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Abstract

Translational research on cellular senescence has led to numerous 
early-phase clinical trials targeting senescent cells to treat, prevent or 
alleviate multiple disorders and diseases, including metabolic diseases 
and their comorbidities. Cellular senescence is a cell fate that occurs in 
response to stressors, including metabolic disruptions, and is one of 
the hallmarks (or pillars) of ageing. In their senescent state, cells cease 
proliferation and can develop a senescence-associated secretory and 
metabolic phenotype that contributes to the pathogenesis of metabolic 
dysfunction associated with obesity and ageing. Metabolic stress, which 
is central to the development of metabolic diseases, can trigger cellular 
senescence, thereby enabling a vicious cycle that exacerbates metabolic 
dysfunction. Therapies targeting senescent cells (senotherapeutics), 
either alone or in combination with other gerotherapies or lifestyle 
interventions, hold great promise for addressing the ongoing obesity 
epidemic and the need for improved therapies to prevent and treat 
metabolic diseases and their complications and comorbidities. 
In this Review, we discuss novel senotherapeutics, including challenges 
related to the translation of these therapies and the need to establish 
gerodiagnostic biomarkers to track the elimination of senescent cells, 
define eligibility and measure efficacy, as well as considerations for 
clinical trial design and execution.
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have important roles during embryonic development12,13, timing of 
parturition14 and in tumour suppression15.

Regarding the detrimental role of senescent cells, the SASP can 
exacerbate tissue dysfunction through paracrine and endocrine 
mechanisms and can itself induce senescence locally or in distant 
tissues16,17. Related to the damaging microenvironment that senes-
cent cells can create, they also have upregulated prosurvival pathways 
and senescence-associated anti-apoptotic pathways (SCAPs), which 
enable the cells to persist18–20. These prosurvival pathways present 
targets that could be exploited for developing therapies to target 
senescent cells.

In ageing and obesity, compromised immune cell function might 
contribute to the accumulation of senescent cells21–26. It is thought 
that the burden of senescent cells needs to exceed a certain threshold, 
outpacing immune clearance of already present and newly formed 
senescent cells, in order to cause dysfunction2,16,21. Direct evidence 
for this threshold effect comes from transplantation experiments16. 
These experiments showed that transplanting a small number of 
senescent cells into old mice of a normal weight fed a chow diet, or 
old, obese mice fed a high-fat diet, was sufficient to induce adverse 
phenotypes. Furthermore, double that number of transplanted senes-
cent cells was required to elicit similar phenotypic changes in younger, 
healthy mice with a lower pre-existing number of senescent cells and 
a better functioning immune system than in older mice. This finding 
suggests that vulnerability to senescent cell burden varies with age 
and health status, reinforcing the idea of a dynamic interplay between 
senescent cell load and immune-mediated senescent cell clearance. 
Senescent cell burden, particularly in metabolic tissues (for example, 
adipose tissue, liver and skeletal muscle), accelerates with ageing 
and obesity and can be pronounced at sites of pathology16,27–31. As in 
ageing-associated conditions and obesity32–36, metabolic diseases 
have an earlier onset and a higher prevalence in populations with an 
elevated senescent cell load (such as survivors of childhood cancer 
and women with a history of preeclampsia) than in those with an 
average senescent load37–42.

These observations, along with preclinical evidence linking senes-
cent cells to metabolic diseases, have spurred substantial interest in 
senotherapeutic approaches for the treatment and prevention of meta-
bolic diseases and their complications. Indeed, genetic or pharmaco-
logical approaches targeting senescent cells in preclinical models have 
shown promise for alleviating and preventing metabolic diseases and 
associated comorbidities2,43,44. The first generation of senolytics (drugs 
that selectively eliminate senescent cells19) has been tested in sev-
eral early-phase clinical trials for different indications28,45. Lifestyle 
interventions, such as diet and exercise, and some compounds that 
inhibit the SASP (for example, ruxolitinib, resveratrol and metformin) 
can mitigate the damaging effects of the SASP in preclinical models 
and represent a possible alternative approach to directly eliminating 
senescent cells. Given the growing obesity epidemic, rapidly ageing 
population and wide-ranging effects of senescent cells on human 
health and disease, these therapeutic strategies could revolutionize 
disease prevention and treatment and have a considerable effect on 
human healthspan.

This Review explores the steps that are underway to translate 
senotherapeutics into clinical practice for metabolic disorders. We 
consider the relationship between metabolic disorders and cellular 
senescence, review current and emerging therapies, and address the 
challenges of translating senotherapeutics into clinical practice for 
metabolic disorders.

Key points

	• Cellular senescence is a fundamental ageing process that seems to 
contribute to the pathogenesis of many chronic diseases, including 
metabolic diseases.

	• Lifestyle and pharmacological interventions that affect metabolic 
disorders can prevent senescent cell accumulation or modulate their 
secretory phenotype.

	• Elimination of senescent cells with senolytic drugs or inhibition of the 
senescence-associated secretory phenotype have shown promise for 
preventing, alleviating or delaying metabolic diseases and associated 
comorbidities in preclinical models.

	• Senotherapies are a potentially viable intervention for treatment of 
metabolic diseases.

	• Early-phase clinical trials are evaluating the safety and tolerability 
of senolytic drugs, along with monitoring target engagement 
(the clearance of senescent cells) across multiple age-related diseases.

	• The development of gerodiagnostic biomarkers that target 
fundamental ageing processes will be critical for identifying individuals 
who will benefit the most from senolytic therapies and facilitate 
individualized approaches for treatment of metabolic diseases.

Introduction
Ageing is a major risk factor for multiple disorders and diseases, includ-
ing cardiovascular diseases, neurodegeneration, renal dysfunction, 
cancers and metabolic disorders. The geroscience hypothesis postu-
lates that interconnected molecular and cellular mechanisms of ageing, 
such as chronic sterile inflammation, macromolecular and organelle 
dysfunction, stem cell and/or progenitor dysfunction and cellular 
senescence, contribute to these disorders and diseases and present 
promising therapeutic targets to treat conditions collectively rather 
than individually.

In response to damaging stimuli, a cell can undergo cell death 
from necrosis, apoptosis or other causes. An alternative response is 
to cease proliferation, whereby damaged cells enter a senescent state 
that prevents further amplification. Although cellular senescence is a 
response to age-associated damaging processes, it can also accelerate 
other ageing mechanisms through its senescence-specific metabolic 
and secretory phenotypes1,2. The exact mechanisms leading to the 
accumulation of senescent cells with ageing are still elusive; how-
ever, preclinical and observational studies in humans suggest that 
metabolic stress is a key driver of the senescence programme, even 
independently of ageing3,4. Accumulation of aberrant metabolites, 
reactive oxygen species and mediators of inflammation in metabolic 
diseases can trigger cellular senescence5. Senescent cells develop a 
senescence-associated secretory phenotype (SASP), which can com-
prise cytokines, chemokines, extracellular matrix remodelling factors, 
bioactive lipids, reactive metabolites, nucleotides and exosomes, fos-
tering a chronic low-grade inflammatory environment6–8. The SASP of 
senescent cells is highly heterogeneous, is specific to the cell type and 
context, and serves as the primary mediator of both detrimental and 
beneficial effects of senescent cells6,8–11. For instance, senescent cells 
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Cellular senescence in metabolic disease
Metabolic dysfunction (which includes insulin resistance, hyperinsu-
linaemia, hyperglycaemia and hyperlipidaemia) often arises during 
ageing, is accelerated by obesity and can lead to the development of 
type 2 diabetes mellitus27,46–49. An accelerated onset of tissue dysfunc-
tion occurs in multiple organs in obesity and type 2 diabetes mellitus 
and is linked to aberrant activation of fundamental ageing mechanisms 
and the accumulation of senescent cells50,51. Age-related metabolic 
dysfunction and accumulation of senescent cells are shared risk factors 
for type 1 diabetes mellitus, type 2 diabetes mellitus, cardiovascular 
disease, chronic liver disease, renal dysfunction, peripheral neuropa-
thy, retinopathy, osteoporosis, dementias and frailty, among other 
conditions27,46,52,53.

Predispositions to metabolic dysfunction and to accumulation of 
senescent cells seem to be linked. Individuals with first-degree relatives 
with type 2 diabetes mellitus have a higher prevalence of the metabolic 
syndrome and also have an increased propensity for senescent cell 
formation in their adipose tissue compared with individuals who have 
no family history of diabetes mellitus54,55. Moreover, individuals who 
develop obesity during childhood exhibit more pronounced accumu-
lation of senescent cells than adults who were lean during childhood, 
which reinforces the concept of obesity as a catalyst for accelerated 
ageing processes56. Perturbation of metabolic pathways, most notably 
insulin–insulin-like growth factor 1 signalling, affects lifespan in model 
organisms57. Furthermore, an increased senescent cell burden is found 
in metabolic tissues in states of disrupted metabolism and is thought 
to contribute to disease pathogenesis55. However, aberrant metabolic 
states themselves also promote formation of senescent cells, leading to 
a pathogenic loop5 (Fig. 1). To understand this dynamic, it is essential to 
consider the specific cell types and molecular mechanisms within these 
tissues that contribute to and are affected by senescence, as they might 
offer therapeutic targets for breaking this pathogenic feedback loop.

Senescent cells in metabolic tissues
With ageing and obesity, accumulation of senescent cells in major 
metabolic organs, including adipose tissue, liver, pancreas and muscle, 
is associated with tissue dysfunction and dysregulation of metabolic 
homeostasis46.

Adipose tissue
White adipose tissue is the largest endocrine organ and has an essential 
role in energy storage, nutrient sensing and metabolic health. Adipose 
progenitor cells, endothelial cells and even mature adipocytes can 
acquire a senescent phenotype58. Through their SASP, senescent cells in 
white adipose tissue can induce senescence both in neighbouring cells 
and systemically, cause inflammation and fibrosis, impair adipogen-
esis in surrounding cells, and contribute to adipocyte hyperplasia, 
increased lipolysis and ectopic adipose deposition in non-adipose 
tissues, thereby fostering insulin resistance46. Interestingly, transplan-
tation of a small number of senescent cells into mice caused an acceler-
ated ageing-like phenotype16. Genetic and pharmacological elimination 
of senescent cells can prevent adipocyte hyperplasia, visceral adipose 
tissue accumulation and insulin resistance in aged and obese mice, 
which suggests that senescent cells can be a causal factor underly-
ing age-associated and obesity-associated metabolic dysfunction8,46. 
Furthermore, senolytics alleviated impaired insulin resistance caused 
by transplanting adipose tissue from humans with obesity into 
mice, and adipose tissue-specific targeting of highly p21-expressing 
senescent cells in obese mice alleviated insulin resistance59.

Liver
The liver is a regulator of metabolism, producing 80–90% of the body’s 
endogenous glucose through glycogenolysis and gluconeogenesis. The 
four primary cell types in the liver (hepatocytes, hepatic stellate cells, 
Kupffer cells and liver sinusoidal endothelial cells) are each suscepti-
ble to senescence12. In both ageing and obesity, the liver becomes a 
primary site for accumulation of senescent cells, which is associated 
with ectopic lipid accumulation that contributes to conditions such as 
hepatic steatosis, non-alcoholic fatty liver disease (also known as meta-
bolic dysfunction-associated steatotic liver disease) and cancers60,61. 
In fact, the degree of hepatic steatosis correlates positively with the 
burden of senescent cells in the liver60. Additionally, elevated levels 
of hepatic senescence markers are associated with increased fasting 
levels of insulin and insulin resistance, indicating a potential role of 
hepatic senescence in metabolic phenotypes62.

Pancreas
Pancreatic islets comprise intricate networks of endocrine cells, includ-
ing α-cells, β-cells, δ-cells and pancreatic polypeptide cells. β-Cells are 
most often studied in the context of senescence owing to their central 
role in metabolic health as insulin-producing cells; however, features of 
senescence have also been identified in α-cells63,64. A study published in 
2023 suggests that senescent β-cells contribute to the pathogenesis of 
both type 1 diabetes mellitus and type 2 diabetes mellitus65. In younger 
and older human islet samples and in aged mouse models, senescent 
β-cells impaired glucose homeostasis owing to their reduced ability to 
proliferate and respond to glucose63. However, more research is needed 
to determine the role of senescent β-cells in the age-related decline in 
β-cell mass or β-cell hypertrophy. In addition, a better understanding of 
the roles of and interactions among different pancreatic senescent cell 
types, and their paracrine and systemic effects in health and disease, 
might facilitate the development of cell type-specific senotherapies.

Skeletal muscle
Skeletal muscle serves as a primary site for glucose uptake and is cru-
cial for fatty acid metabolism. Muscle mass and strength decline with 
ageing (which is mainly attributed to decreased physical activity), and 
intramuscular adipose tissue increases; this phenotype is also com-
mon in individuals with obesity at different ages (that is, sarcopenic 
obesity)66. Ageing is associated with cellular senescence and reduced 
regenerative capacity of progenitor satellite cells67. Although it is 
unclear whether cellular senescence in muscle directly contributes to 
age-related sarcopenia, studies indicate that removing senescent cells 
from progeroid mice can prevent progeria-related sarcopenia68. The 
exact role of senescent muscle cells in age-related and obesity-related 
metabolic dysfunction remains an area requiring further investigation.

Cardiovascular tissues
Accumulation of senescent cells is linked to cardiovascular complica-
tions of metabolic disorders. In both ageing and obesity, the abundance 
of endothelial and smooth muscle cells that are senescent increases, 
and this increase might contribute to atherosclerosis, hypertension and 
other cardiovascular disorders69–71. Senescent cells in the vasculature 
might have a key role in the development and progression of atheroscle-
rotic disease, which is also linked to metabolic disorders such as type 1 
diabetes mellitus, type 2 diabetes mellitus and dyslipidaemia72,73. Stud-
ies have suggested that senescent endothelial cells, vascular smooth 
muscle cells and macrophages contribute to plaque formation, chronic 
low-grade inflammation and impaired vascular repair through their 
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SASP74–76. These senescent cells not only effect local vascular dysfunc-
tion but might also promote systemic metabolic disturbances, which 
reinforces the vicious cycle between senescent cells and metabolic 

diseases77. Targeting senescent cells therefore might prove to be a 
therapeutic strategy for mitigating the progression of cardiometabolic 
complications associated with metabolic disorders78.
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Fig. 1 | Pathogenic loop of metabolic insults and cellular senescence. 
The pathogenic loop depicts the interplay between senescent cells and metabolic 
dysfunction. Senescent cells develop a senescence-associated secretory 
phenotype (SASP), whereby they accumulate and secrete pro-inflammatory 
cytokines, chemokines, growth factors, extracellular vesicles, mitochondrial 
DNA, microRNAs (miRNAs), reactive metabolites and matrix remodelling 
enzymes. These factors attract, activate and anchor immune cells, disrupt tissue 
homeostasis, induce tissue damage, cause paracrine and endocrine spread of 
senescence, and impair organ function locally and at a distance. Tissue dysfunction 
and damage contribute to systemic metabolic dysregulation, including insulin 
resistance, chronic inflammation and altered energy homeostasis. The resulting 

metabolic dysregulation creates a permissive environment for the accumulation of 
additional senescent cells by promoting cellular stress, DNA damage and immune 
evasion. The increased burden of senescent cells exacerbates this pathogenic 
loop, further amplifying tissue dysfunction and metabolic impairment. By 
eliminating senescent cells, senolytics might break this cycle, restoring tissue 
function. CCLs, C-C chemokines; CXCLs, C-X-C chemokines; EGF, epidermal 
growth factor; MMPs, matrix metalloproteinases; p16, cyclin-dependent kinase 
inhibitor 2A; p21, cyclin-dependent kinase inhibitor 1A; p53, tumour protein p53; 
PDGF, platelet-derived growth factor; ROS, reactive oxygen species; TIMPs, tissue 
inhibitors of metalloproteinases; TNF, tumour necrosis factor; VEGF, vascular 
endothelial growth factor.
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Other organs
Chronic metabolic stress can lead to the accumulation of senescent cells 
beyond metabolic organs. In the kidneys of people with diabetes mel-
litus, senescent cells contribute to fibrosis and chronic kidney disease79. 
In addition, senescent cells are associated with neuroinflammation 
that leads to neurodegeneration and psychological disorders, such as 
dementia and anxiety, respectively80,81. Importantly, metabolic stress 
can induce senescence of immune cells, weakening immune responses 
and potentially fuelling systemic low-grade inflammation, reducing 
resilience to infection and facilitating progression of diseases82. Thus, 
targeting senescent cells systemically might be an approach not only to 
improving metabolic health, but also to alleviating or even preventing 
associated comorbidities.

Effects of current interventions for  
metabolic disease
Lifestyle interventions
Lifestyle changes, such as weight loss, dietary interventions, regular 
exercise, reducing alcohol consumption and quitting smoking, improve 
metabolic health and promote healthy ageing83. Evidence indicates that 
these lifestyle interventions might also influence cellular senescence 
and the SASP. For instance, a high-fat diet induces senescence and 
SASP factor production in adipose tissue and other organs27, as do alco-
hol and cigarette smoke84–88, in mouse models. Conversely, reducing 
calorie intake, including through bariatric surgery, reduces the levels 
of pro-inflammatory SASP markers, such as plasminogen activator 
inhibitor 1 and IL-6, and leads to longer telomeres 2 years after surgery 
than before surgery89. In studies in aged rodents, monkeys and humans, 
dietary interventions such as calorie restriction without malnutrition 
and intermittent fasting, which are associated with extended health-
span and lifespan90–92, have been linked with reductions in senescent cell 
numbers in the liver and colon, as well as a reduction in circulating levels 
of SASP factors93–97. Calorie restriction reduced the circulating levels 
of pro-inflammatory SASP factors in randomized controlled trials in 
middle-aged individuals with obesity and prediabetes, as well as in 
healthy young to middle-aged individuals98,99.

Furthermore, aerobic exercise prevents the accumulation of 
senescent cells induced by high-fat feeding in mice100. In older humans 
(~67 years of age or older), an intervention that included endurance 
and resistance training reduced circulating levels of senescent T cells 
as well as the SASP101. It seems that chronic exposure to high-intensity 
exercise can be associated with a decrease in senescent cell burden, 
as has been noted in the colon102. In addition, senescent cell burden is 
inversely linked to physical function, such as grip strength and mobil-
ity in women with obesity or overweight, and in middle-aged and older 
humans with overweight101–103. More investigation is needed to deter-
mine whether lifestyle interventions have senolytic or SASP-inhibitory 
effects in humans and whether there is an inflexion point beyond which 
they might actually promote increased senescence.

Pharmacological interventions
Pharmacological interventions targeting metabolic disorders seem 
to have a pleiotropic effect on senescent cells. The antidiabetic drug 
metformin has long been used for the treatment of type 2 diabetes 
mellitus. Interestingly, metformin can also inhibit the SASP by affecting 
mitochondrial function and interfering with the NF-κB pathway104, and 
is therefore considered a SASP inhibitor. It is through these mecha-
nisms that metformin might exhibit gerotherapeutic effects on mul-
tiple age-related diseases105,106. Sodium–glucose transporter protein 2  

inhibitors (a class of antidiabetic drugs that includes dapagliflozin 
or empagliflozin and that lowers blood levels of glucose by reducing 
glucose reabsorption in the kidney) reduced markers of senescent cells 
in kidney, adipose tissue and heart in a mouse model of diabetes 
mellitus107–109. In part, this effect was mediated by restoring immune 
surveillance of senescent cells by downregulating PDL1 (ref. 109).

Glucagon-like peptide 1 receptor (GLP1R) agonists, which have 
attracted much attention owing to their weight-lowering effects, 
decrease blood levels of glucose and appetite110. In vivo, GLP1 acts 
through the cAMP–PKA pathway to alleviate cellular senescence 
induced by oxidative stress111. However, GLP1R agonists exert their 
effect on insulin secretion by pancreatic β-cells in a glucose-dependent 
manner, which can lead to elevated insulin levels, particularly if glucose 
levels are not fully normalized112. It should be noted that high insulin 
levels can increase levels of senescence-associated β-galactosidase in 
mouse adipose tissue109, and also induces expression of p53 and p21, and 
aggravates the SASP of already senescent cells in human hepatocytes113. 
However, the effects of administration of exogenous insulin as a treat-
ment for diabetes mellitus on senescent cells are unknown. Similarly, 
the long-term effects of GLP1R agonists on senescent cell burden, as 
well as the effects of the rapid weight loss they cause, are currently 
unknown.

The effects on senescence of commonly used drugs that target the 
comorbidities of obesity are beginning to be understood. Hyperten-
sion, which is associated with metabolic dysfunction, induces cellular 
senescence in rat heart and kidney as well as in the human kidney; anti-
hypertensive drugs, such as losartan (an angiotensin II type 1 receptor 
blocker), reduce senescent cell markers114. Furthermore, statins, such 
as simvastatin or atorvastatin, might have senolytic or SASP inhibi-
tory effects, but can induce cellular senescence, depending on the 
experimental system used115–117.

In general, existing therapies that target metabolic disease seem 
to have geroprotective effects, reducing morbidity across multiple 
organ systems, which might be partly through their effects on senes-
cent cells. However, in some instances, such as the case of potential 
hyperinsulinaemia or sudden changes in glycaemic control with GLP1R 
agonists or insulin, this relationship is not linear and requires further 
investigation. It is also not clear whether effects on senescent cells 
resulting from these therapies persist, or whether a ‘bounce-back’ or 
‘yo-yo’ phenomenon could occur after cessation of treatment.

First-generation senotherapeutics
Senolytics, the vanguard of senotherapeutics
First-generation senolytics (namely, quercetin and fisetin (natural fla-
vonoids), dasatinib and navitoclax (ABT-263)) were developed following 
the discovery of a network of SCAPs18–20 (Fig. 2). Targeting major nodes 
of these SCAPs enables apoptosis and allows the self-destruction of 
those senescent cells that have a pro-apoptotic SASP. These senothera-
pies have been widely tested in preclinical models and have entered 
early-phase clinical trials2 (Tables 1 and 2). In mouse preclinical models 
of metabolic disorders, such as diet-induced obesity, dasatinib plus 
quercetin in combination or navitoclax reduced senescent cell burden 
in adipose tissue and liver, and also reduced inflammation, hepatic 
steatosis and metabolic dysfunction (including glucose intolerance and 
insulin resistance); however, navitoclax induced thrombocytopenia 
while the dasatinib plus quercetin combination did not27,60,118. Con-
versely, in other studies using mouse preclinical models of metabolic 
dysfunction-associated steatotic liver disease or non-alcoholic fatty 
liver disease, monthly dasatinib plus quercetin treatment did not lead 
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to a statistically significant reduction in senescent cell burden119,120, 
whereas biweekly administration in a mouse preclinical hepatic stea-
tosis model did reduce senescent cell burden60. Similarly, in a study 
assessing reproductive senescence, biweekly dasatinib plus quercetin 
treatment reduced senescent cell burden in the ovaries of obese mice121. 
However, in mice with chemically induced oestropause, monthly dasat-
inib plus quercetin treatment did not alter senescent cell burden122. 
These findings indicate that further research is required to test and opti-
mize the selection of different senolytic agents and dosing regimens 
in different disease models.

The majority of senolytic drugs are cell type-specific, with their effi-
cacy being dependent on which SCAPs are active in any particular cell 

type20. As senescent cells have lost proliferative capacity and might take 
many days or even weeks to re-accumulate, transiently targeting mul-
tiple SCAP nodes with senolytics that have short elimination half-lives 
might increase specificity for senescent cells, reduce off-target effects 
on non-senescent cells and reduce potential adverse effects compared 
with single molecule senolytics given continuously. For instance, navi-
toclax, which targets a restricted range of BCL2 anti-apoptotic family 
members and can effectively kill certain senescent cell types, can be 
toxic for non-senescent cells and can cause adverse effects such as 
unpredictable thrombocytopenia or neutropenia, limiting its use for 
systemic administration18,19,123–126. Repurposing drugs such as dasatinib, 
quercetin and fisetin as senolytics could be advantageous due to their 
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senolytics target different senescence-associated anti-apoptotic pathways, 
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exploit the Warburg shift of senescent cells, and immune-mediated clearance 
by chimeric antigen receptor (CAR) T cells, immune checkpoint blockade, 
antibody–drug conjugates or vaccines. Anti-PD1, antibody that blocks PD1; 
anti-PDL1, antibody that blocks PDL1; anti-PDL2, antibody that blocks PDL2; 
BAK, BCL-2 homologous antagonist killer; BAX, BCL-2 associated X protein; 
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non-metastatic melanoma protein B; mTORC1, mammalian target of rapamycin 
complex 1; NF-κB, nuclear factor κB; p38, mitogen-activated protein kinase 
p38; STAT, signal transducer and activator of transcription; uPAR, urokinase 
plasminogen activator receptor. Adapted from ref. 2, Springer Nature Limited.
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known safety profiles, making their application as senotherapeutics 
in clinical trials more feasible than for navitoclax.

Senolytics are typically administered intermittently, which also 
limits their potential adverse effects compared with drugs that require 
continuous administration127–129. A single dose of senolytics in a ‘hit-and-
run’ approach can effectively disable SCAPs and kill senescent cells, typ-
ically with very short half-lives (dasatinib 4 h, quercetin 11 h and fisetin 
3–4 h) in humans130–132. Intermittent dosing frequency varies between 
conditions and depends on the rate at which new senescent cells are 
generated. These drugs can be administered either orally or topically, 
increasing their potential applicability to clinical practice if they are 
shown to be safe, tolerated, efficacious and effective in randomized, 
placebo-controlled clinical trials.

It should be noted that in genetic models used to eliminate senes-
cent cells (p16Ink4a-based or p21Cip1/Waf1-based), the suicide gene used 
results in the death of only those senescent cells that express higher 
levels of p16 or p21, whereas first-generation senolytics target the 
SCAP network of those senescent cells that destroy and damage tissue 
by allowing them to undergo cell death. Targeting all p16high express-
ing cells can lead to liver fibrosis in mice133 or pulmonary hypertension 
in mice134, which might explain some of the adverse effects of target-
ing subsets of senescent cells using these genetic models as these 
subsets might differ from the subsets of senescent cells targeted by 
SCAP-inhibiting senolytics.

SASP inhibitors
SASP inhibitors suppress the SASP without killing senescent cells 
(Fig. 2). Examples of SASP inhibitors include ruxolitinib, metformin 
and rapamycin. These inhibitors generally require more continuous 
administration than senolytics to suppress the SASP. However, some 
drugs (such as rapamycin) can have persistent effects, possibly through 
indirect effects on immune cell populations135,136. Ruxolitinib can also 
be used to block the SASP; it acts by inhibiting the JAK–STAT path-
way, thereby decreasing the release of pro-inflammatory cytokines 
and chemokines, and was found to improve physical function in 
24-month-old mice8. However, such continuous administration could 
also lead to off-target effects and suppress non-senescent immune cell 
function that might be needed for other homeostatic processes.

Emerging senotherapeutics
Heat shock protein 90 (HSP90) inhibitors have been identified as 
senolytic compounds against some senescent cells137. For instance, 
in a mouse model of hyperglycaemia and hyperlipidaemia using 
streptozotocin-induced diabetic apolipoprotein E-deficient mice 
or diabetic db/db mice, HSP90 inhibitors improved insulin sensitiv-
ity and renal function and reduced expression of pro-inflammatory 
cytokines138,139.

Bisphosphonate derivatives such as zoledronic acid, which is 
used for the treatment of osteoporosis, have shown senolytic activ-
ity in cell culture and in ageing mouse models, in reducing senes-
cent cell burden and improving physical function140. The flavonoid 
procyanidin C1 eliminates senescent cells in cell culture, improves 
physical dysfunction in aged mice and alleviates age-related retinal 
impairment and bleomycin-induced pulmonary dysfunction in mouse 
disease models141–143. The effects of bisphosphonate derivatives and 
procyanidin C1 on metabolic disorders need to be tested.

Other experimental strategies to target senescent cells include 
nanoparticles and β-galactosidase-activated prodrugs, which 
take advantage of elevated lysosomal mass and activity in many 

senescent cells144–146. The development of cell type-specific senolytic 
drugs is also underway, and it will be important to determine how this 
strategy compares to systemic pan-senolytics, especially in terms of 
potential adverse effects. For example, it might be advantageous to 
target senescent endothelial cells, as they are exposed to circulating 
factors in blood (such as damage-associated molecular pattern factors 
and pathogen-associated molecular pattern factors); endothelial cells 
are also subjected to mechanical sheer and flow stress, and are the 
first cell types to undergo cellular senescence in response to exogenous 
stressors78.

Sirtuins are involved in DNA damage repair and mitochondrial 
function, using oxidized NAD (NAD+). Senescent cells can diminish 
NAD+ levels through their SASP, which activates the NAD-degrading 
enzyme CD38 that is expressed on macrophages147,148. Supplemen-
tation with nicotinamide mononucleotide, an NAD precursor, 

Table 1 | Preclinical studies of senotherapeutics for 
metabolic disorders

Conditions Intervention Findings

Insulin 
resistance and 
obesity

Dasatinib + 
quercetin27,118,181, 
navitoclax118,182

Improved metabolic and adipose 
tissue function27,59,118,181–183

Reduced inflammation27,181

Improved adipogenesis27

Improved β-cell function182

Hepatic and 
renal disease

Dasatinib + 
quercetin60,184, 
quercetin185, 
FOXO4-DRI186, 
navitoclax187, 
A1331852188

Improved renal function184,186,187

Reduced damage185 and 
fibrosis184,185,187

Reduced hepatic steatosis60 and liver 
fibrosis188

Cardiovascular 
health

Quercetin189, 
navitoclax71,190–192, 
dasatinib + 
quercetin19,69,193, 
navitoclax69,194

Activation of resident cardiac 
progenitor cells and cardiomyocyte 
formation193

Alleviated myocardial hypertrophy 
and fibrosis190,192

Improved left ventricular ejection 
fraction19,190

Increased myocardial 
vascularization190

Increased survival after myocardial 
infarction191

Improved vasomotor function, 
reduced aortic calcification69

Frailty, 
cognitive 
function, 
and other 
age-related 
conditions

Navitoclax195, 
fisetin196, 
dasatinib + 
quercetin16,19,172,197,198, 
procyanidin C1 
(ref. 141)

Delayed age-associated physical 
dysfunction16,19,172,195,199

Extended median and maximum 
lifespan196

Improved muscle growth197

Reduced inflammation and microbial 
dysbiosis198

Delayed onset and progression of 
progeroid-related or age-related 
pathologies, reduced frailty16,68,141,196

Increased maximum lifespan196

Selected references, but not all related publications, are cited. Adapted from ref. 2, Springer 
Nature Limited.
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Table 2 | Clinical studies of senotherapeutics

Trial name Intervention type Status NCT number Key findings

Targeting cellular senescence with senolytics to improve 
skeletal health in older humans

Senolytic (dasatinib +  
quercetin, fisetin)

Completed NCT04313634 Intermittent administration of senolytics 
increased radial bone mineral density
Individuals with the highest 
senescent cell burden had a stronger 
response to the treatment168

Hematopoietic stem cell transplant survivors study Senolytic (dasatinib + 
quercetin)

Completed NCT02652052 Pending

Targeting pro-inflammatory cells in idiopathic  
pulmonary fibrosis: a human trial (IPF)

Senolytic (dasatinib + 
quercetin)

Completed NCT02874989 Significant and clinically meaningful 
improvements in physical function
The study confirmed the feasibility of 
administering senolytics in patients 
with idiopathic pulmonary fibrosis45

COVID-19 pilot study of fisetin to alleviate dysfunction  
and decrease complications (COVFIS-HOME)

Senolytic (fisetin) Completed NCT04771611 Pending

Pilot study in COVID-19 (SARS-CoV-2) of fisetin in older adults 
in nursing homes (COVID-FIS)

Senolytic (fisetin) Completed NCT04537299 Pending

Senolytic drugs attenuate osteoarthritis-related articular 
cartilage degeneration: a clinical trial

Senolytic (fisetin) Completed NCT04210986 Pending

A study to assess the safety and efficacy of a single or repeat 
doses of UBX0101 in patients with osteoarthritis of the knee

Senolytic (UBX0101, 
nutlin-3a or related)

Completed NCT04229225, 
NCT04129944

Failed to achieve primary end point

Safety, tolerability and evidence study of UBX1325 in patients 
with diabetic macular oedema or neovascular age-related 
macular degeneration

Senolytic (UBX1325, 
BCLXL inhibitor)

Completed NCT04537884, 
NCT04857996

No differences observed200

Exercise and low-dose rapamycin in older adults with CAD: 
cardiac rehabilitation and rapamycin in the elderly (CARE) trial

SASP inhibitor 
(rapamycin)

Completed NCT01649960 Pending

Senolytic therapy to modulate the progression of 
Alzheimer disease

Senolytic (dasatinib + 
quercetin)

Pilot 
completed, 
ongoing

NCT04063124, 
NCT04685590

Central nervous system penetrance of 
dasatinib; provides preliminary support 
for the safety, tolerability and feasibility 
of the intervention and suggests that 
astrocytes and amyloid-β might be 
particularly responsive to the treatment

A study to assess the safety, tolerability and long-term 
follow-up of UBX0101 in patients with osteoarthritis 
of the knee

Senolytic (UBX0101, 
nutlin-3a or related)

Completed NCT03513016, 
NCT04349956

Failed to achieve primary end point

An open-label intervention trial to reduce senescence and 
improve frailty in adult survivors of childhood cancer

Senolytic (dasatinib + 
quercetin, fisetin)

Ongoing NCT04733534 Pending

ALSENLITE: senolytics for Alzheimer disease Senolytic (dasatinib + 
quercetin)

Ongoing NCT04785300 Pending

Dasatinib and quercetin to treat fibrotic non-alcoholic fatty 
liver disease

Senolytic (dasatinib + 
quercetin)

Ongoing NCT05506488 Pending

Senescence in chronic kidney disease Senolytic (dasatinib + 
quercetin)

Ongoing NCT02848131 Pending

Alleviation by fisetin of frailty, inflammation, and related 
measures in older women and adults

Senolytic (fisetin) Ongoing NCT03430037, 
NCT03675724

Pending

COVID-FISETIN: pilot in SARS-CoV-2 of fisetin to alleviate 
dysfunction and inflammation

Senolytic (fisetin) Ongoing NCT04476953 Pending

Senolytic agent improves the benefit of platelet-rich plasma 
and losartan

Senolytic (fisetin) Ongoing NCT05025956 Pending

Use of senolytic and anti-fibrotic agents to improve the 
beneficial effect of bone marrow stem cells for osteoarthritis

Senolytic (fisetin) Ongoing NCT04815902 Pending

Quercetin in coronary artery by-pass surgery (Q-CABG) Senolytic (quercetin) Ongoing NCT04907253 Pending

TAME (targeting aging with metformin) SASP inhibitor 
(metformin)

Planned To be 
determined

Pending

SASP, senescence-associated secretory phenotype. Adapted from ref. 2, Springer Nature.
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hinders the development of cellular senescence in vitro by enhancing 
mitochondrial function, and extends healthspan in mice149–152.

Alternative experimental strategies for targeting senescent cells 
are being developed (Fig. 2). Senescent cells seem to be enriched 
in some proteins located at the cellular membrane, which can be 
used to target senescent cells21,23,153–157. Urokinase-type plasminogen 
activator receptor is upregulated in some senescent cells, such as 
human primary melanocytes and cancer cells, and in mouse models 
of liver fibrosis and ageing153,154. Chimeric antigen receptor (CAR) 
T cells targeting cells expressing urokinase-type plasminogen acti-
vator receptor reduced senescent cell burden in liver and improved 
glucose homeostasis and physical dysfunction in preclinical mouse 
models of diet-induced obesity and ageing (based on findings pub-
lished in peer-reviewed papers and in a preprint)153,154,158. It should 
be noted that CAR T cells might persist for an extended period of 
time, and thus might lead to adverse effects involving processes for 
which certain types of senescent cells are beneficial, such as wound 
healing9,11,159. Clearing senescent cells with high p21 expression accel-
erates wound closure, partially through NF-κB inhibition, which sug-
gests senescence has multifaceted functions in tissue remodelling9. 
In addition, like cancer cells, senescent cells seem to depend more 
on glucose than fatty acids as an energy source (that is, a Warburg 
shift)160. Hence, agents that alter the balance between glucose and 
fatty acids as energy sources (for example, SGLT agonists to reduce 
glucose availability or agents that alter NAD to NADPH ratios) might 
hold promise.

Glycoprotein non-metastatic melanoma protein B is upregulated 
in senescent vascular endothelial cells and in tissues of 25-month-old 
mice or mice fed a high-fat diet155. Vaccination against glycoprotein 
non-metastatic melanoma protein B during high-fat diet feeding led 
to a reduction in the level of senescent cells in visceral adipose tissue 
and improved glucose tolerance and insulin sensitivity155. Furthermore, 
senescent cells can express PDL1 and PDL2, which are immune-evasive 
ligands23,26,161. Blocking PD1, the receptor for PDL1 and PDL2, using 
neutralizing antibodies facilitated senescent cell clearance in the lung, 
liver and kidney in aged animals26. It should be noted that patients with 
cancer receiving anti-PDL1 and anti-PD1 immunotherapy can develop 
metabolic dysfunction, such as insulin resistance, due to dysfunctional 
systemic maintenance of peripheral tolerance162–164. In a mouse model 
of high-fat diet-induced obesity, blocking PDL1 function genetically in 
dendritic cells or using anti-PDL1 blocking antibodies exacerbated the 
disease phenotype, including increased T cell polarization towards  
T helper 1, adipose tissue inflammation and metabolic dysfunction165. 
These points suggest that PDL1 expression limits the chronic low-grade 
inflammation in obesity. Much more research is needed to determine 
if anti-PDL1, anti-PDL2 or anti-PD1 interventions have distinct effects 
on senescent cells and on metabolic health in ageing and in preclinical 
models of metabolic dysfunction.

In conclusion, current interventions targeting senescent cells have 
potential for preventing, delaying, alleviating or treating metabolic 
disorders, including insulin resistance, type 1 diabetes mellitus, type 2  
diabetes mellitus and obesity. We emphasize that, before they are 
considered for use in routine clinical practice, the safety, tolerability, 
efficacy and effectiveness of senolytics for metabolic diseases must be 
demonstrated in carefully conducted randomized, placebo-controlled 
clinical trials. Additionally, although alternative strategies offer novel 
approaches for reducing senescent cell burden, further investigation 
into the distinct effects of these interventions on metabolic disorders is 
needed. Testing combinations of senolytic drugs with disease-specific 

treatments or in combination with drugs targeting other fundamental 
ageing mechanisms might be informative to optimize therapies that 
are guided by geroscience.

Considerations for clinical trials
Several early-phase clinical trials using senolytic drugs have been com-
pleted, are underway or are about to start (Table 2). The first clinical trial 
results were published within just 4 years of the first report of senolyt-
ics. In patients with idiopathic pulmonary fibrosis, oral administration 
of a total of nine doses of dasatinib plus quercetin over a 3-week period 
in a phase I open-label study seemed to improve physical function45,166. 
In patients with diabetic kidney disease, a single round of dasatinib 
plus quercetin led to a reduction in senescence markers in adipose 
tissue and a decrease in a composite score of nine circulating SASP 
factors in plasma28. In a pilot study testing dasatinib plus quercetin in 
patients with Alzheimer disease, senescence biomarkers were affected 
in plasma and cerebrospinal fluid, indicating possible clearance of 
senescent cells in the brain81. There were also promising results in a 
phase I trial of dasatinib plus quercetin in a small number of people 
with late-phase mild cognitive impairment or early Alzheimer disease, 
especially in the tertile of participants with the highest abundance 
of senescent cells in blood before senolytics were administered167.  
A randomized, controlled phase II trial of intermittent administra-
tion of dasatinib plus quercetin for osteoporosis in older women 
(60–90 years old) gave promising results, with increases in a bone 
formation marker and a trend for a reduction in a bone resorption 
marker, as well as an increase in radial bone mineral density in the subset 
of participants with the highest pretreatment senescent cell burden, 
all without serious drug-related adverse events168.

Box 1 | Challenges for geroscience-based 
and senescence-targeting clinical trials
 

	• No consensus has been reached on the definition of 
senescent cells or markers to demonstrate senescent cell 
burden and any subsequent reduction by senotherapeutic 
interventions.

	• The dynamics of senescent cell accumulation are unknown, 
which hampers the development of senotherapeutic regimens.

	• There is a lack of clinical investigators trained in ageing biology.
	• Systemic versus local (or topical) application. The efficacy 
of senolytics might differ depending on whether they are 
administered systemically or locally, which requires further 
investigation.

	• Timing and outcome measures for preventive trials need to be 
defined for each indication and overall healthspan.

	• Sex differences in effects of senotherapeutic interventions are 
not clear and require further research.

	• There is a lack of standard operating procedures for collecting, 
assaying and analysing outcome measures, which would 
facilitate the comparison of different clinical trials.

	• There is a need to proceed cautiously and introduce 
senotherapeutics into clinical practice only after rigorous 
demonstration of safety, tolerability, efficacy and effectiveness, 
and with the approval of regulatory authorities and the medical 
community.
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Although systemic administration of senolytics might prove to be 
beneficial for treating senescence-associated diseases due to senes-
cent cell accumulation across various organs, in certain circumstances, 
local delivery of a high concentration of senolytics to the affected 
organ might be advantageous. Topical application might be benefi-
cial for skin conditions, including non-healing diabetic wounds or 
focal alopecia9,169,170. The results of these initial studies are promising; 
however, much larger randomized, double-blind, placebo-controlled 
trials are necessary.

Given that the accumulation of senescent cells affects various 
tissues simultaneously and contributes to multimorbidity with 
ageing, defining trial outcomes that fully capture system-wide and 
organ-specific benefits remains challenging. These broad benefits 
might not be observed when senolytics are administered locally. Fur-
thermore, given the potentially high senescent cell burden in other 
parts of the body, the re-emergence of senescent cells could be acceler-
ated, necessitating a regimen with more frequent treatment for local 
applications than for systemic applications. A preventive trial design 
might also need to be explored to determine whether senolytics can 
prevent or delay the onset of a second disease in at-risk populations. 
In this regard, identifying reliable biomarkers that not only track the 
elimination of senescent cells, but also identify people who could ben-
efit most from senotherapeutic interventions is of importance. Indeed, 
results from a clinical trial in fairly healthy women with osteoporosis 
suggested that study participants with the highest senescent cell bur-
den benefited the most from senolytic therapy and had improvement 
in bone turnover markers168.

It is also important to acknowledge the overlap between 
prevention and treatment in the context of chronic and progressive 
conditions such as metabolic disorders and ageing. In preclinical stud-
ies, interventions are initiated at different stages of disease devel-
opment, making it difficult to draw a clear line between preventive 
and therapeutic approaches. This variability might influence 

therapeutic efficacy and outcomes. It will be important to better 
define these therapeutic windows and assess how disease stage at 
the time of initiation influences the effectiveness of senotherapeutic 
strategies.

Currently, no consensus exists regarding the definition of cellu-
lar senescence owing to the heterogeneity of senescent cell features 
across different cell and tissue types. Few tissue assays are highly 
sensitive or specific for senescent cells. A combination of assays 
might be best for estimating senescent cell burden in tissue sam-
ples, including such assays as the number of senescence-associated 
β-galactosidase-positive cells, expression of p16INK4a, p21CIP1, SASP 
factors, DNA damage foci (for example, γH2.AX), damage-associated 
molecular pattern molecules (such as HMGB-1 localization) 
and cells with senescence-associated distension of satellites or 
telomere-associated foci. It is also unknown if senescent cell abun-
dance in biopsy samples of skin, adipose tissue or other tissues, or 
cheek swabs and blood cells reliably reflect systemic senescent cell 
abundance or only the senescence-associated diseases being inves-
tigated in a specific tissue171. Given that biopsy samples are not 
easily accessible for many tissues of interest, the development of 
non-invasive assays measuring SASP factors that are sensitive to 
intervention across different trials is attractive. There is a need to 
establish, optimize and validate such assays. Novel assays, for exam-
ple of microvesicles shed into blood or urine, senescent cell surface 
markers and imaging methods to detect senescent cells need to be 
developed to identify and monitor senescent cells in clinical tri-
als (based on findings published in peer-reviewed papers and in a 
preprint)172–174.

In addition to the need to refine senescent cell detection in clini-
cal trials, improved understanding of the dynamics of senescent cell 
formation across different physiological and pathophysiological 
states is needed to guide dosing regimens for senotherapeutics. The 
rates of senescent cell formation and accumulation are probably 

Box 2 | Gerodiagnostics for interconnected fundamental ageing processes
 

Promising results from preclinical studies have prompted the 
initiation of early-phase clinical trials. The adverse effects of 
many senolytic agents are not yet fully known in populations with 
senescence-associated disorders. To maximize risk to benefit 
ratios, the first clinical trials are being conducted in patients with 
serious health conditions. Early data suggest that senolytics reduce 
senescent cell burden45 and lead to improvements in a composite 
score of senescence-associated secretory phenotype factors in 
humans28, warranting evaluation of senolytics in larger randomized, 
double-blind, placebo-controlled trials to ensure safety, tolerability, 
target engagement and clinical efficacy and effectiveness. 
A remaining challenge is to develop analytical methods and 
standardize protocols to monitor target engagement across clinical 
trials. Over 80 clinical trials are either ongoing or planned that will 
assess different gerotherapeutics in various age-related diseases 
targeting different interconnected fundamental ageing processes201. 
Further research is needed to identify individuals who will benefit 
most from senolytic or other gerotherapies and to develop 
gerodiagnostic markers to guide the integration of gerotherapeutics 
into the clinic. The following factors should be considered in 
developing gerodiagnostic markers:

	• Individual or composite markers should be more than mere 
‘ageing clocks’

	• Should allow measurement of the extent of progression of 
fundamental ageing processes

	• Can be assayed in human body fluids and/or non-invasive tests
	• Should be reproducible, reliable, scalable and inexpensive
	• Should be applicable across ethnic groups, sexes, socioeconomic 
groups and regions

	• Should be diagnostic for multiple conditions, disabilities and 
diseases across the lifespan

	• Can predict the incidence and/or progression of one or more 
diseases

	• Should be responsive to interventions
	• Can help guide selection of the best gerotherapeutic interventions 
or combinations in a personalized manner

	• Should fit practical and regulatory parameters for broad adoption 
as clinical trial primary or secondary outcomes and, eventually, for 
broad clinical use

	• Should allow the establishment of future biomarker composite 
scores that might be of use in determining if and how often 
administering gerotherapeutics is indicated
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heterogeneous among individuals, disease conditions and tissues, 
and might be affected by other patient-specific factors, such as level 
of physical activity, diet and medications. Therefore, much work 
remains to be done to investigate the rate of senescent cell forma-
tion in different physiological states to facilitate the tailoring of 
personalized dosing regimens for senotherapeutics, as has been 
done in the case of chemotherapy. It is imperative to harmonize 
the selection of biomarkers and assays across clinical trials that can 
be reliably and reproducibly measured in body fluids and tissues 
and reflect senescent cell burden so outcomes across trials can be 
compared.

Various tools have emerged to assess the rate of progression of 
ageing processes and predict mortality, such as the epigenetic clock, 
DNA methylation (DNAm) GrimAge175–178, which can predict the devel-
opment of cardiovascular diseases, cancer and type 2 diabetes mellitus. 
Notably, DNAm GrimAge correlates highly with the blood biomarkers 
plasminogen activator inhibitor 1, tissue inhibitor metalloprotein-
ase 1 and growth differentiation factor 15, which are also part of the 
SASP and are produced by senescent cells6,7,172,175,179,180. It is unknown 
whether tools such as DNAm GrimAge can reliably identify individu-
als with a high senescent cell burden or those who would benefit from 
senotherapeutics.

The growing public interest in senotherapeutics and the possibility 
that they might be approved for use in clinical practice also highlights 
the need for clinicians trained in geroscience. Clinicians leading trials 
of senotherapeutics must be educated on how ageing processes and 
hallmarks contribute to disease pathologies and how senotherapeutics 
might specifically target these processes.

Conclusions
Although early results from clinical trials targeting senescent cells are 
promising, and while the understanding of commonly used therapies 
for metabolic disease grows, considerable challenges remain for 
translating these findings into the clinic (Box 1). Encouraging results 
from pilot trials have shown that senescent cells can be cleared in 
humans both in tissues and systemically28, senolytics are well toler-
ated (as shown in multiple trials) and, most importantly, individu-
als with high senescent cell burden seem to benefit the most from 
senolytic therapies81,167,168. Therefore, key areas of research include 
identification and validation of biomarkers and development of com-
posite scores across clinical trials to detect senescent cell burden 
(Box 2), possibly even making such scores an eligibility criterion 
for large-scale studies, to predict therapeutic responses for patient 
stratification, to monitor treatment and to assess long-term out-
comes. Moreover, determining dosing regimens for senotherapeutics 
to ensure effective clearance of senescent cells while taking into 
account senescent cell re-accumulation and potential adverse effects 
remains a challenge.

The development of robust clinical trial designs requires refine-
ment to ensure translation from preclinical models to humans, 
including large-scale randomized controlled designs and long-term 
follow-up. Understanding how senotherapies interact and affect exist-
ing interventions targeting metabolic disorders is crucial to translate 
senotherapies to clinical practice. With continued research and clinical 
validation, senotherapeutics have the potential to considerably affect 
metabolic disease and other age-related conditions. If clinical trials are 
successful, senotherapies might become a part of individualized care.

Published online: xx xx xxxx
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