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Abstract

Hypertension is recognized as a significant risk factor for the development of cardiovascular diseases (CVD), stroke, and
kidney diseases. Although hypertension is influenced by numerous factors, the renin-angiotensin system (RAS) is widely
acknowledged as a critical regulator of normal blood pressure (BP) stability and a significant contributor to the development
of hypertension. RAS has different peptides and receptors that exert their effects via two alternative and classical pathways.
In females, estradiol exhibits protective effects on the cardiovascular and renal systems. It may modulate BP regulation via
its influence on the RAS, affecting the levels of crucial substrates, enzymes, receptor expression, and protein production. Sex
disparities in hypertension are apparent in various hypertensive animal models. This review explored the connection between

estrogen and RAS components in the context of hypertension.
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Introduction

According to the World Health Organization, hypertension
is defined as having systolic blood pressure >140 mmHg or
diastolic blood pressure 290 mmHg [1], which is recognized
as a significant risk factor for the development of cardio-
vascular diseases (CVD), stroke, and kidney diseases [2-5].
It is projected that the number of individuals with hyper-
tension worldwide will surpass one billion by the year 2025
[6]. Premenopausal women tend to have a lower risk of
developing hypertension than age-matched men. However,
it is essential to note that the incidence of hypertension
increases significantly in postmenopausal women (Post-
MW) [7, 8]. Hypertension is a condition that is influenced
by various factors, and the renin-angiotensin system (RAS)
is widely recognized as a critical regulator of normal blood
pressure (BP) stability and a significant contributor to the
development of hypertension. Some studies documented the
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relative contributions of circulating versus intrarenal RAS
in regulating renal function and arterial blood pressure
(ABP) control [9-12]. Recent biomedical research in animal
models of hypertension and numerous clinical trials invol-
ving drugs such as angiotensin-converting enzyme (ACE)
inhibitors, angiotensin receptor blockers (ARBs), or
mineralocorticoid receptor blockers to treat hypertension
[2, 3, 5, 13]. This review explored the connection between
estrogen and RAS components in the context of
hypertension.

The renin-angiotensin system (RAS)

RAS has been acknowledged for over a century since the
discovery of renin by Tigerstedt and Bergman in 1898 [14].
It serves a vital function in maintaining normal BP levels
and ensuring proper electrolyte balance [15]. Angiotensin II
(Ang II) is a highly potent biological substance produced by
the RAS [15]. Ang II has a more significant binding affinity
for the Ang II type 1 receptor (ATIR), which is located
mainly in the kidneys, vascular smooth muscle, lungs, and
liver, and a lower affinity for the Ang II type 2 receptor
(AT2R), which is mainly expressed during the prenatal
period and later in childhood [16]. AT2R is exclusively
expressed in the kidneys, heart, and blood vessels in adults
[16]. Both receptors have antagonistic properties and are
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part of a family of receptors that bind to G proteins. ATla
and AT1b receptors (AT1aR and AT1bR) are subtypes of
ATIR [17]. Although these subtypes are similar in their
capacity to bind to and activate ligands, they differ in their
tissue distribution, chromosomal localization, genomic
structure, and how they are controlled in the transcription
process [17]. Most actions of Ang Il on ATIRs involve
cellular dedifferentiation and proliferation, vasoconstriction,
cardiac contractility, increased renal tubular sodium reab-
sorption, secretion of aldosterone, vasopressin, and endo-
thelin, as well as salt appetite, thirst, and activation of the
sympathetic nervous system, all of which can elevate ABP
and contribute to the development of hypertension [18].
Activation of AT2Rs by Ang I, opposes the prohyperten-
sive, progrowth, and proliferative effects of ATIR activa-
tion. It leads to vasodilation and increased natriuresis
[19-23]. Ang 1-7 is a biologically active derivative of Ang I
and Ang II, which are enzymatically cleaved by ACE2
[24, 25]. The Mas receptor (MasR), is the target of Ang 1-7,
causing vasodilation and natriuresis, as well as increasing
the production of nitric oxide to decrease inflammation and
fibrosis [26, 27]. In return, Ang 1-7 can bind to AT2R [7].
Plasma renin activity was reduced by an infusion of Ang 1-
7, which may have contributed to its antihypertensive
effects [28]. Thus, the RAS has some components with
opposite effects to those of the classic axis (renin/ACE/Ang
II/AT1R), these components are called alternative pathways
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(ACE2, AT2R, Ang 1-7, MasR, and alamandine) with
antihypertensive effects (Fig. 1) [29-31]. However, the
classic axis still plays a predominant role in regulating ABP,
cardiovascular and kidney function, and the pathogenesis of
hypertension [32-38].

Intrarenal RAS

The RAS can operate both systemically and locally. The sys-
temic RAS is the classical, circulating endocrine system that
operates throughout the body. Local or tissue RAS refers to the
presence of RAS components and their local production within
specific tissues and organs such as the heart, blood vessels,
kidney, brain, adipose tissue, adrenal gland, pancreas, liver,
reproductive system, lymphatic tissue, placenta, and eyes [39].
In comparison to the circulating levels, the intrarenal levels of
Ang II are greater, and the medulla contains more Ang II than
the cortex [40]. Researchers have used radiolabeled Ang II to
provide direct evidence of the local synthesis of Ang I [41]. All
essential components of the RAS, including angiotensinogen
(AGT), renin, and ACE, are synthesized in the kidney to
facilitate the local production of Ang II [15, 18, 26, 42-44].
Navar et al. previously demonstrated that circulating Ang 1T is
absorbed by the kidney or proximal tubule through AT1aR-
mediated processes [41, 45-51]. The thick ascending limb of
the nephron also exhibits significant levels of AT1Rs [52]. The
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Fig. 1 Classical and alternative pathways in the renin-angiotensin system. Ang Angiotensin, ACE Angiotensin-converting enzyme, NEP Neutral
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presence of high-density receptors specific for Ang I and Ang
1-7 has been identified in the kidney cortical nuclei of both
sheep and rats [53-56]. In the kidneys, when AT1Rs are acti-
vated, it triggers the expression of sodium-hydrogen exchanger
3 (NHE23) in the proximal tubules and the ascending limb of the
loop of Henle. This leads to a reduction in the pressure-
natriuresis response and an increase in ABP [19, 57-60]. Ang
II, suppresses renin secretion by targeting the AT1Rs on renal
juxtaglomerular cells, acting as a negative feedback system that
limits systemic activity [18]. Some of the topics addressed
include the relative contributions of circulating versus intrar-
enal RAS in regulating renal function [9-12], the role of
intracellular RAS [61-66], and the roles of intratubular RAS in
normal ABP control and Ang II-induced hypertension
[15, 42, 67, 68].

In summary, all essential components of the RAS are
synthesized within the kidneys (as a local autocrine/para-
crine system), playing a crucial role in renal function. Ang
I and Ang 1-7 receptors are extensively distributed
throughout the kidney and contribute to BP regulation by
modulating NHE3 activity and renin secretion.

Estrogen

Estrogen, a lipid-soluble steroid hormone, is one of the most
important female sex hormones. It is mainly synthesized by

the ovaries, testes, and adrenal cortex, playing a key role in
numerous essential physiological processes. In humans,
four types of estrogens have been identified: estrone (E1),
17p-estradiol (E2), estriol (E3), and estetrol (E4) [69]. The
word “estrogen” often refers to E2 because of its extensive
presence and significant physiological roles across various
tissues and organ systems [70]. E2 is crucial for the
development of the reproductive system, maintaining
metabolic equilibrium, regulating energy production and
distribution, promoting mitochondrial biogenesis, and aid-
ing in the synthesis of adenosine triphosphate [71]. E2
exhibits a strong binding affinity for estrogen receptor-o
(ER-a) and estrogen receptor-p (ER-B), which belong
to the nuclear hormone receptor superfamily [72], and
peripheral G protein-coupled estrogen receptor 1 (GPERI1),
has been recognized as another mediator of non-nuclear
signaling [73].

Within the nuclear signaling pathway, E2 binds to the
intracellular receptors ERa and ERf, creating an E2-
receptor dimer complex that subsequently moves into the
nucleus. Once inside the nucleus, this complex binds to
estrogen response elements or activator protein-1 and spe-
cificity protein-1 located on the promoters of E2-responsive
genes, functioning as transcription factors to control gene
transcription [70]. Ultimately, estrogen-mediated gene pro-
ducts regulate autophagy, proliferation, apoptosis, survival,
differentiation, and vasodilation under normal conditions.
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Fig. 2 Genomic and non-genomic estrogen signaling pathways. There
are different estrogen-mediated signaling mechanisms. 1) Genomic
signaling: estrogen binds to ERs. The complex dimerizes and trans-
locate to the nucleus inducing transcriptional changes in estrogen-
responsive genes with or without EREs. 2) Non- genomic signaling:

Nevertheless, these functions can be impaired when
pathological conditions arise. Due to the intracellular loca-
tion of ERa and ERp, their activation generally requires
several hours or more, resulting in a gradual “genomic
effect” (Fig. 2) [70].

In the non-nuclear signaling pathway, E2 interacts
with GPERI, rapidly triggering nuclear transcription
factors by regulating ion channel openings or activating
associated enzymes such as Ca2* mobilization, phosphati-
dylinositol 3-kinase, and mitogen-activated protein kinase.
This mechanism functions independently of gene regulation
and occurs almost immediately, within seconds to minutes,
thus, it is referred to as a rapid “non-genomic effect”
(Fig. 2) [70].

Activation of ERax has been demonstrated to alleviate
endothelial dysfunction. ERp activation leads to a decrease
in BP, vasoconstriction, and mitigation of cardiac hyper-
trophy. Additionally, GPER1 contributes to reducing BP,
promoting vasodilation, and decreases vascular smooth
muscle cells (VSMCs) proliferation and migration [74]. The
reduction in E2 levels associated with the onset of meno-
pause disrupts mitochondrial activity and exacerbates
inflammatory responses, abnormal blood vessel formation,
and microvascular disorders [75]. E2 may further impact BP
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by modulating the RAS, attenuating sympathetic-driven
vasoconstriction, modulating salt sensitivity, influencing
body mass, and diminishing oxidative stress. Collectively,
these mechanisms play a role in vascular inflammation and
the development of cardiovascular and renal dysfunction,
including hypertension [76, 77].

Estrogen and RAS

Sex disparities in the expression of RAS components have
also been identified [78, 79]. As age progresses, E2 declines
in female rats, leading to increased intrarenal RAS activa-
tion [80]. E2 down-regulates ACE2 and ATIR while sig-
nificantly up-regulating AT2R; these effects are diminished
or lost in ER-a knockout mice [81]. In female Sprague
Dawley rats, the kidneys show a notable concentration
of ER-a and GPER mRNA [82]. Studies have determined
the role of ER-f in protecting against hypertension
through both vascular [77] and central [83] mechanisms. In
vascular mechanism, E2 reduces vasoconstriction by
enhancing the expression of inducible nitric oxide
synthase via ER-B [77]. In the central mechanism, the
paraventricular nucleus and rostral ventrolateral medulla
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ERP are involved in the protective effects
aldosterone-induced hypertension [83].

against

Estradiol and renal RAS receptor expression

In rodents, the levels of renal Ang II receptor types are
affected by E2 showing notable variations across species,
strains, and regions [84]. Males typically exhibit increased
ATIR expression at both the RNA and protein levels [39].
According to Rogers and colleagues study, the density of
ATIR in glomeruli and specific binding is lower in female
Sprague-Dawley rats compared to male rats [85]. E2 pre-
vents the increase in ATIR density observed in the renal
medulla and cortex following ovariectomy (OVX) [86], and
may reduce the activation of the ACE/ATIR pathway
[39, 87], whereas OVX itself increases AT1R expression
and binding in the kidney [84]. E2 enhances the expression
of AT2R [88, 89] and reduces the ATIR/AT2R ratio [90].
Female Sprague-Dawley rats undergo an estrogen-mediated
increase in AT2R expression within cardiac and renal tis-
sues [91, 92]. Sampson et al. revealed higher expression of
the AT2R, ACE2, and Ang 1-7 genes in the renal tissue of
adult females than in that of males [93]. One study
demonstrated that sex chromosomes influence the gene
expression of AT1R, AT2R, and MasR in the renal cortex
[94]. Renal MasR expression varies between males and
females. Adult female rats exhibit higher MasR mRNA
levels in their kidneys compared to males [88, 93].

Estradiol and RAS in renal function

The influence of E2 on the expression of components within
the RAS may alter renal function. There is a significance of
sex differences in MasR expression and functions in the
renal system under both physiological and pathological
conditions [95]. For example, MasR has been shown to
differentially regulate renal blood flow (RBF) responses to
Ang 1-7 between male and female rats. Ang 1-7 infusion
resulted in a dose-dependent increase in RBF in both sexes.
Notably, MasR blockade significantly diminished this
response only in female rats [96]. Mansoori et al. provided
evidence documenting the sex-dependent vasodilatory
effect of Ang 1-7 in the renal vascular bed [97]. In male
rats, blocking both AT1R and AT2R resulted in an increase
in RBF when MasR was inhibited, but this effect was not
seen in female rats [97]. E2-treated OVX rats exhibited a
reduced in RBF response to Ang 1-7 following MasR
blockade [98]. Blocking MasR restricts the opportunities for
E2 to exert its protective effects. A779, an antagonist of
MasR, significantly improved the RBF in male rats, in
response to Ang 1-7 infusion when the Ang II receptors
were blocked, and this observation did not occur in female
animals [99]. The study suggested that Angl-7

administration may not involve MasR in mediating renal
vascular responses in male rats, and these responses are not
associated with Ang II receptors [99].

In summary, renal Ang II receptor expression and renal
function is influenced by E2, which reduces the activation
of the ACE/ATIR pathway, decreases the ATIR/AT2R
ratio, and increases AT2R activation. The AT2R, ACE2,
and Ang 1-7 genes and MasR were more highly expressed
in the renal tissue of adult females than in that of males.
This causes different renal hemodynamic responses in
males and females.

Estrogen and RAS components in
hypertension

Several models of hypertension have shown alterations in
the intrarenal RAS [100-103]. Disparities in hypertension
between the sexes have been observed in the SHR strain
[104] and the Dahl salt-sensitive strain [105], as well as in
deoxycorticosterone salt [106, 107] and renal-wrap hyper-
tension [108]. In a study conducted by Xue et al., it was
shown that male mice experienced a significantly greater
increase in BP compared to female mice, with castration
attenuating and OVX augmenting Ang II-induced hyper-
tension. The animal models have revealed some incon-
sistencies regarding the roles of sex differences in Ang II-
induced hypertension [109—-113]. The variations include
complete reversal, reduced responses, or no effect at all in
female rats or mice, depending on the Ang II infusion doses
(either low or high pressor), the animal models used (rat or
mouse, global ATla or AT2 receptor knockout), or the
administration methods (subcutaneous or intraperitoneal
infusion). Below, we highlight several studies that have
reported interactions between E2 and renal RAS compo-
nents and renal function in hypertension.

Estrogen and renal RAS components in HTN

In humans, the correlation between hypertension and renal
injury with an elevated RAS activation is stronger in males
than in females [114]. Hinojosa-Laborde et al. reported that
in aged female Dahl salt-sensitive rats, the binding of ATIR
to renal glomeruli increased, accompanied by an increase in
BP [115]. This increase was further exacerbated by OVX
but was abolished by chronic E2 treatment [115]. Another
study demonstrated that in Dahl salt-sensitive rats following
OVX, E2 counteracted the increase in ATIR protein
expression in the kidneys and subsequently increased their
systolic blood pressure. Furthermore, chronic blockade of
ATIR normalized BP in these rats. The results imply that
ATIR is might be related to heightened salt sensitivity
[116]. Male spontaneously hypertensive rats (SHRs)
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exhibits increased levels of ATIR mRNA and protein
expression in both the vasculature and kidney, while
females display increased AT2R expression [117, 118].
Female SHRs exhibit greater expression of Mas protein in
the kidney cortex than male SHRs [93, 117]. In aging
SHRs, ATIR expression is the same in both sexes [119].
ARBs leads to a greater reduction in ABP in aged male
SHRs than in aged female SHRs, despite no difference in
the intrarenal mRNA expression of ACE or AT1R between
the sexes [119]. Chronic low-dose Ang II infusion has been
reported to lower the mean arterial pressure in intact female
and estrogen-replaced OVX rats. This is attributed to an
increase in renal and cardiac AT2R and MasR, however,
this effect was not observed in OVX rats [91]. Additionally,
research has shown that renal vasoconstriction was lessened
in women than in men when ATIR blockade was given,
which implies that this was a result related to AT2R
[120-122]. In AT2R knock-out mice, female mice exhibited
a weaker response to Ang II infusion than male wild-type
and female AT2R knock-out mice [109]. ACE2 has been
demonstrated to protect females, but not males, from the
pressor effects of Ang II infusion in studies utilizing ACE2-
knockout mice [123]. In animal models of hypertension,
Ang 1-7 levels are consistently greater in female than in
male, and blocking MasR eliminates the protective effect
that is unique to females against vascular damage
[117, 124, 125]. Similarly, Brosnihan et al. found that E2
can stimulate the production of Ang 1-7 in transgenic
hypertensive rats [126]. Ji et al. revealed that administering

E2 supplementation following renal wrapping in OVX rats
led to an increase in renal ACE2 expression, which was
previously reduced due to wrapping [127]. In two-kidney,
one clip (2K1C) hypertensive model, MasR expression
decreased [101]. Lee et al. investigated to compare the
intratubular RAS between male and female 2K 1C rats. Five
weeks post-surgery, it was observed that the levels of ACE
and Ang II were significantly lower in female than in male
[128]. Moreover, higher levels of ACE2, Ang 1-7, and
MasR have been detected in female [128]. A summary of
the effects of estrogen on renal RAS components in various
hypertension models is shown in Fig. 3.

Estrogen, RAS, and renal function in HTN

Animal studies have also illustrated the effects of E2
through RAS receptors on renal function in hypertension.
For instance, in our previous study, we showed that in the
2K1C model, administrating E2 to female OVX rats
reduced the impact of losartan on the RBF to Ang II infu-
sion [129]. This attenuation may occur via a decrease in
ATIR expression in 2K1C model [101, 130, 131] or due to
an unknown mechanism that promotes the vasoconstrictor
actions of AT2R in groups that received supraphysiological
levels of E2 [132]. In female OVX, 2K1C model showed
that the effects of A779 and E2 on RBF responses to Ang II
infusion decreased [133], possibly due to a decrease in
MasR expression in the nonclipped kidney [128]. Pezeshki
et al. reported that blocking ATIR (with losartan) increased

Estrogen and renal RAS components in HTN
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Fig. 3 Effects of estrogen on renal RAS components in various
hypertension models. SHR Spontaneously hypertensive rats, 2K1C
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RBF in response to Ang II, but no differences were detected
between the sexes. However, co-blockade of ATIR and
MasR significantly increased the response of RBFs to Ang
IT in males but not in females [134]. This finding suggested
that there may be different interactions between receptors
within the RAS in male and female rats. A study conducted
by Safari et al. indicated that in normotensive OVX rats
high-dose E2 pretreatment increased the renal vasocon-
strictor response to Ang II. Nonetheless, this enhanced
response was not evident when AT2R was acutely blocked
with PD123319 [132]. So they concluded high levels of E2
result in renal vasoconstriction through AT2R-mediated
mechanisms. Also, they examined how Ang II infusion
affected RBF in normal male and female Wistar rats with
AT2R and masR blocked [135]. The results showed that
MasR blockade led to a reduction in basal RBF in female
rats, while no such effect was observed in male rats.
Interestingly, co-administration of MasR and AT2R
antagonists did not show a synergistic impact on basal RBF.
The result of this study indicated that the activation of both
AT2Rs and MasRs unexpectedly enhanced the constriction
of renal blood vessels by Ang II. However, this response in
normotensive female rats is greater than in male rats [135].
MasR blockade [117] or ACE2 knock-out [123] also
eliminated the disparities in the Ang II-induced response
between the sexes. According to Biirgelova et al. study,
intrarenal MasR blockade did not affect renal function in
normotensive rats. However, it resulted in a significant
decrease in renal hemodynamics in 2K1C rats [136].

In summary, compared with female animals, male ani-
mals exhibit augmented renal constrictor responses to
exogenous Ang II, while E2 changes the expression of the
receptor and other components of the RAS under conditions
of hypertension. Substantial evidence supports a more sig-
nificnt role for the RAS depressor arm in women than men
which can ultimately cause different renal hemodynamic
responses in both sexes.

The complexities of estrogen effects on
blood pressure

Research shows that E2, progesterone, and testosterone
significantly affect endothelial cells, VSMCs, extracellular
matrix, and various proteases. Moreover, menopausal hor-
mone therapy (MHT) alleviates vasomotor symptoms
associated with menopause in Post-MW [137]. This led to
trials examining MHT’s effects on CVD, but results were
inconclusive [138]. E2 is used in contraception and MHT to
ease menopause symptoms due to its vasodilatory effects
[137]. Initial observational data from the Nurses’ Health
Study suggested a reduced risk of cardiovascular incidents
and mortality related to CVD in PosttMW who were

administered oral E2 [139, 140]. However, major rando-
mized trials like Women’s Health Initiative (WHI) and
Heart and Estrogen/progestin Replacement Study (HERS)
found no cardiovascular benefits and reported increased
cerebrovascular risks with MHT [141, 142]. Although a
transient reduction in coronary artery disease events was
noted in the MHT group during the later phases of HERS,
this advantage did not persist during long-term follow-up.
Thus, MHT is not recommended to reduce CVD risk in
Post-MW with existing coronary artery disease [143]. As
noted in laboratory models, supraphysiological doses of
estrogen elicited different responses in renal blood flow, as
noted in Section “Estrogen, RAS, and renal function in
HTN” [132, 135]. The lack of cardiovascular benefit may
relate to MHT factors (type, dose, administration), differ-
ences in E2 receptors, timing and duration of therapy,
hormone levels, and preexisting cardiovascular health or
medical conditions [144].

Gender differences in the effects of RAS
inhibitors

About 43% of hypertension trials analyze data by sex,
revealing that ACEIs and ARBs may work better in men
[145], while women, being more sensitive, often need lower
ARB doses and experience more ACEI side effects but may
benefit more from ARBs [120, 146]. Current guidelines,
except for pregnancy-related cases, do not specify sex-
based treatment differences. A meta-analysis found these
drugs equally effective for major cardiovascular event pre-
vention in both sexes [147], though women on losartan had
higher angina hospitalizations than men [148]. Several
extensive clinical studies show that RAS inhibitors reduce
mortality and heart failure risks similarly in both sexes, but
women and older adults are often underrepresented and
may receive suboptimal guideline-based therapy [145, 149].
More research is needed to understand how sex hormones
and hormonal therapies influence RAS activity and treat-
ment response [80, 146], including the non-classical vaso-
dilatory RAS pathway [80, 146]. Developing sex-specific
clinical guidelines for RAS inhibitor use, depends on col-
lecting detailed, sex-disaggregated data from both clinical
trials and real-world practice [145, 146].

Conclusion

Hypertension is a major contributor to cardiovascular and
renal diseases. Two key factors influencing BP regulation in
both males and females are RAS and sex hormones. The
interplay between estrogen, BP, and RAS is notably com-
plex. Research has indicated alterations in the components
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of the RAS across various hypertension models. The effect
of E2 on the expression of receptors and components of the
RAS leads to varying sex-related hemodynamic responses
in different models of hypertension. Although E2 is pro-
tective, MHT has minimal or no clinically meaningful effect
on BP in most women and may even increase risk
depending on dose, route, individual factors, physiological
state, and E2 formulation. This mechanistic complexity
should be acknowledged in the manuscript, along with the
variability in individual responses and the inconsistent
cardioprotection from MHT. However, the administration
of ACEI and ARBs for hypertension did not show any
significant differences in endpoint outcomes between the
two genders in clinical trial studies. Future treatments and
research should focus on these differences by ensuring
equal participation of men and women, designing sex-
specific treatment protocols, and exploring alternative RAS
pathways to enhance heart and kidney health outcomes
for all.
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