenon challenged the prevailing view, rooted in classical arteriovenous measurements and autoradiographic studies, that glucose in the brain is almost entirely oxidized under physiological conditions³. The resulting discrepancy raised fundamental questions regarding the cellular basis of this metabolic uncoupling.

Even before these imaging findings, several lines of evidence had begun to redefine the metabolic architecture of the brain. By the late 1970s and early 1980s, a number of studies had already demonstrated that astrocytes possess a high glycolytic capacity and preferentially metabolize glucose to lactate. Studies had shown that astrocytes, unlike neurons, readily engage in glycolysis and store glycogen, which can be mobilized during periods of increased neural activity^{4,5} by selected neurotransmitters such as vasoactive intestinal peptide and

noradrenaline that promote glycogenolysis in the cerebral cortex⁶. Enzymatic studies further supported these functional differences: key glycolytic enzymes such as hexokinase and phosphofructokinase showed higher activity in glial cells than in neurons⁷. Additionally, metabolic mapping efforts revealed that the bulk of glucose consumption during functional activation occurred in regions rich in neuropil: areas dominated by synaptic terminals and astrocytic processes rather than neuronal somata⁸.

These foundational observations set the stage for a conceptual leap. The answer to the PET-based paradox came from studies in purified cellular preparations that brought into focus the critical role of astrocytes in brain glucose metabolism. Pellerin and Magistretti demonstrated that astrocytes respond to glutamate, the principal excitatory neurotransmitter in the brain, released at more than 80% of synapses, by increasing glucose uptake and releasing lactate, thereby engaging in aerobic glycolysis⁹. The sensing of glutamate by astrocytes was mediated by sodium-dependent uptake, a function already well characterized in astrocytic physiology at the time. This discovery

¹Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain. ²Institute of Biomedical Research of Salamanca, Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Spain. ³Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain. ⁴Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. ⊠e-mail: jbolanos@usal.es; pierre.magistretti@kaust.edu.sa

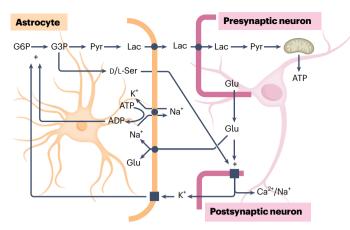


Fig. 1 | Glutamatergic neurotransmission is coupled to glycolytic activation in astrocytes. The mechanism involves K^* and ADP signalling. Astrocytic glycolysis releases lactate, which is taken up by neurons where, after conversion into pyruvate, it is used for mitochondrial energy production. Glycolysis in astrocytes also contributes to L-serine formation, which, after transformation into D-serine, positively regulates glutamate receptors to facilitate neurotransmission. Abbreviations: D/L-Ser, D-serine and L-serine; G6P, glucose 6-phosphate; G3P, glycerol 3-phosphate; Glu, glutamate; Lac, lactate; Pyr, pyruvate. For simplicity, we have made no attempt to show the stoichiometry of the biochemical reactions.

provided the mechanistic basis for understanding how excitatory synaptic activity could drive a shift in astrocytic glucose metabolism and thereby support neuronal energy demands.

The astrocyte-neuron metabolic unit

Astrocytic glycolysis and neuronal energy support. While initially provoking, the notion that neurons could use lactate as an energy substrate under normoxic conditions was well established experimentally already in the 1950s by Henry McIlwain¹⁰ and later by others¹¹. Additional in vivo results showed that impairing glutamate uptake selectively in astrocytes resulted in a massive decrease in glucose uptake into the brain^{12,13}. Mirror experiments demonstrated that increasing glutamate uptake into astrocytes sustains brain glucose utilization as monitored in vivo by PET with fluorodeoxyglucose¹⁴. Furthermore, during glutamatergic neurotransmission, along with glutamate, neurons release K⁺, which is also sensed by astrocytes, accounting for fast activation of astrocytic glycolysis¹⁵⁻¹⁷ (Fig. 1). Thus, transient aerobic glycolysis occurs in astrocytes during activation in which glucose uptake mostly results in lactate release for use by neurons, which can then oxidize it after conversion to pyruvate. The question that remained open was to what degree glucose could be used directly by neurons.

Neuronal glycolysis is suppressed in favour of antioxidant metabolism. Thanks to the use of genetic approaches combined with cell type-resolved analysis and imaging, it has been possible to clarify this issue. Indeed, glucose is the main energy metabolic precursor to sustain brain function and neurotransmission¹⁸. However, in an apparent paradox, glucose is scarcely used by neurons via glycolysis 19,20, that is, one of the most conserved metabolic pathways in nature. This is accounted for by the constant degradation of a key proglycolytic enzyme, namely, 6-phosphofructo-2-kinase-fructose-2,6-bisphosphatase 3 (PFKFB3), which by contrast is highly stable in astrocytes 19,20 (Fig. 2). Mice with neurons genetically manipulated to become glycolytic cells, like their neighbour astrocytes, develop mitophagy impairment, leading to accumulation of damaged mitochondria and lipid droplets²¹. More importantly, they slowed down the use of glucose via the pentose phosphate pathway (PPP), a central metabolic route in antioxidant protection, thereby causing redox stress²¹. Thus, glucose is used by neurons to feed the PPP and produce reducing equivalents that are important for reactive oxygen species (ROS) scavenging²⁰. Interestingly, this mechanism ensures higher-order organismal welfare, including memory performance and metabolic fitness²¹; in fact, failure to efficiently degrade PFKFB3 in neurons leads to neuronal death in models of both neuronal ceroid lipofuscinosis²² and multiple sclerosis²³, underscoring PFKFB3 as a promising therapeutic target for combating neurodegenerative diseases.

Astrocytic detoxification of glycolytic by-products. Another reason why neurons cannot sustain a high glycolytic rate is the fact that methylglyoxal, a toxic compound, is a by-product of glycolysis. This metabolite is endogenously formed from the glycolytic intermediate glyceraldehyde 3-phosphate²⁴. Its detoxification begins with conjugation to glutathione, followed by enzymatic processing by glyoxalase (GLO)1, that is, the rate-limiting step in methylglyoxal catabolism. Astrocytes possess a very active glyoxylase system, GLO1 and GLO2, which eventually leads to the formation of D-lactate²⁴. Interestingly, in proliferating cells, D-lactate stimulates the mitochondrial electron transport chain, promoting in this way ATP production through oxidative phosphorylation and reducing glycolysis²⁵. Whether this metabolic regulation, which is independent of lactate metabolism, operates in astrocytes and neurons is an interesting possibility deserving elucidation. Neurons are not equipped to detoxify methylglyoxal; they depend on astrocytes for the de novo synthesis of glutathione and have very weak GLO1 and GLO2 activity, which renders them very vulnerable to methylglyoxal²⁴. These data are yet another example of the subtle metabolic complementarity that exists between astrocytes and neurons.

The astrocyte-neuron lactate shuttle

Core concept of the astrocyte-neuron lactate shuttle. Functional and gene expression data have revealed that, while neurons mainly perform oxidative phosphorylation, astrocytes avidly consume glucose via glycolysis and release lactate^{26–28}. The astrocyte-neuron lactate shuttle (ANLS)⁹ hypothesis posits that lactate is taken up by neurons to feed oxidative phosphorylation and hence fuel the energy needed to sustain neurotransmission. Therefore, astrocytes sustain energy

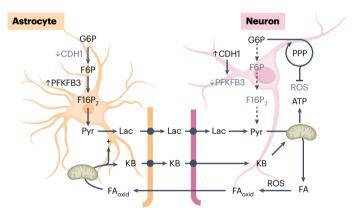


Fig. 2 | Different abundances of PFKFB3 explain high glycolysis in astrocytes and low glycolysis in neurons. The abundance of the proglycolytic enzyme PFKFB3 is determined by distinct activities of a ubiquitin ligase cofactor, CDH1. By keeping glycolysis low, glucose 6-phosphate is allowed to be metabolized via the PPP to exert antioxidant protection in neurons. Lipids in neurons may be formed from lactate and pyruvate; when these lipids become oxidized by ROS, they are transferred to astrocytes, where they are catabolized via β -oxidation, leading to ketone body production (ketogenesis), a process that stimulates pyruvate-to-lactate conversion, hence replenishing neuronal lactate. Ketone bodies are also transferred from astrocytes to neurons, where they can be used by mitochondria as an energy source by ketolysis. Abbreviations: FA, fatty acids; FA_{oxid}; oxidized fatty acids; F16P2, fructose 1,6-bisphosphate; F6P, fructose 6-phosphate; KB, ketone bodies. For simplicity, we have made no attempt to show the stoichiometry of the biochemical reactions.

demands of neurons by providing them with glycolytically released lactate, whereas neurons preserve glucose for antioxidant purposes (Figs. 1 and 2). This necessary intercellular cooperation sets up the basis of a functional metabolic unit between neurons and astrocytes.

Currently available evidence from several independent laboratories has demonstrated the need for astrocyte-released lactate for neuronal function in vivo 14,29-32. The ANLS has provided over the past decade a strong impetus to explore and demonstrate its implication in a variety of physiological and pathological conditions related to higher brain functions such as memory 33,34, neuroprotection 55,36, sleep and mood disorders 8. Furthermore, the conservation of a neuron-astrocyte metabolic unit across species has been shown in vivo in *Drosophila* in which glial-derived alanine (alanine being the equivalent of lactate produced from pyruvate in invertebrates) or lactate in the mushroom body is an essential mechanism that sustains memory consolidation 39-41.

Neuronal glycolysis in context: refining the ANLS framework. The weak contribution of glucose for neuronal energy requirements has been further confirmed by genetically ablating key steps of glucose uptake and metabolism⁴². Thus, mice with neurons lacking the ability to use glucose do not show functional disturbances except during ageing⁴², when the metabolic support of neighbouring astrocytes is functionally impaired^{43,44}.

While the ANLS model remains the prevailing scheme for fundamental neuronal energy supply, emerging data suggest that neurons can use glycolysis in specific compartments or states. Thus, analysis in slices of dentate granule neurons (a highly specific type of neurogenic neuron of the dentate gyrus that represents approximately 1.4% of the total brain neuronal population and that lacks surrounding astrocytes⁴⁵) must rely on their own glycolysis for neurotransmission⁴⁶. Moreover, consistent with the typical robust glucose-based energy metabolism nature of neurogenic cells^{47,48}, dentate granule neurons easily upregulate glycolysis during neurotransmission in the absence of neighbouring astrocytes⁴⁶, thus representing a process rather specific and limited to a very restricted subpopulation of neurons.

Another in vitro condition in which neuronal activation has been studied in the absence of astrocytes⁴⁹ shows a commensurate increase in glucose consumption and mitochondrial pyruvate consumption, while cytosolic pyruvate and lactate levels remain constant. In other words, when measured in the absence of astrocytic lactate, neuronal glucose consumption is able to match its own oxidative phosphorylation. The same study showed that mimicking the contribution of astrocytes by augmenting extracellular lactate caused a substantial inhibition of neuronal glucose consumption, an observation that further supports the ANLS hypothesis.

A few studies illustrate this compartment-specific perspective. In hippocampal dentate neurons, stimulation with a cannabinoid receptor 1 agonist activated growth cone collapse and axonal retraction, which triggered rapid cytosolic nicotinamide adenine dinucleotide (NADH) increases driven by direct glucose metabolism⁵⁰, a transient burst of neuronal glycolysis that outpaces mitochondrial oxidation at least briefly yet does not indicate a basal reliance on glycolysis over oxidative phosphorylation. In axons, glycolytic enzymes anchored to vesicles fuel fast transport mechanisms, supporting extension and maintenance of growth cones as demonstrated in sensory neurons⁵¹, while actomyosin-driven axonal retraction similarly depends on locally generated glycolytic ATP⁵⁰. In neuronal cell bodies, somatic pyruvate kinase M2-driven aerobic glycolysis provides antioxidant defence: namely, loss of pyruvate kinase M2 shifts metabolism towards oxidative phosphorylation, elevates oxidative damage and leads to neurodegeneration, further illustrating that glycolysis is tuned to protective rather than bulk energetic roles⁵². Importantly, these glucose-driven enhancements are transient, context specific and constrained to restricted neuronal populations and subcellular domains; they still

remain far below the sustained, high-level glycolytic capacity characteristic of astrocytes.

In sum, a refined framework of neuronal energy metabolism has emerged. Although astrocyte-derived lactate remains the primary fuel for neuronal mitochondria via the ANLS, under very specific circumstances, neurons do retain a refined ability to engage glycolysis. Rather than constituting an alternative energy pathway that is leveraged over extended periods of time, neuronal glycolysis serves as a finely regulated, compartmentalized adjunct, carefully tailored to complement, not compete with, the core lactate-driven metabolic architecture.

Expanding the neurometabolic map

Fatty acid oxidation in astrocytes

Machinery and kinetics of astrocytic fatty acid oxidation. Is glucose the only available metabolic energy precursor for brain function? Astrocytes are equipped with the necessary enzymatic machinery to metabolize fatty acids via β -oxidation, which transforms long- and medium-chain fatty acids into acetyl coenzyme A (CoA) within mitochondria, thereby providing an alternative and flexible metabolic route under fluctuating nutrient conditions. Transcriptomic and proteomic studies have confirmed a prominent expression of genes and proteins related to fatty acid oxidation (FAO) in astrocytes, including carnitine palmitoyltransferase I, acyl-CoA dehydrogenases and electron transfer flavoproteins, across several mammalian species $^{53-55}$.

Bioenergetic efficiency of astrocytic FAO. Interestingly, metabolic flux analyses reveal that, in astrocytes, β -oxidation of fatty acids may generate important, underappreciated energy precursors in glial metabolism 56 . However, the energy yield from fatty acid oxidative phosphorylation is not as high as that from the oxidation of glucose-derived pyruvate; a considerable portion of electrons entering the electron transport chain from FAO are shuttled via electron transfer flavoprotein, which reduces ubiquinone and bypasses mitochondrial complex I. This shortcut limits the proton gradient generated across the inner mitochondrial membrane and therefore the ATP yield per oxygen molecule consumed 56 .

Functional advantages of FAO. Nonetheless, β -oxidation in astrocytes provides at least three crucial advantages. First, it maintains complex Iin a partially disassembled conformation relative to complex III, promoting enhanced mitochondrial production of ROS, which, in turn, act as signalling molecules regulating gene expression, metabolic plasticity and organismal functions ⁵⁷⁻⁵⁹. Second, FAO-derived acetyl-CoA is preferentially converted into ketone bodies (such as β -hydroxybutyrate and acetoacetate) within astrocytic mitochondria ⁶⁰; these ketone bodies are subsequently released and taken up by neurons to fuel mitochondrial oxidative phosphorylation, particularly during fasting or glucose-limiting conditions ⁶¹. Interestingly, these processes are conserved in *Drosophila* ^{62,63}. And third, a higher reliance on fatty acids spares pyruvate from oxidation, allowing it to be converted to lactate, thereby sustaining the metabolic link between astrocytic glycolysis and neuronal support via the lactate shuttle ⁶⁶.

Lipid metabolism and the neuron-astrocyte lipid shuttle

Beyond serving as substrates for oxidation or ketogenesis, fatty acids and their derivatives participate in a dynamic metabolic exchange between neurons and astrocytes. Lipid accumulation as cytosolic lipid droplets has been observed in astrocytes in vivo in response to neuronal oxidative stress, particularly under conditions of mitochondrial dysfunction⁶⁴.

This process is probably driven by enhanced neuronal lipid synthesis, a compensatory mechanism for ROS detoxification, which results in the export of oxidized lipid species to surrounding astrocytes⁵⁶. These oxidized lipids are subsequently catabolized in astrocytes via

β-oxidation and converted into ketone bodies, contributing to redox buffering and sustaining lactate production. Interestingly, the carbon necessary for lipid synthesis in oxidatively stressed neurons is provided by astrocyte-derived lactate⁶⁵. This bidirectional trafficking of lipid-derived metabolites between neurons and astrocytes may represent a neuroprotective mechanism against oxidative stress and can be conceptualized as the neuron–astrocyte lipid shuttle.

Metabolic flexibility of neurons under stress conditions

Traditionally, neurons have been considered poorly equipped for FAO, largely depending on glucose or astrocyte-derived lactate. However, recent transcriptomic and metabolic studies challenge this view, suggesting that, under specific conditions, particularly glucose deprivation, neurons may upregulate FAO-related pathways. Nerve terminals are enriched with the neuron-specific triglyceride lipase DDHD2 (refs. 66,67), and blocking its activity leads to presynaptic accumulation of lipid droplets. Furthermore, fatty acids derived from axonal lipid droplets drive local mitochondrial ATP production, allowing nerve terminals to sustain function in the complete absence of glucose. Remarkably, sortilin 1, a lipoprotein receptor associated with hypercholesterolaemia and Alzheimer's disease (AD), mediates neuronal uptake of polyunsaturated fatty acids carried by APOE⁶⁸, pointing to sortilin in metabolic fuel choice in neurons when glucose supply is limited.

Although the higher-order functional relevance of neuronal FAO remains to be fully elucidated, these findings $^{66-68}$ hint at an unexpected metabolic plasticity, potentially contributing to neuronal survival under energy stress conditions.

Serine metabolism: a signalling arm of astrocytic support

Serine metabolism emerges as another crucial arm of the neurometabolic network, predominantly governed by astrocytes. The de novo synthesis of L-serine from 3-phosphoglycerate via the phosphorylated pathway, which includes three glycolytically derived enzymatic activities (3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase 1 and phosphoserine phosphatase), occurs almost exclusively in astrocytes and provides the precursor for several key metabolites. Among them, D-serine has a particularly important role as a co-agonist of *N*-methyl-D-aspartate (NMDA) receptors, modulating synaptic plasticity, learning and memory^{69,70}. Impairment of 3-phosphoglycerate dehydrogenase in astrocytes leads to reduced levels of L-serine and D-serine in the brain, with direct consequences for hippocampal long-term potentiation and cognitive performance⁷¹.

Additionally, L-serine contributes one-carbon units for folate metabolism and glutathione synthesis, linking astrocyte-derived serine to antioxidant defence and epigenetic regulation¹⁸. Together, these findings highlight astrocytes as central hubs not only for energetic support but also for metabolic control of neurotransmission and redox balance.

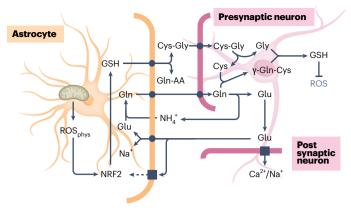
Physiological implications: cognition and plasticity

Lactate as a signalling molecule

Role in memory and plasticity. An interesting dimension of the neuron–astrocyte metabolic unit that has recently come to light is the fact that certain metabolites produced by astrocytes are not only energy substrates but also signalling molecules⁷². Thus, the transfer of lactate from astrocytes to neurons is necessary for memory consolidation and in vivo maintenance of the cellular mechanism of plasticity and long-term potentiation^{33,73,74}. Of note is also the fact that, for low synaptic and cognitive workloads, neuronal glucose is sufficient, whereas, for higher synaptic and cognitive workloads in particular related to plasticity and memory, lactate becomes necessary²⁹, further supporting the importance of the neuron–astrocyte metabolic unit for higher brain functions.

Redox-mediated NMDA potentiation. These effects of lactate are not only dependent on its ability to provide energy to neurons but also to induce the expression of genes that are key for synaptic plasticity such as activity-regulated cytoskeletal protein, cAMP response element-binding protein and cofilin³³. To express this memory-related signalling action, lactate potentiates NMDA receptor (NMDAR) signalling by increasing the NADH(H⁺)/NAD⁺ ratio subsequent to the transformation of lactate into pyruvate. Signalling by NMDAR potentiated by changes in the neuronal redox state result in larger NMDA-evoked calcium currents⁶⁹. Recent observations at the molecular level indicate that lactate-induced changes in the redox environment in neurons promote the reduction of two cysteines in the intracellular loop of the N2B subunit of the NMDAR⁷⁵. This process facilitates the interaction between NMDAR and calcium-calmodulin kinase II, resulting in increased NMDAR-mediated signalling⁷⁵. These recent findings reveal a novel pathway by which lactate enhances NMDAR function through metabolic conversion and redox-sensitive interactions requiring calcium-calmodulin kinase II, linking astrocyte energy metabolism to synaptic modulation.

D-serine and NMDAR modulation


Another glycolysis-derived molecule, D-serine, modulates NMDAR activity^{71,76,77}. The phosphorylation pathway converts the glycolytic intermediate 3-phosphoglycerate into L-serine, which is transformed into its racemic derivative D-serine and released from astrocytes to act on the neuronal NMDAR¹⁸. This is yet another example in which astrocytic glycolysis sustains metabolites needed for neurotransmission (Fig. 1). These observations further substantiate the concept that the neuron–astrocyte cell pair works as a unique metabolic unit needed for brain function.

Pathological implications: from dysfunction to disease

A large body of literature has documented over the years alterations in brain energy metabolism in neurodegenerative diseases and in particular the contribution of astrocytes to these conditions (for a Review, see ref. 78). For instance, ageing is one of the main risk factors for the expression of neurodegenerative disorders⁷⁹. Decrease in glucose utilization as, for example, determined by PET with fluorodeoxyglucose is a hallmark of ageing particularly in brain regions such the anterior cingulate cortex, several parts of the orbital and frontal gyrus and in the thalamus. Impaired aerobic glycolysis is in fact the major contributor to this glucose hypometabolism⁸⁰⁻⁸². Studies in animal models showed that ageing is characterized by decreased aerobic glycolysis in astrocytes and mitochondrial oxidative phosphorylation in neurons^{83,84}, thus providing additional evidence of the metabolic complementarity that exists between astrocytes (mainly glycolytic) and neurons (mainly oxidative). Here, we will focus on selected examples of neurodegenerative diseases that are particularly illustrative of impairments of the neuron-astrocyte metabolic unit.

Neurodegenerative disorders

Amyotrophic lateral sclerosis. Widespread alterations in glucose utilization are present throughout the brain and spinal cord of patients with sporadic amyotrophic lateral sclerosis (ALS)⁸⁵. In the brain and spinal cord of animal models of ALS (SOD1-G93A and TDP-43-A315T mice), glucose utilization levels are markedly decreased in several brain areas^{86,87}. Interestingly, in the SOD1-G93A mouse, this decrease occurs even before symptom onset⁸⁸. Furthermore, in the same *Sod1* mutant, expression of the glucose transporter GLUT1 is lower in capillary endothelial cells in the brain and spinal cord⁸⁵; interestingly, the monocarboxylate transporter 1, which is the predominant form expressed in astrocytes and oligodendrocytes (OLs), also has decreased expression⁸⁹. This setup is consistent with a decreased entry of glucose into the brain through GLUT1 and a decreased ability to release lactate from glial cells.

Fig. 3 | **Glutamatergic neurotransmission is coupled to neuronal antioxidant protection.** Activation of glutamate receptors in astrocytes leads to nuclear factor erythroid 2-related factor 2 (NRF2) activation. Physiological astrocytic ROS contribute to keep NRF2 active. NRF2 promotes transcriptional activation of antioxidant enzymes, leading to the biosynthesis of glutathione (GSH), which is cleaved into cysteinylglycine (Cys-Gly) by γ-glutamyltransferase and thus transported to neurons as Cys and Gly, which, together with Gln, are used to synthesize de novo glutathione to combat redox stress. Abbreviations: Gln-AA, γ-glutamyl-amino acid; NH_4 , ammonium; ROS_{phys} , physiological ROS. For simplicity, we have made no attempt to show the stoichiometry of the biochemical reactions.

Parkinson's disease. In Parkinson's disease, dysregulation of astrocyte energy metabolism is observed on particular in astrocyte-dependent redox balance mediated by glutathione around dopaminergic neurons in the substantia nigra of the example, glutathione peroxidase-expressing astrocytes are more numerous around surviving dopaminergic neurons than degenerating ones As mentioned earlier, glutathione peroxidase is part of the ROS-scavenging, hence neuroprotective, machinery. Consistently, decreased levels of glutathione are present in the brain of patients with Parkinson's disease and animal models. Transplantation of healthy astrocytes into the brain of a Parkinson's disease rat model rescued populations of dopaminergic neurons.

AD and APOE genotype. Hypometabolism and oxidative stress are consistent findings in patients with AD^{95,96} but also in individuals with mild cognitive impairment, many of who will later develop AD. Restoring hippocampal glucose metabolism rescues cognition in AD models via an ANLS mechanism⁹⁷. In individuals carrying the APOE4 genotype, which confers a five times greater probability of developing AD, marked decreases in glucose utilization are detected well before the appearance of cognitive impairment symptoms or structural imaging evidence of loss of grey matter⁹⁸. These observations point to a key role of dysfunctions in energy metabolism and potentially have a causative role in the pathophysiology of AD. By contrast, individuals carrying the APOE2 gene have a lower risk of developing AD. Interestingly, astrocytes expressing the human APOE2 or APOE4 gene variant mirror this metabolic behaviour: glucose uptake is impaired in APOE4-expressing astrocytes, whereas APOE2-expressing astrocytes take up glucose more rapidly98.

Glucose transporter deficiency syndrome. Possibly the most paradigmatic disease in terms of implication of the neuro–astrocyte metabolic unit is De Vivo disease or GLUT1 deficiency syndrome (GLUT1DS) ^{99,100}. This disease is caused by mutations in GLUT1, which is present in the brain in capillary endothelial cells and astrocytes (whereas neurons express primarily GLUT3). Characterized by a chronic energy crisis in the brain, GLUT1DS results in absence seizures in infants, which abate during adolescence but cause developmental delay and motor

BOX 1

Metabolism meets redox protection in neurotransmission

It is well known that neurons constitutively express a weak ROS-scavenging machinery¹⁰⁶⁻¹⁰⁸, making these cells dependent on astrocytes for antioxidant defence¹⁰⁹. In addition, as mentioned above, the metabolism of glucose via the PPP in neurons is essential for survival²¹ (Fig. 2). However, in the context of antioxidant defence, the PPP mainly serves as a metabolic route that regenerates NADPH(H⁺), an essential cofactor that is needed to reduce oxidized glutathione (GSSG) back into glutathione after the oxidizing effects of ROS produced by their active oxidative phosphorylation. However, aside from the regeneration of reduced glutathione, neurons need to keep high levels of the glutathione pool, a process for which they are entirely dependent on astrocytes¹⁰⁹. A key protein in cellular antioxidant defence is NRF2, a transcription factor that governs the gene expression of a battery of antioxidant enzymes including y-glutamyl-cysteinyl synthetase, which is responsible for the rate-limiting step in glutathione biosynthesis. The protein levels and transcriptional activity of NRF2 in neurons are known to be very low, which largely explains the inability of these cells to robustly synthesize glutathione and other antioxidants 109,110. By contrast, NRF2 in astrocytes is very stable and provides them with a robust antioxidant system¹⁰⁹. NRF2 is regulated, among other ways, by ROS-mediated inhibition of NRF2 cytosol sequestration; thus, cells with naturally high ROS levels like astrocytes keep NRF2 more stable than cells with low ROS levels⁵⁶ (Fig. 3). Accordingly, astrocytes are cells that physiologically produce ROS at a high rate from complex I, as mentioned⁵⁷, a phenomenon that is necessary to maintain NRF2 stability and nuclear location⁵⁸ to promote the expression of antioxidant enzymes¹⁰⁹. Furthermore, astrocytes release glutathione to the extracellular space via the action of y-glutamyltransferase, which converts glutathione into glutamine and the dipeptide Cys-Gly. It is known that, via this mechanism, astrocytes provide neurons with the Cys-Gly dipeptide, which neurons cleave into single amino acids, and add glutamine from the recycling reamination of glutamate¹¹¹ (Fig. 3). In this way, neurons can replenish the pool of intracellular glutathione, which can then be reduced by NADPH produced by the PPP to regenerate reduced glutathione needed to complement antioxidant defence¹¹¹. In other words, neurons live a dangerous life! They are highly vulnerable to excess ROS but depend on astrocytes for their defence.

coordination dysfunctions later in life. A key diagnostic criterion of GLUT1DS is a marked decrease in both glucose and lactate levels in the cerebrospinal fluid. The only current treatment that reduces the otherwise pharmacoresistant absence seizures is strict adherence to a ketogenic diet.

Conclusions and future perspectives Metabolic cooperation as a homeostatic loop

The metabolism of adjacent neurons and astrocytes is mutually dependent, functioning as a dynamic unit committed to sustaining neurotransmission and maintaining redox (Fig. 3 and Box 1) and metabolic homeostasis. This neuron–astrocyte metabolic unit reflects an evolutionarily 101 optimized solution to a paradox: the brain's extraordinarily high energy demands coexisting with its almost nonexistent energetic reserves. Neurons rely heavily on oxidative phosphorylation,

BOX 2

Metabolic support by OLs: an essential but underappreciated glial function

OLs have long been considered as passive insulators of axons, with their role largely reduced to the structural generation of myelin. However, compelling evidence over the past decade has dramatically shifted this view, revealing that OLs also have a vital metabolic role in maintaining long-term axonal function and integrity. The concept of metabolic cooperation between OLs and axons gained strong support after the demonstration that OLs rely heavily on glycolysis rather than on oxidative phosphorylation¹¹². This metabolic configuration enables them to produce lactate that can be exported to the periaxonal space, where it is taken up by axons to sustain ATP production via mitochondrial respiration. The critical nature of this lactate shuttle was further supported85 by the findings that genetic disruption of monocarboxylate transporter 1 in OLs leads to progressive axonal degeneration, even in the presence of intact myelin, firmly establishing that trophic metabolic support is separable from myelination per se. More recently, work revealed that this metabolic support is activity dependent and dynamically regulated 113. Thus, during neuronal firing, levels of extracellular potassium increase

but their low glycolytic capacity and sensitivity to ROS necessitate tight metabolic cooperation with astrocytes, which are better equipped for glycolysis, FAO and ROS handling.

Crucially, this crosstalk extends beyond energy delivery. Metabolites such as lactate and serine operate as neuromodulatory agents (modulating NMDAR function and redox state), underscoring that metabolism and neurotransmission are not separate domains but intimately entangled processes. This dual role of metabolites, as fuel and as signalling molecules, challenges the field to reframe our conceptual models of brain energy metabolism and function. It also raises the provocative question of whether these molecules should be classified primarily by their bioenergetic role or whether they should be seen as signalling currencies with functional equivalence to classical neurotransmitters. In the latter case, they might be dubbed as gliotransmitters. This complexity is especially salient for glutamatergic transmission. Glutamate signalling disrupts ionic gradients and redox balance in neurons, posing a potential threat to neuronal integrity. Astrocytes act as a buffer against this danger via spatiotemporally precise metabolic responses, reuptake of glutamate, production of redox capacity and the release of lactate and serine for energy and signalling purposes. These dynamics constitute a homeostatic feedback loop that protects neurons from an energetic crisis, excitotoxicity and oxidative stress: a loop for which disruption is increasingly implicated in neurodegenerative and psychiatric diseases.

Open questions and technological gaps

Need for high-resolution metabolic mapping. Future research must address several major conceptual and technical challenges. First, our understanding of metabolic compartmentalization remains rudimentary. How finely tuned is the intracellular localization of key enzymes or transporters? Emerging tools such as genetically encoded sensors for glucose, lactate or NADH, along with high-resolution imaging, now allow single-cell, even subcellular, readouts of metabolic fluxes. But these methods must be widely adopted and standardized to compare findings across models and laboratories and to enhance the reproducibility of quantitative data reporting.

and activate Kir4.1 channels on OLs, triggering increases in intracellular calcium levels that enhance glycolytic activity and lactate export. This coupling between axonal activity and OL metabolism suggests that white matter is not a static, energy-passive structure but a metabolically responsive network synchronized with neuronal demand.

Adding another dimension, it appears that the cellular distribution of lactate dehydrogenase A in white matter tracts facilitates rapid and efficient transport of glycolysis products among glial and axonal compartments 114 . Furthermore, it was recently highlighted that OLs possess the capacity to oxidize fatty acids under energy stress conditions 115 , a feature that may explain myelin exhaustion in marathon runners 116 . This β -oxidation-based metabolism not only provides ATP for the OLs themselves but may also generate metabolic intermediates that can be shared with axons, particularly under conditions of glucose restriction or mitochondrial dysfunction. Together, these findings expand the metabolic toolkit of OLs well beyond glycolysis and suggest a degree of metabolic plasticity comparable to that of astrocytes.

Second, the field lacks a comprehensive atlas of cell type-specific metabolic states across brain regions, developmental stages and disease conditions. This knowledge is crucial, as metabolic diversity, not only between astrocytes and neurons but also among astrocyte subpopulations or neuron subtypes, might explain the region-specific vulnerability observed in conditions such as AD, ALS or schizophrenia.

Third, technical limitations continue to hamper our ability to capture the temporal dynamics of metabolic crosstalk during real-time brain activity. Most existing data are derived from static measurements or in vitro systems that fail to replicate the fast, fluctuating nature of neurotransmission-driven metabolism in living organisms. In vivo biosensors, two-photon microscopy and metabolomics with high spatiotemporal resolution will be essential to remove this bottleneck.

Beyond methodological advances, the field must wrestle with fundamental conceptual ambiguities. For instance, what defines a 'metabolic shuttle' versus a 'diffusive exchange' (ref. 102); whether every metabolite transfer implies a regulatory mechanism, or whether some by-products are passively removed; and the threshold at which a supportive metabolic pathway becomes indispensable for neuronal viability. A related emerging area of interest is the transfer of mitochondria between astrocytes and neurons, observed in injury models such as stroke and trauma, in which astrocytes donate mitochondria to support neuronal survival 103,104. Although promising, this process remains poorly understood and may carry risks, such as triggering inflammatory responses through mitochondrial damage-associated molecular patterns 105, highlighting the need for mechanistic clarity and careful therapeutic exploration.

Towards mechanistic and therapeutic models

Potential therapeutic strategies. Neurodegenerative diseases frequently exhibit early signs of metabolic dysregulation, including reduced glucose uptake, oxidative stress and impaired glial support. Rather than being downstream consequences, these dysfunctions may constitute primary events in disease initiation. Therapeutic strategies that restore glial metabolism, whether by enhancing glycolysis, promoting lactate production or modulating redox tone, could re-establish neuroprotective homeostasis. For example, selectively

Neuron-astrocyte metabolic unit AstrocyteNeuron NH_{4}^{+} NH_{Δ}^{+} Functional Impaired Glu, FA Glu, FA Glycolysis Glycolysis Glycolysis Glycolysis mROS mROS. mROS mROS Lac, Ser, KB Lac, Ser, KB Gln, GSH Gln, GSH

Fig. 4 | **Functional and dysfunctional neuron–astrocyte metabolic unit.**Bidirectional metabolic interactions between astrocytes and neurons constitute a critical component of brain energy homeostasis. Under healthy conditions (left), astrocytes take up neuronal by-products such as NH₄+, glutamate and fatty acids, while providing essential metabolic support through the release of lactate,

serine, ketone bodies, glutamine and glutathione. This tightly coordinated

Health

exchange is sustained by the control of glycolytic rate and mitochondrial ROS (mROS; high in astrocytes, weak in neurons), thus supporting neuronal function and systemic health. By contrast, during pathological conditions (right), this metabolic coupling is impaired, leading to disrupted metabolite exchange and contributing to neuronal dysfunction and disease phenotypes.

Disease

inhibiting PFKFB3 in neurons to prevent aberrantly sustained glycolytic activation during neurodegeneration represents a compelling therapeutic strategy. This approach may hold promise in conditions in which synaptic dysfunction precedes cell death. Understanding how the neuron–astrocyte and OL–axon (Box 2) metabolic modules integrate, or fail to integrate, under pathological conditions is an urgent priority.

The neuron–astrocyte metabolic unit model proposed here represents far more than a division of labour: it is a tightly regulated, adaptive network of interactions with implications for cognition, behaviour and disease (Fig. 4). To fully exploit its therapeutic potential, the field must shift from descriptive to mechanistic models, incorporate systems-level perspectives and embrace technological advances capable of revealing its astonishing dynamism in vivo.

References

- Fox, P. T. & Raichle, M. E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. *Proc. Natl Acad.* Sci. USA 83, 1140–1144 (1986).
- Fox, P. T., Raichle, M. E., Mintun, M. A. & Dence, C. Nonooxidative glucose consumption during focal physiologic neural activity. Science 241, 462–464 (1988).
- 3. Kety, S. S. Circulation and metabolism of the human brain in health and disease. *Am. J. Med.* **8**, 205–217 (1950).
- Cummins, C. J., Glover, R. A. & Sellinger, O. Z. Neuronal cues regulate uptake in cultured astrocytes. *Brain Res.* 170, 190–193 (1979).
- Cummins, C. J., Lust, W. D. & Passonneau, J. V. Regulation of glycogen metabolism in primary and transformed astrocytes in vitro. J. Neurochem. 40, 128–136 (1983).
- Magistretti, P. J., Morrison, J. H., Shoemaker, W. J., Sapin, V. & Bloom, F. E. Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. *Proc. Natl Acad. Sci. USA* 78, 6535–6539 (1981).
- Kao-Jen, J. & Wilson, J. E. Localization of hexokinase in neural tissue: electron microscopic studies of rat cerebellar cortex. J. Neurochem. 35, 667–678 (1980).
- Kadekaro, M., Crane, A. M. & Sokoloff, L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. *Proc. Natl Acad.* Sci. USA 82, 6010–6013 (1985).

- Pellerin, L. & Magistretti, P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. *Proc. Natl Acad. Sci. USA* 91, 10625–10629 (1994).
- McIlwain, H. A transitory, rapid, production of lactate in electrically excited cerebral tissues. *Biochem. J.* 60, xxxi (1955).
- Schurr, A., West, C. A. & Rigor, B. M. Lactate-supported synaptic function in the rat hippocampal slice preparation. *Science* 240, 1326–1328 (1988).
- 12. Voutsinos-Porche, B. et al. Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. *Neuron* **37**, 275–286 (2003).
- Cholet, N. et al. Local injection of antisense oligonucleotides targeted to the glial glutamate transporter GLAST decreases the metabolic response to somatosensory activation. J. Cereb. Blood Flow Metab. 21, 404–412 (2001).
- Zimmer, E. R. et al. [18F]FDG PET signal is driven by astroglial glutamate transport. Nat. Neurosci. 20, 393–395 (2017).
- Loaiza, A., Porras, O. H. & Barros, L. F. Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J. Neurosci. 23, 7337–7342 (2003).
- Bittner, C. X. et al. Fast and reversible stimulation of astrocytic glycolysis by K⁺ and a delayed and persistent effect of glutamate. J. Neurosci. 31, 4709–4713 (2011).
- Barros, L. F., Ruminot, I., Sotelo-Hitschfeld, T., Lerchundi, R. & Fernandez-Moncada, I. Metabolic recruitment in brain tissue. Annu. Rev. Physiol. 85, 115–135 (2023).
- Bonvento, G. & Bolaños, J. P. Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab. 33, 1546-1564 (2021).
- Almeida, A., Moncada, S. & Bolaños, J. P. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. *Nat. Cell Biol.* 6, 45–51 (2004).
- Herrero-Mendez, A. et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat. Cell Biol. 11, 747-752 (2009).
- Jimenez-Blasco, D. et al. Weak neuronal glycolysis sustains cognition and organismal fitness. Nat. Metab. 7, 1253–1267 (2024).
- 22. Lopez-Fabuel, I. et al. Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis. *Nat. Commun.* **13**, 536 (2022).

- Woo, M. S. et al. The immunoproteasome disturbs neuronal metabolism and drives neurodegeneration in multiple sclerosis. *Cell* 188, 4567–4585 (2025).
- Belanger, M. et al. Role of the glyoxalase system in astrocytemediated neuroprotection. J. Neurosci. 31, 18338–18352 (2011).
- Cai, X. et al. Lactate activates the mitochondrial electron transport chain independently of its metabolism. Mol. Cell 83, 3904–3920 (2023).
- Bolaños, J. P., Peuchen, S., Heales, S. J., Land, J. M. & Clark, J. B. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem. 63, 910–916 (1994).
- Bolaños, J. P., Heales, S. J. R., Land, J. M. & Clark, J. B. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary cultures. *J. Neurochem.* 64, 1965–1972 (1995).
- Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).
- Dembitskaya, Y. et al. Lactate supply overtakes glucose when neural computational and cognitive loads scale up. Proc. Natl Acad. Sci. USA 119, e2212004119 (2022).
- Roumes, H. et al. Lactate transporters in the rat barrel cortex sustain whisker-dependent BOLD fMRI signal and behavioral performance. Proc. Natl Acad. Sci. USA 118, e2112466118 (2021).
- 31. Zuend, M. et al. Arousal-induced cortical activity triggers lactate release from astrocytes. *Nat. Metab.* **2**, 179–191 (2020).
- 32. Machler, P. et al. In vivo evidence for a lactate gradient from astrocytes to neurons. *Cell Metab.* **23**, 94–102 (2016).
- 33. Suzuki, A. et al. Astrocyte–neuron lactate transport is required for long-term memory formation. *Cell* **144**, 810–823 (2011).
- Akter, M. et al. Astrocyte and L-lactate in the anterior cingulate cortex modulate schema memory and neuronal mitochondrial biogenesis. eLife 12, e85751 (2023).
- Muraleedharan, R. et al. AMPK-regulated astrocytic lactate shuttle plays a non-cell-autonomous role in neuronal survival. *Cell Rep.* 32, 108092 (2020).
- Bhatti, M. S. & Frostig, R. D. Astrocyte-neuron lactate shuttle plays a pivotal role in sensory-based neuroprotection in a rat model of permanent middle cerebral artery occlusion. Sci. Rep. 13, 12799 (2023).
- 37. Petit, J. M. & Magistretti, P. J. Regulation of neuron–astrocyte metabolic coupling across the sleep–wake cycle. *Neuroscience* **323**, 135–156 (2016).
- Carrard, A. et al. Role of adult hippocampal neurogenesis in the antidepressant actions of lactate. *Mol. Psychiatry* 26, 6723–6735 (2021).
- Rabah, Y. et al. Glycolysis-derived alanine from glia fuels neuronal mitochondria for memory in *Drosophila*. *Nat. Metab.* 5, 2002–2019 (2023)
- 40. Volkenhoff, A. et al. Glial glycolysis is essential for neuronal survival in *Drosophila*. *Cell Metab*. **22**, 437–447 (2015).
- Gonzalez-Gutierrez, A., Ibacache, A., Esparza, A., Barros, L. F. & Sierralta, J. Neuronal lactate levels depend on glia-derived lactate during high brain activity in *Drosophila*. Glia 68, 1213–1227 (2020).
- 42. Li, H. et al. Neurons require glucose uptake and glycolysis in vivo. *Cell Rep.* **42**, 112335 (2023).
- Cohen, J. & Torres, C. Astrocyte senescence: evidence and significance. Aging Cell 18, e12937 (2019).
- 44. Aron, L., Zullo, J. & Yankner, B. A. The adaptive aging brain. *Curr. Opin. Neurobiol.* **72**, 91–100 (2022).
- 45. Amaral, D. G., Scharfman, H. E. & Lavenex, P. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). *Prog. Brain Res.* **163**, 3–22 (2007).
- Diaz-Garcia, C. M. et al. Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab. 26, 361–374 (2017).

- Karsten, S. L. et al. Global analysis of gene expression in neural progenitors reveals specific cell-cycle, signaling, and metabolic networks. *Dev. Biol.* 261, 165–182 (2003).
- 48. Rafalski, V. A. & Brunet, A. Energy metabolism in adult neural stem cell fate. *Prog. Neurobiol.* **93**, 182–203 (2011).
- 49. Baeza-Lehnert, F. et al. Non-canonical control of neuronal energy status by the Na⁺ pump. *Cell Metab.* **29**, 668–680 (2019).
- Santos, R. et al. Local glycolysis fuels actomyosin contraction during axonal retraction. J. Cell Biol. 222, e202206133 (2023).
- 51. Ketschek, A., Sainath, R., Holland, S. & Gallo, G. The axonal glycolytic pathway contributes to sensory axon extension and growth cone dynamics. *J. Neurosci.* **41**, 6637–6651 (2021).
- 52. Wei, Y. et al. Aerobic glycolysis is the predominant means of glucose metabolism in neuronal somata, which protects against oxidative damage. *Nat. Neurosci.* **26**, 2081–2089 (2023).
- Blazquez, C., Sanchez, C., Velasco, G. & Guzman, M. Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes. J. Neurochem. 71, 1597–1606 (1998).
- 54. Eraso-Pichot, A. et al. GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes. *Glia* **66**, 1724–1735 (2018).
- 55. Fecher, C. et al. Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. *Nat. Neurosci.* **22**, 1731–1742 (2019).
- 56. Morant-Ferrando, B. et al. Fatty acid oxidation organizes mitochondrial supercomplexes to sustain astrocytic ROS and cognition. *Nat. Metab.* **5**, 1290–1302 (2023).
- 57. Lopez-Fabuel, I. et al. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. *Proc. Natl Acad. Sci. USA* **113**, 13063–13068 (2016).
- Vicente-Gutierrez, C. et al. Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. *Nat. Metab.* 1, 201–211 (2019).
- Jimenez-Blasco, D. et al. Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature 583, 603–608 (2020).
- Blazquez, C., Woods, A., de Ceballos, M. L., Carling, D. & Guzman, M. The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes. *J. Neurochem.* 73, 1674–1682 (1999).
- Guzman, M. & Blazquez, C. Is there an astrocyte-neuron ketone body shuttle? *Trends Endocrinol. Metab.* 12, 169-173 (2001).
- 62. Silva, B. et al. Glia fuel neurons with locally synthesized ketone bodies to sustain memory under starvation. *Nat. Metab.* **4**, 213–224 (2022).
- McMullen, E. et al. Glycolytically impaired *Drosophila* glial cells fuel neural metabolism via β-oxidation. *Nat. Commun.* 14, 2996 (2023).
- 64. Liu, L. et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. *Cell* **160**, 177–190 (2015).
- Liu, L., MacKenzie, K. R., Putluri, N., Maletic-Savatic, M. & Bellen, H. J. The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab. 26, 719–737 (2017).
- 66. Kumar, M. et al. Triglycerides are an important fuel reserve for synapse function in the brain. *Nat. Metab.* **7**, 1392–1403 (2025).
- 67. Saber, S. H. et al. DDHD2 provides a flux of saturated fatty acids for neuronal energy and function. *Nat. Metab.* https://doi.org/10.1038/s42255-025-01367-x (2025).
- Greda, A. K. et al. Interaction of sortilin with apolipoprotein E3 enables neurons to use long-chain fatty acids as alternative metabolic fuel. *Nat. Metab.* https://doi.org/10.1038/s42255-025-01389-5 (2025).
- 69. Yang, J. et al. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. *Proc. Natl Acad. Sci. USA* **111**, 12228–12233 (2014).

- Neame, S. et al. The NMDA receptor activation by D-serine and glycine is controlled by an astrocytic Phgdh-dependent serine shuttle. Proc. Natl Acad. Sci. USA 116, 20736–20742 (2019).
- Le Douce, J. et al. Impairment of glycolysis-derived L-serine production in astrocytes contributes to cognitive deficits in Alzheimer's disease. Cell Metab. 31, 503–517 (2020).
- Magistretti, P. J. & Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. *Nat. Rev. Neurosci.* 19, 235–249 (2018).
- Matsui, T. et al. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity. Proc. Natl Acad. Sci. USA 114, 6358–6363 (2017).
- 74. Gao, V. et al. Astrocytic β_2 -adrenergic receptors mediate hippocampal long-term memory consolidation. *Proc. Natl Acad. Sci. USA* **113**, 8526–8531 (2016).
- 75. Fiumelli, H. et al. Lactate potentiates NMDA receptor currents via an intracellular redox mechanism targeting cysteines in the C-terminal domain of GluN2B subunits: implications for synaptic plasticity. Preprint at *bioRxiv* https://doi.org/10.1101/2024.11. 21.624499 (2024).
- Bonvento, G., Oliet, S. H. R. & Panatier, A. Glycolysis-derived L-serine levels versus PHGDH expression in Alzheimer's disease. Cell Metab. 34, 654–655 (2022).
- Fernández-Moncada, I. et al. A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes. *Nat. Commun.* 15, 6842 (2024).
- Brandebura, A. N., Paumier, A., Onur, T. S. & Allen, N. J. Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders. *Nat. Rev. Neurosci.* 24, 23–39 (2023).
- Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. *Nature* 539, 180–186 (2016).
- 80. Goyal, M. S. et al. Loss of brain aerobic glycolysis in normal human aging. *Cell Metab.* **26**, 353–360 (2017).
- Goyal, M. S. et al. Brain aerobic glycolysis and resilience in Alzheimer disease. Proc. Natl Acad. Sci. USA 120, e2212256120 (2023).
- Hipkiss, A. R. Aging, Alzheimer's disease and dysfunctional glycolysis; similar effects of too much and too little. *Aging Dis.* 10, 1328–1331 (2019).
- Boumezbeur, F. et al. Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J. Cereb. Blood Flow Metab. 30, 211–221 (2010).
- 84. Beard, E., Lengacher, S., Dias, S., Magistretti, P. J. & Finsterwald, C. Astrocytes as key regulators of brain energy metabolism: new therapeutic perspectives. *Front. Physiol.* **12**, 825816 (2021).
- 85. Tefera, T. W., Steyn, F. J., Ngo, S. T. & Borges, K. CNS glucose metabolism in amyotrophic lateral sclerosis: a therapeutic target? *Cell Biosci.* **11**, 14 (2021).
- Maksimovic, K., Youssef, M., You, J., Sung, H. K. & Park, J. Evidence of metabolic dysfunction in amyotrophic lateral sclerosis (ALS) patients and animal models. *Biomolecules* 13, 863 (2023).
- 87. Weerasekera, A. et al. Non-invasive characterization of amyotrophic lateral sclerosis in a hTDP-43^{A315T} mouse model: a PET-MR study. *Neuroimage Clin.* **27**, 102327 (2020).
- Browne, S. E. et al. Bioenergetic abnormalities in discrete cerebral motor pathways presage spinal cord pathology in the G93A SOD1 mouse model of ALS. Neurobiol. Dis. 22, 599–610 (2006).
- 89. Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. *Nature* **487**, 443–448 (2012).
- 90. Sonninen, T. M. et al. Metabolic alterations in Parkinson's disease astrocytes. *Sci. Rep.* **10**, 14474 (2020).
- 91. Rappold, P. M. & Tieu, K. Astrocytes and therapeutics for Parkinson's disease. *Neurotherapeutics* **7**, 413–423 (2010).
- 92. Damier, P., Hirsch, E. C., Zhang, P., Agid, Y. & Javoy-Agid, F. Glutathione peroxidase, glial cells and Parkinson's disease. *Neuroscience* **52**, 1–6 (1993).

- 93. Zeevalk, G. D., Razmpour, R. & Bernard, L. P. Glutathione and Parkinson's disease: is this the elephant in the room?. *Biomed. Pharmacother.* **62**, 236–249 (2008).
- 94. Proschel, C., Stripay, J. L., Shih, C. H., Munger, J. C. & Noble, M. D. Delayed transplantation of precursor cell-derived astrocytes provides multiple benefits in a rat model of Parkinsons. *EMBO Mol. Med.* **6**, 504–518 (2014).
- Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. *Nat. Rev. Neurosci.* 20, 148–160 (2019).
- Mosconi, L., Pupi, A. & De Leon, M. J. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer's disease. *Ann. N. Y. Acad. Sci.* 1147, 180–195 (2008).
- Minhas, P. S. et al. Restoring hippocampal glucose metabolism rescues cognition across Alzheimer's disease pathologies. Science 385, eabm6131 (2024).
- Williams, H. C. et al. APOE alters glucose flux through central carbon pathways in astrocytes. *Neurobiol. Dis.* 136, 104742 (2020).
- 99. Pascual, J. M. et al. GLUT1 deficiency and other glucose transporter diseases. *Eur. J. Endocrinol.* **150**, 627–633 (2004).
- 100. Xu, W. & Borges, K. Case for supporting astrocyte energetics in glucose transporter 1 deficiency syndrome. *Epilepsia* 65, 2213–2226 (2024).
- 101. Tsacopoulos, M. & Magistretti, P. J. Metabolic coupling between glia and neurons. *J. Neurosci.* **16**, 877–885 (1996).
- 102. Welch, G. R. & Easterby, J. S. Metabolic channeling versus free diffusion: transition-time analysis. *Trends Biochem. Sci.* 19, 193–197 (1994).
- 103. Berridge, M. V., Schneider, R. T. & McConnell, M. J. Mitochondrial transfer from astrocytes to neurons following ischemic insult: guilt by association? *Cell Metab.* 24, 376–378 (2016).
- 104. Dong, L. F. et al. Mitochondria on the move: horizontal mitochondrial transfer in disease and health. J. Cell Biol. 222, e202211044 (2023).
- 105. Boudreau, L. H. et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. *Blood* 124, 2173–2183 (2014).
- 106. Makar, T. K. et al. Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurones: evidence that astrocytes play an important role in antioxidative processes in the brain. *J. Neurochem.* **62**, 45–53 (1994).
- Bolaños, J. P. et al. Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radic. Biol. Med. 21, 995–1001 (1996).
- 108. Dringen, R., Kussmaul, L., Gutterer, J. M., Hirrlinger, J. & Hamprecht, B. The glutathione system of peroxide detoxification is less efficient in neurons than in astrocytes. *J. Neurochem.* 72, 2523–2530 (1999).
- 109. Jimenez-Blasco, D., Santofimia-Castano, P., Gonzalez, A., Almeida, A. & Bolaños, J. P. Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5–Nrf2 pathway. Cell Death Differ. 22, 1877–1889 (2015).
- Bell, K. F. et al. Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat. Commun. 6, 7066 (2015).
- Dringen, R., Pfeiffer, B. & Hamprecht, B. Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. *J. Neurosci.* 19, 562–569 (1999).
- Funfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. *Nature* 485, 517–521 (2012).

- Looser, Z. J. et al. Oligodendrocyte–axon metabolic coupling is mediated by extracellular K⁺ and maintains axonal health. Nat. Neurosci. 27, 433–448 (2024).
- 114. Spate, E. et al. Downregulated expression of lactate dehydrogenase in adult oligodendrocytes and its implication for the transfer of glycolysis products to axons. Glia 72, 1374–1391 (2024).
- Asadollahi, E. et al. Oligodendroglial fatty acid metabolism as a central nervous system energy reserve. Nat. Neurosci. 27, 1934–1944 (2024).
- Ramos-Cabrer, P. et al. Reversible reduction in brain myelin content upon marathon running. Nat. Metab. 7, 697-703 (2025).

Acknowledgements

J.P.B. is funded by MICIU/AEI (PID2022-138813OB-I00/10.13039/501100011033 and FEDER, UE), la Caixa Foundation (grant agreement LCF/PR/HR23/52430016), the European Union's Horizon Europe research and innovation programme under the MSCA Doctoral Networks 2021 (101072759, fuel the brain in healthy ageing and age-related diseases (ETERNITY)) and the European Research Council Advanced Grant NeuroSTARS (reference 101199747). Research in P.J.M.'s laboratory is funded by King Abdullah University of Science and Technology.

Author contributions

J.P.B. and P.J.M. conceived the idea and wrote, edited and approved the manuscript.

Competing interests

P.J.M. is the scientific founder of GliaPharm. J.P.B declares no competing interests.

Additional information

Correspondence and requests for materials should be addressed to Juan P. Bolaños or Pierre J. Magistretti.

Peer review information *Nature Metabolism* thanks L. Felipe Barros and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alfredo Gimenez-Cassina, in collaboration with the *Nature Metabolism* team.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© Springer Nature Limited 2025