

Translating cellular senescence research into clinical practice for metabolic disease

Selim Chaib $oldsymbol{0}^{1,2,6}$, Allyson K. Palmer^{3,4,6}, Saranya P. Wyles $oldsymbol{0}^{5}$, Nicolas Musi², James L. Kirkland $oldsymbol{0}^{1,2}$ & Tamara Tchkonia $oldsymbol{0}^{1,2}$

Abstract

Translational research on cellular senescence has led to numerous early-phase clinical trials targeting senescent cells to treat, prevent or alleviate multiple disorders and diseases, including metabolic diseases and their comorbidities. Cellular senescence is a cell fate that occurs in response to stressors, including metabolic disruptions, and is one of the hallmarks (or pillars) of ageing. In their senescent state, cells cease proliferation and can develop a senescence-associated secretory and metabolic phenotype that contributes to the pathogenesis of metabolic dysfunction associated with obesity and ageing. Metabolic stress, which is central to the development of metabolic diseases, can trigger cellular senescence, thereby enabling a vicious cycle that exacerbates metabolic dysfunction. Therapies targeting senescent cells (senotherapeutics), either alone or in combination with other gerotherapies or lifestyle interventions, hold great promise for addressing the ongoing obesity epidemic and the need for improved therapies to prevent and treat metabolic diseases and their complications and comorbidities. In this Review, we discuss novel senotherapeutics, including challenges related to the translation of these therapies and the need to establish gerodiagnostic biomarkers to track the elimination of senescent cells, define eligibility and measure efficacy, as well as considerations for clinical trial design and execution.

¹Center for Advanced Gerotherapeutics, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA. ²Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA. ³Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA. ⁴Division of Hospital Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA. ⁵Department of Dermatology, Mayo Clinic, Rochester, MN, USA. ⁶These authors contributed equally: Selim Chaib, Allyson K. Palmer. ⊠e-mail: Tamar.Tchkonia@cshs.org

Sections

Introduction

Cellular senescence in metabolic disease

Senescent cells in metabolic tissues

Effects of current interventions for metabolic disease

First-generation senotherapeutics

Emerging senotherapeutics

Considerations for clinical trials

Conclusions

Key points

- Cellular senescence is a fundamental ageing process that seems to contribute to the pathogenesis of many chronic diseases, including metabolic diseases.
- Lifestyle and pharmacological interventions that affect metabolic disorders can prevent senescent cell accumulation or modulate their secretory phenotype.
- Elimination of senescent cells with senolytic drugs or inhibition of the senescence-associated secretory phenotype have shown promise for preventing, alleviating or delaying metabolic diseases and associated comorbidities in preclinical models.
- Senotherapies are a potentially viable intervention for treatment of metabolic diseases.
- Early-phase clinical trials are evaluating the safety and tolerability
 of senolytic drugs, along with monitoring target engagement
 (the clearance of senescent cells) across multiple age-related diseases.
- The development of gerodiagnostic biomarkers that target fundamental ageing processes will be critical for identifying individuals who will benefit the most from senolytic therapies and facilitate individualized approaches for treatment of metabolic diseases.

Introduction

Ageing is a major risk factor for multiple disorders and diseases, including cardiovascular diseases, neurodegeneration, renal dysfunction, cancers and metabolic disorders. The geroscience hypothesis postulates that interconnected molecular and cellular mechanisms of ageing, such as chronic sterile inflammation, macromolecular and organelle dysfunction, stem cell and/or progenitor dysfunction and cellular senescence, contribute to these disorders and diseases and present promising therapeutic targets to treat conditions collectively rather than individually.

In response to damaging stimuli, a cell can undergo cell death from necrosis, apoptosis or other causes. An alternative response is to cease proliferation, whereby damaged cells enter a senescent state that prevents further amplification. Although cellular senescence is a response to age-associated damaging processes, it can also accelerate other ageing mechanisms through its senescence-specific metabolic and secretory phenotypes^{1,2}. The exact mechanisms leading to the accumulation of senescent cells with ageing are still elusive; however, preclinical and observational studies in humans suggest that metabolic stress is a key driver of the senescence programme, even independently of ageing^{3,4}. Accumulation of aberrant metabolites, reactive oxygen species and mediators of inflammation in metabolic diseases can trigger cellular senescence⁵. Senescent cells develop a senescence-associated secretory phenotype (SASP), which can comprise cytokines, chemokines, extracellular matrix remodelling factors, bioactive lipids, reactive metabolites, nucleotides and exosomes, fostering a chronic low-grade inflammatory environment⁶⁻⁸. The SASP of senescent cells is highly heterogeneous, is specific to the cell type and context, and serves as the primary mediator of both detrimental and beneficial effects of senescent cells^{6,8-11}. For instance, senescent cells have important roles during embryonic development^{12,13}, timing of parturition¹⁴ and in tumour suppression¹⁵.

Regarding the detrimental role of senescent cells, the SASP can exacerbate tissue dysfunction through paracrine and endocrine mechanisms and can itself induce senescence locally or in distant tissues ^{16,17}. Related to the damaging microenvironment that senescent cells can create, they also have upregulated prosurvival pathways and senescence-associated anti-apoptotic pathways (SCAPs), which enable the cells to persist ^{18–20}. These prosurvival pathways present targets that could be exploited for developing therapies to target senescent cells.

In ageing and obesity, compromised immune cell function might contribute to the accumulation of senescent cells²¹⁻²⁶. It is thought that the burden of senescent cells needs to exceed a certain threshold, outpacing immune clearance of already present and newly formed senescent cells, in order to cause dysfunction^{2,16,21}. Direct evidence for this threshold effect comes from transplantation experiments¹⁶. These experiments showed that transplanting a small number of senescent cells into old mice of a normal weight fed a chow diet, or old, obese mice fed a high-fat diet, was sufficient to induce adverse phenotypes. Furthermore, double that number of transplanted senescent cells was required to elicit similar phenotypic changes in younger, healthy mice with a lower pre-existing number of senescent cells and a better functioning immune system than in older mice. This finding suggests that vulnerability to senescent cell burden varies with age and health status, reinforcing the idea of a dynamic interplay between senescent cell load and immune-mediated senescent cell clearance. Senescent cell burden, particularly in metabolic tissues (for example, adipose tissue, liver and skeletal muscle), accelerates with ageing and obesity and can be pronounced at sites of pathology^{16,27-31}. As in ageing-associated conditions and obesity^{32–36}, metabolic diseases have an earlier onset and a higher prevalence in populations with an elevated senescent cell load (such as survivors of childhood cancer and women with a history of preeclampsia) than in those with an average senescent load 37-42.

These observations, along with preclinical evidence linking senescent cells to metabolic diseases, have spurred substantial interest in senotherapeutic approaches for the treatment and prevention of metabolic diseases and their complications. Indeed, genetic or pharmacological approaches targeting senescent cells in preclinical models have shown promise for alleviating and preventing metabolic diseases and associated comorbidities^{2,43,44}. The first generation of senolytics (drugs that selectively eliminate senescent cells¹⁹) has been tested in several early-phase clinical trials for different indications^{28,45}. Lifestyle interventions, such as diet and exercise, and some compounds that inhibit the SASP (for example, ruxolitinib, resveratrol and metformin) can mitigate the damaging effects of the SASP in preclinical models and represent a possible alternative approach to directly eliminating senescent cells. Given the growing obesity epidemic, rapidly ageing population and wide-ranging effects of senescent cells on human health and disease, these therapeutic strategies could revolutionize disease prevention and treatment and have a considerable effect on human healthspan.

This Review explores the steps that are underway to translate senotherapeutics into clinical practice for metabolic disorders. We consider the relationship between metabolic disorders and cellular senescence, review current and emerging therapies, and address the challenges of translating senotherapeutics into clinical practice for metabolic disorders.

Cellular senescence in metabolic disease

Metabolic dysfunction (which includes insulin resistance, hyperinsulinaemia, hyperglycaemia and hyperlipidaemia) often arises during ageing, is accelerated by obesity and can lead to the development of type 2 diabetes mellitus ^{27,46–49}. An accelerated onset of tissue dysfunction occurs in multiple organs in obesity and type 2 diabetes mellitus and is linked to aberrant activation of fundamental ageing mechanisms and the accumulation of senescent cells ^{50,51}. Age-related metabolic dysfunction and accumulation of senescent cells are shared risk factors for type 1 diabetes mellitus, type 2 diabetes mellitus, cardiovascular disease, chronic liver disease, renal dysfunction, peripheral neuropathy, retinopathy, osteoporosis, dementias and frailty, among other conditions ^{27,46,52,53}.

Predispositions to metabolic dysfunction and to accumulation of senescent cells seem to be linked. Individuals with first-degree relatives with type 2 diabetes mellitus have a higher prevalence of the metabolic syndrome and also have an increased propensity for senescent cell formation in their adipose tissue compared with individuals who have no family history of diabetes mellitus^{54,55}. Moreover, individuals who develop obesity during childhood exhibit more pronounced accumulation of senescent cells than adults who were lean during childhood, which reinforces the concept of obesity as a catalyst for accelerated ageing processes⁵⁶. Perturbation of metabolic pathways, most notably insulin-insulin-like growth factor 1 signalling, affects lifespan in model organisms⁵⁷. Furthermore, an increased senescent cell burden is found in metabolic tissues in states of disrupted metabolism and is thought to contribute to disease pathogenesis⁵⁵. However, aberrant metabolic states themselves also promote formation of senescent cells, leading to a pathogenic loop⁵ (Fig. 1). To understand this dynamic, it is essential to consider the specific cell types and molecular mechanisms within these tissues that contribute to and are affected by senescence, as they might offer therapeutic targets for breaking this pathogenic feedback loop.

Senescent cells in metabolic tissues

With ageing and obesity, accumulation of senescent cells in major metabolic organs, including adipose tissue, liver, pancreas and muscle, is associated with tissue dysfunction and dysregulation of metabolic homeostasis⁴⁶.

Adipose tissue

White adipose tissue is the largest endocrine organ and has an essential role in energy storage, nutrient sensing and metabolic health. Adipose progenitor cells, endothelial cells and even mature adipocytes can acquire a senescent phenotype⁵⁸. Through their SASP, senescent cells in white adipose tissue can induce senescence both in neighbouring cells and systemically, cause inflammation and fibrosis, impair adipogenesis in surrounding cells, and contribute to adipocyte hyperplasia, increased lipolysis and ectopic adipose deposition in non-adipose tissues, thereby fostering insulin resistance⁴⁶. Interestingly, transplantation of a small number of senescent cells into mice caused an accelerated ageing-like phenotype 16 . Genetic and pharmacological elimination of senescent cells can prevent adipocyte hyperplasia, visceral adipose tissue accumulation and insulin resistance in aged and obese mice, which suggests that senescent cells can be a causal factor underlying age-associated and obesity-associated metabolic dysfunction^{8,46}. Furthermore, senolytics alleviated impaired insulin resistance caused by transplanting adipose tissue from humans with obesity into mice, and adipose tissue-specific targeting of highly p21-expressing senescent cells in obese mice alleviated insulin resistance⁵⁹.

Liver

The liver is a regulator of metabolism, producing 80–90% of the body's endogenous glucose through glycogenolysis and gluconeogenesis. The four primary cell types in the liver (hepatocytes, hepatic stellate cells, Kupffer cells and liver sinusoidal endothelial cells) are each susceptible to senescence¹². In both ageing and obesity, the liver becomes a primary site for accumulation of senescent cells, which is associated with ectopic lipid accumulation that contributes to conditions such as hepatic steatosis, non-alcoholic fatty liver disease (also known as metabolic dysfunction-associated steatotic liver disease) and cancers^{60,61}. In fact, the degree of hepatic steatosis correlates positively with the burden of senescent cells in the liver⁶⁰. Additionally, elevated levels of hepatic senescence markers are associated with increased fasting levels of insulin and insulin resistance, indicating a potential role of hepatic senescence in metabolic phenotypes⁶².

Pancreas

Pancreatic islets comprise intricate networks of endocrine cells, including α -cells, β -cells and pancreatic polypeptide cells. β -Cells are most often studied in the context of senescence owing to their central role in metabolic health as insulin-producing cells; however, features of senescence have also been identified in α -cells 63,64 . A study published in 2023 suggests that senescent β -cells contribute to the pathogenesis of both type 1 diabetes mellitus and type 2 diabetes mellitus 65 . In younger and older human islet samples and in aged mouse models, senescent β -cells impaired glucose homeostasis owing to their reduced ability to proliferate and respond to glucose 63 . However, more research is needed to determine the role of senescent β -cells in the age-related decline in β -cell mass or β -cell hypertrophy. In addition, a better understanding of the roles of and interactions among different pancreatic senescent cell types, and their paracrine and systemic effects in health and disease, might facilitate the development of cell type-specific senotherapies.

Skeletal muscle

Skeletal muscle serves as a primary site for glucose uptake and is crucial for fatty acid metabolism. Muscle mass and strength decline with ageing (which is mainly attributed to decreased physical activity), and intramuscular adipose tissue increases; this phenotype is also common in individuals with obesity at different ages (that is, sarcopenic obesity)⁶⁶. Ageing is associated with cellular senescence and reduced regenerative capacity of progenitor satellite cells⁶⁷. Although it is unclear whether cellular senescence in muscle directly contributes to age-related sarcopenia, studies indicate that removing senescent cells from progeroid mice can prevent progeria-related sarcopenia⁶⁸. The exact role of senescent muscle cells in age-related and obesity-related metabolic dysfunction remains an area requiring further investigation.

Cardiovascular tissues

Accumulation of senescent cells is linked to cardiovascular complications of metabolic disorders. In both ageing and obesity, the abundance of endothelial and smooth muscle cells that are senescent increases, and this increase might contribute to atherosclerosis, hypertension and other cardiovascular disorders $^{69-71}$. Senescent cells in the vasculature might have a key role in the development and progression of atherosclerotic disease, which is also linked to metabolic disorders such as type 1 diabetes mellitus, type 2 diabetes mellitus and dyslipidaemia 72,73 . Studies have suggested that senescent endothelial cells, vascular smooth muscle cells and macrophages contribute to plaque formation, chronic low-grade inflammation and impaired vascular repair through their

SASP⁷⁴⁻⁷⁶. These senescent cells not only effect local vascular dysfunction but might also promote systemic metabolic disturbances, which reinforces the vicious cycle between senescent cells and metabolic

diseases⁷⁷. Targeting senescent cells therefore might prove to be a therapeutic strategy for mitigating the progression of cardiometabolic complications associated with metabolic disorders⁷⁸.

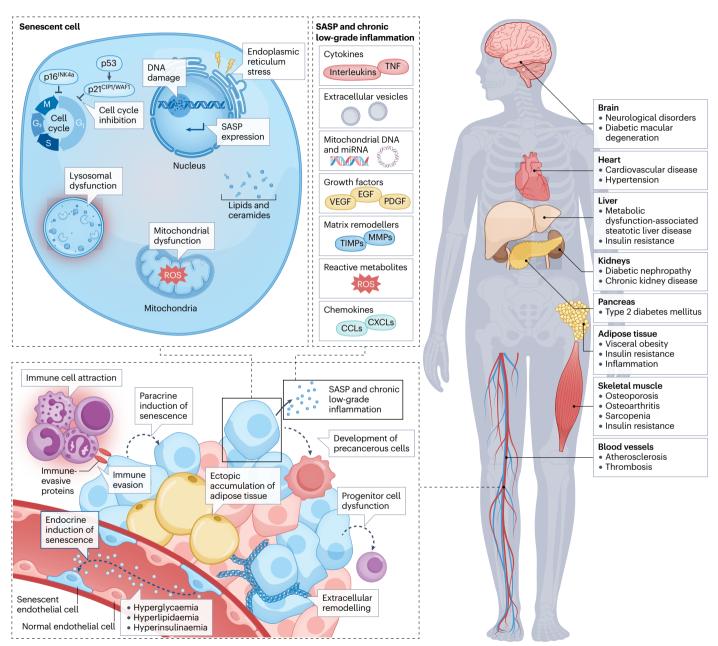


Fig. 1 | Pathogenic loop of metabolic insults and cellular senescence.

The pathogenic loop depicts the interplay between senescent cells and metabolic dysfunction. Senescent cells develop a senescence-associated secretory phenotype (SASP), whereby they accumulate and secrete pro-inflammatory cytokines, chemokines, growth factors, extracellular vesicles, mitochondrial DNA, microRNAs (miRNAs), reactive metabolites and matrix remodelling enzymes. These factors attract, activate and anchor immune cells, disrupt tissue homeostasis, induce tissue damage, cause paracrine and endocrine spread of senescence, and impair organ function locally and at a distance. Tissue dysfunction and damage contribute to systemic metabolic dysregulation, including insulin resistance, chronic inflammation and altered energy homeostasis. The resulting

metabolic dysregulation creates a permissive environment for the accumulation of additional senescent cells by promoting cellular stress, DNA damage and immune evasion. The increased burden of senescent cells exacerbates this pathogenic loop, further amplifying tissue dysfunction and metabolic impairment. By eliminating senescent cells, senolytics might break this cycle, restoring tissue function. CCLs, C-C chemokines; CXCLs, C-X-C chemokines; EGF, epidermal growth factor; MMPs, matrix metalloproteinases; p16, cyclin-dependent kinase inhibitor 2A; p21, cyclin-dependent kinase inhibitor 1A; p53, tumour protein p53; PDGF, platelet-derived growth factor; ROS, reactive oxygen species; TIMPs, tissue inhibitors of metalloproteinases; TNF, tumour necrosis factor; VEGF, vascular endothelial growth factor.

Other organs

Chronic metabolic stress can lead to the accumulation of senescent cells beyond metabolic organs. In the kidneys of people with diabetes mellitus, senescent cells contribute to fibrosis and chronic kidney disease⁷⁹. In addition, senescent cells are associated with neuroinflammation that leads to neurodegeneration and psychological disorders, such as dementia and anxiety, respectively^{80,81}. Importantly, metabolic stress can induce senescence of immune cells, weakening immune responses and potentially fuelling systemic low-grade inflammation, reducing resilience to infection and facilitating progression of diseases⁸². Thus, targeting senescent cells systemically might be an approach not only to improving metabolic health, but also to alleviating or even preventing associated comorbidities.

Effects of current interventions for metabolic disease

Lifestyle interventions

Lifestyle changes, such as weight loss, dietary interventions, regular exercise, reducing alcohol consumption and quitting smoking, improve metabolic health and promote healthy ageing⁸³. Evidence indicates that these lifestyle interventions might also influence cellular senescence and the SASP. For instance, a high-fat diet induces senescence and SASP factor production in adipose tissue and other organs²⁷, as do alcohol and cigarette smoke⁸⁴⁻⁸⁸, in mouse models. Conversely, reducing calorie intake, including through bariatric surgery, reduces the levels of pro-inflammatory SASP markers, such as plasminogen activator inhibitor 1 and IL-6, and leads to longer telomeres 2 years after surgery than before surgery⁸⁹. In studies in aged rodents, monkeys and humans, dietary interventions such as calorie restriction without malnutrition and intermittent fasting, which are associated with extended healthspan and lifespan⁹⁰⁻⁹², have been linked with reductions in senescent cell numbers in the liver and colon, as well as a reduction in circulating levels of SASP factors^{93–97}. Calorie restriction reduced the circulating levels of pro-inflammatory SASP factors in randomized controlled trials in middle-aged individuals with obesity and prediabetes, as well as in healthy young to middle-aged individuals 98,99

Furthermore, aerobic exercise prevents the accumulation of senescent cells induced by high-fat feeding in mice¹⁰⁰. In older humans (-67 years of age or older), an intervention that included endurance and resistance training reduced circulating levels of senescent T cells as well as the SASP¹⁰¹. It seems that chronic exposure to high-intensity exercise can be associated with a decrease in senescent cell burden, as has been noted in the colon¹⁰². In addition, senescent cell burden is inversely linked to physical function, such as grip strength and mobility in women with obesity or overweight, and in middle-aged and older humans with overweight^{101–103}. More investigation is needed to determine whether lifestyle interventions have senolytic or SASP-inhibitory effects in humans and whether there is an inflexion point beyond which they might actually promote increased senescence.

Pharmacological interventions

Pharmacological interventions targeting metabolic disorders seem to have a pleiotropic effect on senescent cells. The antidiabetic drug metformin has long been used for the treatment of type 2 diabetes mellitus. Interestingly, metformin can also inhibit the SASP by affecting mitochondrial function and interfering with the NF- κ B pathway 104 , and is therefore considered a SASP inhibitor. It is through these mechanisms that metformin might exhibit gerotherapeutic effects on multiple age-related diseases 105,106 . Sodium–glucose transporter protein 2

inhibitors (a class of antidiabetic drugs that includes dapagliflozin or empagliflozin and that lowers blood levels of glucose by reducing glucose reabsorption in the kidney) reduced markers of senescent cells in kidney, adipose tissue and heart in a mouse model of diabetes mellitus^{107–109}. In part, this effect was mediated by restoring immune surveillance of senescent cells by downregulating PDL1 (ref. 109).

Glucagon-like peptide 1 receptor (GLP1R) agonists, which have attracted much attention owing to their weight-lowering effects. decrease blood levels of glucose and appetite¹¹⁰. In vivo, GLP1 acts through the cAMP-PKA pathway to alleviate cellular senescence induced by oxidative stress¹¹¹. However, GLP1R agonists exert their effect on insulin secretion by pancreatic β-cells in a glucose-dependent manner, which can lead to elevated insulin levels, particularly if glucose levels are not fully normalized¹¹². It should be noted that high insulin levels can increase levels of senescence-associated β -galactosidase in mouse adipose tissue 109, and also induces expression of p53 and p21, and aggravates the SASP of already senescent cells in human hepatocytes¹¹³. However, the effects of administration of exogenous insulin as a treatment for diabetes mellitus on senescent cells are unknown. Similarly, the long-term effects of GLP1R agonists on senescent cell burden, as well as the effects of the rapid weight loss they cause, are currently unknown.

The effects on senescence of commonly used drugs that target the comorbidities of obesity are beginning to be understood. Hypertension, which is associated with metabolic dysfunction, induces cellular senescence in rat heart and kidney as well as in the human kidney; antihypertensive drugs, such as losartan (an angiotensin II type 1 receptor blocker), reduce senescent cell markers¹¹⁴. Furthermore, statins, such as simvastatin or atorvastatin, might have senolytic or SASP inhibitory effects, but can induce cellular senescence, depending on the experimental system used^{115–117}.

In general, existing therapies that target metabolic disease seem to have geroprotective effects, reducing morbidity across multiple organ systems, which might be partly through their effects on senescent cells. However, in some instances, such as the case of potential hyperinsulinaemia or sudden changes in glycaemic control with GLP1R agonists or insulin, this relationship is not linear and requires further investigation. It is also not clear whether effects on senescent cells resulting from these therapies persist, or whether a 'bounce-back' or 'yo-yo' phenomenon could occur after cessation of treatment.

First-generation senotherapeutics Senolytics, the vanguard of senotherapeutics

First-generation senolytics (namely, quercetin and fisetin (natural flavonoids), dasatinib and navitoclax (ABT-263)) were developed following the discovery of a network of SCAPs¹⁸⁻²⁰ (Fig. 2). Targeting major nodes of these SCAPs enables apoptosis and allows the self-destruction of those senescent cells that have a pro-apoptotic SASP. These senotherapies have been widely tested in preclinical models and have entered early-phase clinical trials² (Tables 1 and 2). In mouse preclinical models of metabolic disorders, such as diet-induced obesity, dasatinib plus quercetin in combination or navitoclax reduced senescent cell burden in adipose tissue and liver, and also reduced inflammation, hepatic steatosis and metabolic dysfunction (including glucose intolerance and insulin resistance); however, navitoclax induced thrombocytopenia while the dasatinib plus quercetin combination did not^{27,60,118}. Conversely, in other studies using mouse preclinical models of metabolic dysfunction-associated steatotic liver disease or non-alcoholic fatty liver disease, monthly dasatinib plus quercetin treatment did not lead

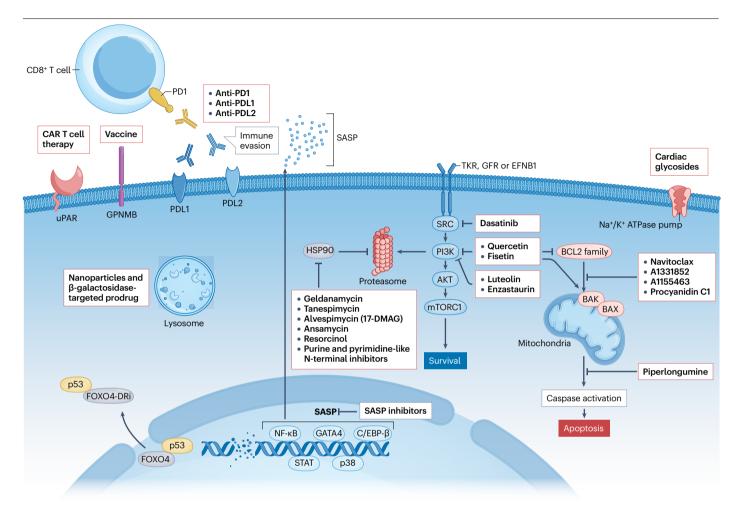


Fig. 2 | Senotherapeutic strategies and their targets. First-generation senolytics target different senescence-associated anti-apoptotic pathways, including tyrosine kinase receptors (TKR), growth factor receptors (GFR), ephrin receptor B1 (EFNB1), src-family kinases (SRC), phosphoinositide 3-kinase (P13K)–AKT, heat shock protein 90 (HSP90), B cell lymphoma 2 (BCL2) family members, caspase inhibitors and p53 modulators. High-throughput library screens and other approaches have informed second-generation senolytic strategies, including lysosomal and senescence-associated β -galactosidase-activated prodrugs and nanoparticles, sodium–potassium pump (Na+/K+ ATPase)-dependent apoptosis, senescence-associated secretory phenotype (SASP) inhibition, depleting availability of glucose and increasing fatty acids to

exploit the Warburg shift of senescent cells, and immune-mediated clearance by chimeric antigen receptor (CAR) T cells, immune checkpoint blockade, antibody-drug conjugates or vaccines. Anti-PD1, antibody that blocks PD1; anti-PDL1, antibody that blocks PDL2; anti-PDL1, antibody that blocks PDL2; BAK, BCL-2 homologous antagonist killer; BAX, BCL-2 associated X protein; C/EBP- β , CCAAT/enhancer-binding protein- β ; DRi, D-retro-inverso-isoform; FOXO4, forkhead box O4; GATA4, GATA-binding factor 4; GPNMB, glycoprotein non-metastatic melanoma protein B; mTORC1, mammalian target of rapamycin complex 1; NF- κ B, nuclear factor κ B; p38, mitogen-activated protein kinase p38; STAT, signal transducer and activator of transcription; uPAR, urokinase plasminogen activator receptor. Adapted from ref. 2, Springer Nature Limited.

to a statistically significant reduction in senescent cell burden^{119,120}, whereas biweekly administration in a mouse preclinical hepatic steatosis model did reduce senescent cell burden⁶⁰. Similarly, in a study assessing reproductive senescence, biweekly dasatinib plus quercetin treatment reduced senescent cell burden in the ovaries of obese mice¹²¹. However, in mice with chemically induced oestropause, monthly dasatinib plus quercetin treatment did not alter senescent cell burden¹²². These findings indicate that further research is required to test and optimize the selection of different senolytic agents and dosing regimens in different disease models.

The majority of senolytic drugs are cell type-specific, with their efficacy being dependent on which SCAPs are active in any particular cell $type^{20}. As senescent cells have lost proliferative capacity and might take many days or even weeks to re-accumulate, transiently targeting multiple SCAP nodes with senolytics that have short elimination half-lives might increase specificity for senescent cells, reduce off-target effects on non-senescent cells and reduce potential adverse effects compared with single molecule senolytics given continuously. For instance, navitoclax, which targets a restricted range of BCL2 anti-apoptotic family members and can effectively kill certain senescent cell types, can be toxic for non-senescent cells and can cause adverse effects such as unpredictable thrombocytopenia or neutropenia, limiting its use for systemic administration <math display="inline">^{18,19,123-126}$. Repurposing drugs such as dasatinib, quercetin and fisetin as senolytics could be advantageous due to their

known safety profiles, making their application as senotherapeutics in clinical trials more feasible than for navitoclax.

Senolytics are typically administered intermittently, which also limits their potential adverse effects compared with drugs that require continuous administration ¹²⁷⁻¹²⁹. A single dose of senolytics in a 'hit-andrun' approach can effectively disable SCAPs and kill senescent cells, typically with very short half-lives (dasatinib 4 h, quercetin 11 h and fisetin 3–4 h) in humans ^{130–132}. Intermittent dosing frequency varies between conditions and depends on the rate at which new senescent cells are generated. These drugs can be administered either orally or topically, increasing their potential applicability to clinical practice if they are shown to be safe, tolerated, efficacious and effective in randomized, placebo-controlled clinical trials.

It should be noted that in genetic models used to eliminate senescent cells (p16\(^{\text{Ink4a}}\)-based or p21\(^{\text{Cip1/Waf1}}\)-based), the suicide gene used results in the death of only those senescent cells that express higher levels of p16 or p21, whereas first-generation senolytics target the SCAP network of those senescent cells that destroy and damage tissue by allowing them to undergo cell death. Targeting all p16\(^{\text{high}}\) expressing cells can lead to liver fibrosis in mice\(^{133}\) or pulmonary hypertension in mice\(^{134}\), which might explain some of the adverse effects of targeting subsets of senescent cells using these genetic models as these subsets might differ from the subsets of senescent cells targeted by SCAP-inhibiting senolytics.

SASP inhibitors

SASP inhibitors suppress the SASP without killing senescent cells (Fig. 2). Examples of SASP inhibitors include ruxolitinib, metformin and rapamycin. These inhibitors generally require more continuous administration than senolytics to suppress the SASP. However, some drugs (such as rapamycin) can have persistent effects, possibly through indirect effects on immune cell populations 135,136. Ruxolitinib can also be used to block the SASP; it acts by inhibiting the JAK–STAT pathway, thereby decreasing the release of pro-inflammatory cytokines and chemokines, and was found to improve physical function in 24-month-old mice⁸. However, such continuous administration could also lead to off-target effects and suppress non-senescent immune cell function that might be needed for other homeostatic processes.

Emerging senotherapeutics

Heat shock protein 90 (HSP90) inhibitors have been identified as senolytic compounds against some senescent cells¹³⁷. For instance, in a mouse model of hyperglycaemia and hyperlipidaemia using streptozotocin-induced diabetic apolipoprotein E-deficient mice or diabetic *db/db* mice, HSP90 inhibitors improved insulin sensitivity and renal function and reduced expression of pro-inflammatory cytokines^{138,139}.

Bisphosphonate derivatives such as zoledronic acid, which is used for the treatment of osteoporosis, have shown senolytic activity in cell culture and in ageing mouse models, in reducing senescent cell burden and improving physical function¹⁴⁰. The flavonoid procyanidin C1 eliminates senescent cells in cell culture, improves physical dysfunction in aged mice and alleviates age-related retinal impairment and bleomycin-induced pulmonary dysfunction in mouse disease models^{141–143}. The effects of bisphosphonate derivatives and procyanidin C1 on metabolic disorders need to be tested.

Other experimental strategies to target senescent cells include nanoparticles and β -galactosidase-activated prodrugs, which take advantage of elevated lysosomal mass and activity in many

senescent cells^{144–146}. The development of cell type-specific senolytic drugs is also underway, and it will be important to determine how this strategy compares to systemic pan-senolytics, especially in terms of potential adverse effects. For example, it might be advantageous to target senescent endothelial cells, as they are exposed to circulating factors in blood (such as damage-associated molecular pattern factors and pathogen-associated molecular pattern factors); endothelial cells are also subjected to mechanical sheer and flow stress, and are the first cell types to undergo cellular senescence in response to exogenous stressors⁷⁸.

Sirtuins are involved in DNA damage repair and mitochondrial function, using oxidized NAD (NAD⁺). Senescent cells can diminish NAD⁺ levels through their SASP, which activates the NAD-degrading enzyme CD38 that is expressed on macrophages^{147,148}. Supplementation with nicotinamide mononucleotide, an NAD precursor,

Table 1 | Preclinical studies of senotherapeutics for metabolic disorders

Conditions	Intervention	Findings		
Insulin resistance and obesity	Dasatinib + quercetin ^{27,118,181} , navitoclax ^{118,182}	Improved metabolic and adipose tissue function ^{27,59,118,181–183}		
		Reduced inflammation ^{27,181}		
		Improved adipogenesis ²⁷		
		Improved β-cell function ¹⁸²		
Hepatic and renal disease	Dasatinib + quercetin ^{60,184} , quercetin ¹⁸⁵ , FOXO4-DRI ¹⁸⁶ , navitoclax ¹⁸⁷ , A1331852 ¹⁸⁸	Improved renal function ^{184,186,187}		
		Reduced damage ¹⁸⁵ and fibrosis ^{184,185,187}		
		Reduced hepatic steatosis ⁶⁰ and liver fibrosis ¹⁸⁸		
Cardiovascular health	Quercetin ¹⁸⁹ , navitoclax ^{71,190–192} , dasatinib + quercetin ^{19,69,193} , navitoclax ^{69,194}	Activation of resident cardiac progenitor cells and cardiomyocyte formation ¹⁹³		
		Alleviated myocardial hypertrophy and fibrosis ^{190,192}		
		Improved left ventricular ejection fraction ^{19,190}		
		Increased myocardial vascularization ¹⁹⁰		
		Increased survival after myocardial infarction ¹⁹¹		
		Improved vasomotor function, reduced aortic calcification ⁶⁹		
Frailty, cognitive function, and other age-related conditions	Navitoclax ¹⁹⁵ , fisetin ¹⁹⁶ , dasatinib + quercetin ^{16,19,172,197,198} , procyanidin C1 (ref. 141)	Delayed age-associated physical dysfunction ^{16,19,172,195,199}		
		Extended median and maximum lifespan ¹⁹⁶		
		Improved muscle growth ¹⁹⁷		
		Reduced inflammation and microbial dysbiosis ¹⁹⁸		
		Delayed onset and progression of progeroid-related or age-related pathologies, reduced frailty ^{16,68,141,196}		
		Increased maximum lifespan ¹⁹⁶		

Selected references, but not all related publications, are cited. Adapted from ref. 2, Springer Nature Limited.

Table 2 | Clinical studies of senotherapeutics

Trial name	Intervention type	Status	NCT number	Key findings
Targeting cellular senescence with senolytics to improve skeletal health in older humans	Senolytic (dasatinib+ quercetin, fisetin)	Completed	NCT04313634	Intermittent administration of senolytics increased radial bone mineral density Individuals with the highest senescent cell burden had a stronger response to the treatment ¹⁶⁸
Hematopoietic stem cell transplant survivors study	Senolytic (dasatinib + quercetin)	Completed	NCT02652052	Pending
Targeting pro-inflammatory cells in idiopathic pulmonary fibrosis: a human trial (IPF)	Senolytic (dasatinib + quercetin)	Completed	NCT02874989	Significant and clinically meaningful improvements in physical function The study confirmed the feasibility of administering senolytics in patients with idiopathic pulmonary fibrosis ⁴⁵
COVID-19 pilot study of fisetin to alleviate dysfunction and decrease complications (COVFIS-HOME)	Senolytic (fisetin)	Completed	NCT04771611	Pending
Pilot study in COVID-19 (SARS-CoV-2) of fisetin in older adults in nursing homes (COVID-FIS)	Senolytic (fisetin)	Completed	NCT04537299	Pending
Senolytic drugs attenuate osteoarthritis-related articular cartilage degeneration: a clinical trial	Senolytic (fisetin)	Completed	NCT04210986	Pending
A study to assess the safety and efficacy of a single or repeat doses of UBX0101 in patients with osteoarthritis of the knee	Senolytic (UBX0101, nutlin-3a or related)	Completed	NCT04229225, NCT04129944	Failed to achieve primary end point
Safety, tolerability and evidence study of UBX1325 in patients with diabetic macular oedema or neovascular age-related macular degeneration	Senolytic (UBX1325, BCLXL inhibitor)	Completed	NCT04537884, NCT04857996	No differences observed ²⁰⁰
Exercise and low-dose rapamycin in older adults with CAD: cardiac rehabilitation and rapamycin in the elderly (CARE) trial	SASP inhibitor (rapamycin)	Completed	NCT01649960	Pending
Senolytic therapy to modulate the progression of Alzheimer disease	Senolytic (dasatinib + quercetin)	Pilot completed, ongoing	NCT04063124, NCT04685590	Central nervous system penetrance of dasatinib; provides preliminary support for the safety, tolerability and feasibility of the intervention and suggests that astrocytes and amyloid-β might be particularly responsive to the treatment
A study to assess the safety, tolerability and long-term follow-up of UBX0101 in patients with osteoarthritis of the knee	Senolytic (UBX0101, nutlin-3a or related)	Completed	NCT03513016, NCT04349956	Failed to achieve primary end point
An open-label intervention trial to reduce senescence and improve frailty in adult survivors of childhood cancer	Senolytic (dasatinib + quercetin, fisetin)	Ongoing	NCT04733534	Pending
ALSENLITE: senolytics for Alzheimer disease	Senolytic (dasatinib + quercetin)	Ongoing	NCT04785300	Pending
Dasatinib and quercetin to treat fibrotic non-alcoholic fatty liver disease	Senolytic (dasatinib + quercetin)	Ongoing	NCT05506488	Pending
Senescence in chronic kidney disease	Senolytic (dasatinib + quercetin)	Ongoing	NCT02848131	Pending
Alleviation by fisetin of frailty, inflammation, and related measures in older women and adults	Senolytic (fisetin)	Ongoing	NCT03430037, NCT03675724	Pending
COVID-FISETIN: pilot in SARS-CoV-2 of fisetin to alleviate dysfunction and inflammation	Senolytic (fisetin)	Ongoing	NCT04476953	Pending
Senolytic agent improves the benefit of platelet-rich plasma and losartan	Senolytic (fisetin)	Ongoing	NCT05025956	Pending
Use of senolytic and anti-fibrotic agents to improve the beneficial effect of bone marrow stem cells for osteoarthritis	Senolytic (fisetin)	Ongoing	NCT04815902	Pending
Quercetin in coronary artery by-pass surgery (Q-CABG)	Senolytic (quercetin)	Ongoing	NCT04907253	Pending
TAME (targeting aging with metformin)	SASP inhibitor (metformin)	Planned	To be determined	Pending

SASP, senescence-associated secretory phenotype. Adapted from ref. 2, Springer Nature.

hinders the development of cellular senescence in vitro by enhancing mitochondrial function, and extends healthspan in mice¹⁴⁹⁻¹⁵².

Alternative experimental strategies for targeting senescent cells are being developed (Fig. 2). Senescent cells seem to be enriched in some proteins located at the cellular membrane, which can be used to target senescent cells^{21,23,153-157}. Urokinase-type plasminogen activator receptor is upregulated in some senescent cells, such as human primary melanocytes and cancer cells, and in mouse models of liver fibrosis and ageing 153,154. Chimeric antigen receptor (CAR) T cells targeting cells expressing urokinase-type plasminogen activator receptor reduced senescent cell burden in liver and improved glucose homeostasis and physical dysfunction in preclinical mouse models of diet-induced obesity and ageing (based on findings published in peer-reviewed papers and in a preprint)^{153,154,158}. It should be noted that CAR T cells might persist for an extended period of time, and thus might lead to adverse effects involving processes for which certain types of senescent cells are beneficial, such as wound $healing ^{9,11,159}. \ Clearing \ senescent \ cells \ with \ high \ p21 \ expression \ accellabel{eq:p21}$ erates wound closure, partially through NF-kB inhibition, which suggests senescence has multifaceted functions in tissue remodelling⁹. In addition, like cancer cells, senescent cells seem to depend more on glucose than fatty acids as an energy source (that is, a Warburg shift)160. Hence, agents that alter the balance between glucose and fatty acids as energy sources (for example, SGLT agonists to reduce glucose availability or agents that alter NAD to NADPH ratios) might hold promise.

Glycoprotein non-metastatic melanoma protein B is upregulated in senescent vascular endothelial cells and in tissues of 25-month-old mice or mice fed a high-fat diet¹⁵⁵. Vaccination against glycoprotein non-metastatic melanoma protein B during high-fat diet feeding led to a reduction in the level of senescent cells in visceral adipose tissue and improved glucose tolerance and insulin sensitivity¹⁵⁵. Furthermore, senescent cells can express PDL1 and PDL2, which are immune-evasive ligands^{23,26,161}. Blocking PD1, the receptor for PDL1 and PDL2, using neutralizing antibodies facilitated senescent cell clearance in the lung. liver and kidney in aged animals²⁶. It should be noted that patients with cancer receiving anti-PDL1 and anti-PD1 immunotherapy can develop metabolic dysfunction, such as insulin resistance, due to dysfunctional systemic maintenance of peripheral tolerance 162-164. In a mouse model of high-fat diet-induced obesity, blocking PDL1 function genetically in dendritic cells or using anti-PDL1 blocking antibodies exacerbated the disease phenotype, including increased T cell polarization towards Thelper 1, adipose tissue inflammation and metabolic dysfunction¹⁶⁵. These points suggest that PDL1 expression limits the chronic low-grade inflammation in obesity. Much more research is needed to determine if anti-PDL1, anti-PDL2 or anti-PD1 interventions have distinct effects on senescent cells and on metabolic health in ageing and in preclinical models of metabolic dysfunction.

In conclusion, current interventions targeting senescent cells have potential for preventing, delaying, alleviating or treating metabolic disorders, including insulin resistance, type 1 diabetes mellitus, type 2 diabetes mellitus and obesity. We emphasize that, before they are considered for use in routine clinical practice, the safety, tolerability, efficacy and effectiveness of senolytics for metabolic diseases must be demonstrated in carefully conducted randomized, placebo-controlled clinical trials. Additionally, although alternative strategies offer novel approaches for reducing senescent cell burden, further investigation into the distinct effects of these interventions on metabolic disorders is needed. Testing combinations of senolytic drugs with disease-specific

treatments or in combination with drugs targeting other fundamental ageing mechanisms might be informative to optimize therapies that are guided by geroscience.

Considerations for clinical trials

Several early-phase clinical trials using senolytic drugs have been completed, are underway or are about to start (Table 2). The first clinical trial results were published within just 4 years of the first report of senolytics. In patients with idiopathic pulmonary fibrosis, oral administration of a total of nine doses of dasatinib plus quercetin over a 3-week period in a phase I open-label study seemed to improve physical function^{45,166}. In patients with diabetic kidney disease, a single round of dasatinib plus quercetin led to a reduction in senescence markers in adipose tissue and a decrease in a composite score of nine circulating SASP factors in plasma²⁸. In a pilot study testing dasatinib plus quercetin in patients with Alzheimer disease, senescence biomarkers were affected in plasma and cerebrospinal fluid, indicating possible clearance of senescent cells in the brain⁸¹. There were also promising results in a phase I trial of dasatinib plus quercetin in a small number of people with late-phase mild cognitive impairment or early Alzheimer disease, especially in the tertile of participants with the highest abundance of senescent cells in blood before senolytics were administered 167. A randomized, controlled phase II trial of intermittent administration of dasatinib plus quercetin for osteoporosis in older women (60-90 years old) gave promising results, with increases in a bone formation marker and a trend for a reduction in a bone resorption marker, as well as an increase in radial bone mineral density in the subset of participants with the highest pretreatment senescent cell burden, all without serious drug-related adverse events¹⁶⁸.

Box 1 | Challenges for geroscience-based and senescence-targeting clinical trials

- No consensus has been reached on the definition of senescent cells or markers to demonstrate senescent cell burden and any subsequent reduction by senotherapeutic interventions.
- The dynamics of senescent cell accumulation are unknown, which hampers the development of senotherapeutic regimens.
- There is a lack of clinical investigators trained in ageing biology.
- Systemic versus local (or topical) application. The efficacy
 of senolytics might differ depending on whether they are
 administered systemically or locally, which requires further
 investigation.
- Timing and outcome measures for preventive trials need to be defined for each indication and overall healthspan.
- Sex differences in effects of senotherapeutic interventions are not clear and require further research.
- There is a lack of standard operating procedures for collecting, assaying and analysing outcome measures, which would facilitate the comparison of different clinical trials.
- There is a need to proceed cautiously and introduce senotherapeutics into clinical practice only after rigorous demonstration of safety, tolerability, efficacy and effectiveness, and with the approval of regulatory authorities and the medical community.

Box 2 | Gerodiagnostics for interconnected fundamental ageing processes

Promising results from preclinical studies have prompted the initiation of early-phase clinical trials. The adverse effects of many senolytic agents are not yet fully known in populations with senescence-associated disorders. To maximize risk to benefit ratios, the first clinical trials are being conducted in patients with serious health conditions. Early data suggest that senolytics reduce senescent cell burden⁴⁵ and lead to improvements in a composite score of senescence-associated secretory phenotype factors in humans²⁸, warranting evaluation of senolytics in larger randomized, double-blind, placebo-controlled trials to ensure safety, tolerability, target engagement and clinical efficacy and effectiveness. A remaining challenge is to develop analytical methods and standardize protocols to monitor target engagement across clinical trials. Over 80 clinical trials are either ongoing or planned that will assess different gerotherapeutics in various age-related diseases targeting different interconnected fundamental ageing processes²⁰¹. Further research is needed to identify individuals who will benefit most from senolytic or other gerotherapies and to develop gerodiagnostic markers to guide the integration of gerotherapeutics into the clinic. The following factors should be considered in developing gerodiagnostic markers:

- Individual or composite markers should be more than mere 'ageing clocks'
- Should allow measurement of the extent of progression of fundamental ageing processes
- Can be assayed in human body fluids and/or non-invasive tests
- Should be reproducible, reliable, scalable and inexpensive
- Should be applicable across ethnic groups, sexes, socioeconomic groups and regions
- Should be diagnostic for multiple conditions, disabilities and diseases across the lifespan
- Can predict the incidence and/or progression of one or more diseases
- Should be responsive to interventions
- Can help guide selection of the best gerotherapeutic interventions or combinations in a personalized manner
- Should fit practical and regulatory parameters for broad adoption as clinical trial primary or secondary outcomes and, eventually, for broad clinical use
- Should allow the establishment of future biomarker composite scores that might be of use in determining if and how often administering gerotherapeutics is indicated

Although systemic administration of senolytics might prove to be beneficial for treating senescence-associated diseases due to senescent cell accumulation across various organs, in certain circumstances, local delivery of a high concentration of senolytics to the affected organ might be advantageous. Topical application might be beneficial for skin conditions, including non-healing diabetic wounds or focal alopecia 9,169,170. The results of these initial studies are promising; however, much larger randomized, double-blind, placebo-controlled trials are necessary.

Given that the accumulation of senescent cells affects various tissues simultaneously and contributes to multimorbidity with ageing, defining trial outcomes that fully capture system-wide and organ-specific benefits remains challenging. These broad benefits might not be observed when senolytics are administered locally. Furthermore, given the potentially high senescent cell burden in other parts of the body, the re-emergence of senescent cells could be accelerated, necessitating a regimen with more frequent treatment for local applications than for systemic applications. A preventive trial design might also need to be explored to determine whether senolytics can prevent or delay the onset of a second disease in at-risk populations. In this regard, identifying reliable biomarkers that not only track the elimination of senescent cells, but also identify people who could benefit most from senotherapeutic interventions is of importance. Indeed, results from a clinical trial in fairly healthy women with osteoporosis suggested that study participants with the highest senescent cell burden benefited the most from senolytic therapy and had improvement in bone turnover markers¹⁶⁸.

It is also important to acknowledge the overlap between prevention and treatment in the context of chronic and progressive conditions such as metabolic disorders and ageing. In preclinical studies, interventions are initiated at different stages of disease development, making it difficult to draw a clear line between preventive and therapeutic approaches. This variability might influence

therapeutic efficacy and outcomes. It will be important to better define these therapeutic windows and assess how disease stage at the time of initiation influences the effectiveness of senotherapeutic strategies.

Currently, no consensus exists regarding the definition of cellular senescence owing to the heterogeneity of senescent cell features across different cell and tissue types. Few tissue assays are highly sensitive or specific for senescent cells. A combination of assays might be best for estimating senescent cell burden in tissue samples, including such assays as the number of senescence-associated β-galactosidase-positive cells, expression of p16 INK4a, p21 CIP1, SASP factors, DNA damage foci (for example, yH2.AX), damage-associated molecular pattern molecules (such as HMGB-1 localization) and cells with senescence-associated distension of satellites or telomere-associated foci. It is also unknown if senescent cell abundance in biopsy samples of skin, adipose tissue or other tissues, or cheek swabs and blood cells reliably reflect systemic senescent cell abundance or only the senescence-associated diseases being investigated in a specific tissue¹⁷¹. Given that biopsy samples are not easily accessible for many tissues of interest, the development of non-invasive assays measuring SASP factors that are sensitive to intervention across different trials is attractive. There is a need to establish, optimize and validate such assays. Novel assays, for example of microvesicles shed into blood or urine, senescent cell surface markers and imaging methods to detect senescent cells need to be developed to identify and monitor senescent cells in clinical trials (based on findings published in peer-reviewed papers and in a preprint)172-174.

In addition to the need to refine senescent cell detection in clinical trials, improved understanding of the dynamics of senescent cell formation across different physiological and pathophysiological states is needed to guide dosing regimens for senotherapeutics. The rates of senescent cell formation and accumulation are probably

heterogeneous among individuals, disease conditions and tissues, and might be affected by other patient-specific factors, such as level of physical activity, diet and medications. Therefore, much work remains to be done to investigate the rate of senescent cell formation in different physiological states to facilitate the tailoring of personalized dosing regimens for senotherapeutics, as has been done in the case of chemotherapy. It is imperative to harmonize the selection of biomarkers and assays across clinical trials that can be reliably and reproducibly measured in body fluids and tissues and reflect senescent cell burden so outcomes across trials can be compared.

Various tools have emerged to assess the rate of progression of ageing processes and predict mortality, such as the epigenetic clock, DNA methylation (DNAm) GrimAge¹⁷⁵⁻¹⁷⁸, which can predict the development of cardiovascular diseases, cancer and type 2 diabetes mellitus. Notably, DNAm GrimAge correlates highly with the blood biomarkers plasminogen activator inhibitor 1, tissue inhibitor metalloproteinase 1 and growth differentiation factor 15, which are also part of the SASP and are produced by senescent cells^{6,7,172,175,179,180}. It is unknown whether tools such as DNAm GrimAge can reliably identify individuals with a high senescent cell burden or those who would benefit from senotherapeutics.

The growing public interest in senotherapeutics and the possibility that they might be approved for use in clinical practice also highlights the need for clinicians trained in geroscience. Clinicians leading trials of senotherapeutics must be educated on how ageing processes and hallmarks contribute to disease pathologies and how senotherapeutics might specifically target these processes.

Conclusions

Although early results from clinical trials targeting senescent cells are promising, and while the understanding of commonly used therapies for metabolic disease grows, considerable challenges remain for translating these findings into the clinic (Box 1). Encouraging results from pilot trials have shown that senescent cells can be cleared in humans both in tissues and systemically²⁸, senolytics are well tolerated (as shown in multiple trials) and, most importantly, individuals with high senescent cell burden seem to benefit the most from senolytic therapies^{81,167,168}. Therefore, key areas of research include identification and validation of biomarkers and development of composite scores across clinical trials to detect senescent cell burden (Box 2), possibly even making such scores an eligibility criterion for large-scale studies, to predict therapeutic responses for patient stratification, to monitor treatment and to assess long-term outcomes. Moreover, determining dosing regimens for senotherapeutics to ensure effective clearance of senescent cells while taking into account senescent cell re-accumulation and potential adverse effects remains a challenge.

The development of robust clinical trial designs requires refinement to ensure translation from preclinical models to humans, including large-scale randomized controlled designs and long-term follow-up. Understanding how senotherapies interact and affect existing interventions targeting metabolic disorders is crucial to translate senotherapies to clinical practice. With continued research and clinical validation, senotherapeutics have the potential to considerably affect metabolic disease and other age-related conditions. If clinical trials are successful, senotherapies might become a part of individualized care.

Published online: 06 October 2025

References

- Tchkonia, T., Palmer, A. K. & Kirkland, J. L. New horizons: novel approaches to enhance healthspan through targeting cellular senescence and related aging mechanisms. J. Clin. Endocrinol. Metab. 106. e1481–e1487 (2021).
- Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556–1568 (2022).
- Wiley, C. D. & Campisi, J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat. Metab. 3, 1290–1301 (2021).
- Tchkonia, T. et al. Fat tissue, aging, and cellular senescence. Aging Cell 9, 667–684 (2010).
- Palmer, A. K. et al. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 64, 2289–2298 (2015).
- Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966, 972 (2013)
- Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. *Annu. Rev. Pathol.* 5, 99–118 (2010).
- Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl Acad. Sci. USA 112, E6301–E6310 (2015).
- Gasek, N. S. et al. Clearance of p21 highly expressing senescent cells accelerates cutaneous wound healing. Nat. Aging 5, 21–27 (2025).
- Tchkonia, T. et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 17, 644–656 (2013).
- Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722-733 (2014).
- Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).
- Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).
- Menon, R. et al. Placental membrane aging and HMGB1 signaling associated with human parturition. Aging 8, 216–230 (2016).
- Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).
- Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).
- Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).
- Zhu, Y. et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging 9, 955–963 (2017).
- Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).
- Zhu, Y. et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644-658 (2015).
- Prata, L., Ovsyannikova, I. G., Tchkonia, T. & Kirkland, J. L. Senescent cell clearance by the immune system: emerging therapeutic opportunities. Semin. Immunol. 40, 101275 (2018).
- Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435 (2018).
- Chaib, S. et al. The efficacy of chemotherapy is limited by intratumoral senescent cells expressing PD-L2. Nat. Cancer 5, 448–462 (2024).
- Pereira, B. I. et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8⁺T cell inhibition. Nat. Commun. 10, 2387 (2019).
- Egashira, M. et al. F4/80⁺ macrophages contribute to clearance of senescent cells in the mouse postpartum uterus. Endocrinology 158, 2344–2353 (2017).
- Wang, T. W. et al. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature 611, 358–364 (2022).
- Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18, e12950 (2019).
- Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019).
- Jeyapalan, J. C. & Sedivy, J. M. Cellular senescence and organismal aging. Mech. Ageing Dev. 129, 467–474 (2008).
- Tchkonia, T. & Kirkland, J. L. Aging, cell senescence, and chronic disease: emerging therapeutic strategies. JAMA 320, 1319–1320 (2018).
- Yousefzadeh, M. J. et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 19, e13094 (2020).
- 32. Niemann, B. et al. Obesity induces signs of premature cardiac aging in younger patients: the role of mitochondria. J. Am. Coll. Cardiol. 57, 577–585 (2011).
- Horvath, S. et al. Obesity accelerates epigenetic aging of human liver. Proc. Natl Acad. Sci. USA 111, 15538–15543 (2014).
- Field, A. E. et al. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch. Intern. Med. 161, 1581-1586 (2001).
- Zhu, S. et al. Aging- and obesity-related peri-muscular adipose tissue accelerates muscle atrophy. PLoS ONE 14, e0221366 (2019).
- Chaib, S., Tchkonia, T. & Kirkland, J. L. Obesity, senescence, and senolytics. Handb. Exp. Pharmacol. 274, 165–180 (2022).

- Firoz, A. & Haris, M. Metabolic syndrome in childhood cancer survivors. EXCLI J. 21, 380–386 (2022).
- Suvakov, S. et al. Women with a history of preeclampsia exhibit accelerated aging and unfavorable profiles of senescence markers. Hypertension 81, 1550–1560 (2024).
- Smith, W. A. et al. Lifestyle and metabolic syndrome in adult survivors of childhood cancer: a report from the St. Jude Lifetime Cohort study. Cancer 120, 2742–2750 (2014).
- 40. Friedman, D. N., Tonorezos, E. S. & Cohen, P. Diabetes and metabolic syndrome in survivors of childhood cancer. *Horm. Res. Paediatr.* **91**, 118–127 (2019).
- Rosen, G. P., Nguyen, H. T. & Shaibi, G. Q. Metabolic syndrome in pediatric cancer survivors: a mechanistic review. *Pediatr. Blood Cancer* 60, 1922–1928 (2013).
- Suvakov, S. et al. Epigenetic and senescence markers indicate an accelerated ageing-like state in women with preeclamptic pregnancies. EBioMedicine 70, 103536 (2021).
- Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. FBioMedicine 21. 21–28 (2017).
- Kirkland, J. L. & Tchkonia, T. Senolytic drugs: from discovery to translation. J. Intern. Med. 288, 518–536 (2020).
- Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-inhuman, open-label, pilot study. EBioMedicine 40, 554–563 (2019).
- Palmer, A. K., Gustafson, B., Kirkland, J. L. & Smith, U. Cellular senescence: at the nexus between ageing and diabetes. *Diabetologia* 62, 1835–1841 (2019).
- Fohr, T. et al. Metabolic syndrome and epigenetic aging: a twin study. Int. J. Obes. 48, 778–787 (2024).
- 48. Nannini, D. R. et al. Epigenetic age acceleration and metabolic syndrome in the coronary artery risk development in young adults study. Clin. Epigenetics 11, 160 (2019).
- Revesz, D., Milaneschi, Y., Verhoeven, J. E., Lin, J. & Penninx, B. W. Longitudinal associations between metabolic syndrome components and telomere shortening J. Clin. Endocrinol. Metab. 100, 3050–3059 (2015).
- 50. Morley, J. E. Diabetes, sarcopenia, and frailty. Clin. Geriatr. Med. 24, 455-469 (2008).
- Aronson, D. & Edelman, E. R. Coronary artery disease and diabetes mellitus. Cardiol. Clin. 32, 439–455 (2014).
- Eckel, R. H., Alberti, K. G., Grundy, S. M. & Zimmet, P. Z. The metabolic syndrome. *Lancet* 375, 181–183 (2010).
- Lusis, A. J., Attie, A. D. & Reue, K. Metabolic syndrome: from epidemiology to systems biology. Nat. Rev. Genet. 9, 819–830 (2008).
- Moon, J. H. et al. Increased risk of metabolic disorders in healthy young adults with family history of diabetes: from the Korea National Health and Nutrition Survey. *Diabetol. Metab.* Syndr. 9, 16 (2017).
- Spinelli, R. et al. Increased cell senescence in human metabolic disorders. J. Clin. Invest. 133, e169922 (2023).
- Murphy, S. Understanding childhood and adolescent obesity. Clin. Integr. Care 13, 100114 (2022).
- Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).
- Nerstedt, A. & Smith, U. The impact of cellular senescence in human adipose tissue.
 J. Cell Commun. Signal. 17, 563–573 (2023).
- Wang, L. et al. Targeting p21^{Cip1} highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metab. 34, 75–89 (2022).
- Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).
- Bianchi, A. et al. Moderate exercise inhibits age-related inflammation, liver steatosis, senescence, and tumorigenesis. J. Immunol. 206, 904–916 (2021).
- Meijnikman, A. S. et al. Hyperinsulinemia is highly associated with markers of hepatocytic senescence in two independent cohorts. *Diabetes* 71, 1929–1936 (2022).
- Aguayo-Mazzucato, C. Functional changes in beta cells during ageing and senescence. Diabetologia 63, 2022–2029 (2020).
- Rubin de Celis, M. F. et al. PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53. Proc. Natl Acad. Sci. USA 119, e2206923119 (2022).
- Cha, J., Aguayo-Mazzucato, C. & Thompson, P. J. Pancreatic β-cell senescence in diabetes: mechanisms, markers and therapies. Front. Endocrinol. (Lausanne) 14, 1212716 (2023).
- Palmer, A. K., Tchkonia, T. & Kirkland, J. L. Targeting cellular senescence in metabolic disease. Mol. Metab. 66, 101601 (2022).
- Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316–321 (2014).
- Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. *Nature* 479, 232–236 (2011).
- Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973–977 (2016).
- Wang, J. et al. Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability. Circulation 132, 1909–1919 (2015).
- Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).
- Minamino, T. & Komuro, I. Vascular cell senescence: contribution to atherosclerosis. Circ. Res. 100, 15–26 (2007).
- Katakami, N. Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. J. Atheroscler. Thromb. 25, 27–39 (2018).
- Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016).

- Gardner, S. E., Humphry, M., Bennett, M. R. & Clarke, M. C. Senescent Vascular smooth muscle cells drive inflammation through an interleukin-1a-dependent senescence-associated secretory phenotype. *Arterioscler. Thromb. Vasc. Biol.* 35, 1963–1974 (2015).
- Kaistha, A. et al. Premature cell senescence promotes vascular smooth muscle cell phenotypic modulation and resistance to re-differentiation. *Cardiovasc. Res.* 121, 1448–1463 (2025).
- Katsuumi, G., Shimizu, I., Yoshida, Y. & Minamino, T. Vascular senescence in cardiovascular and metabolic diseases. Front. Cardiovasc. Med. 5, 18 (2018).
- Suda, M. et al. Senescent cells: a therapeutic target in cardiovascular diseases. Cells 12, 1296 (2023).
- Bian, X. et al. Senescence marker activin A is increased in human diabetic kidney disease: association with kidney function and potential implications for therapy. BMJ Open. Diabetes Res. Care 7, e000720 (2019).
- Ogrodnik, M. et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 29, 1061–1077 (2019).
- Gonzales, M. M. et al. Senolytic therapy in mild Alzheimer's disease: a phase 1 feasibility trial. Nat. Med. 29, 2481–2488 (2023).
- 82. Liu, Z. et al. Immunosenescence: molecular mechanisms and diseases. Signal. Transduct. Target. Ther. 8, 200 (2023).
- Zhang, K. et al. Metabolic diseases and healthy aging: identifying environmental and behavioral risk factors and promoting public health. Front. Public. Health 11, 1253506 (2023).
- Sun, J. K. et al. Chronic alcohol metabolism results in DNA repair infidelity and cell cycle-induced senescence in neurons. Aging Cell 22, e13772 (2023).
- Jin, H. et al. Oroxylin A inhibits ethanol-induced hepatocyte senescence via YAP pathway. Cell Prolif. 51, e12431 (2018).
- Nyunoya, T. et al. Cigarette smoke induces cellular senescence. Am. J. Respir. Cell Mol. Biol. 35, 681–688 (2006).
- Cottage, C. T. et al. Targeting p16-induced senescence prevents cigarette smoke-induced emphysema by promoting IGF1/Akt1 signaling in mice. Commun. Biol. 2, 307 (2019).
- Kaur, G., Muthumalage, T. & Rahman, I. Clearance of senescent cells reverts the cigarette smoke-induced lung senescence and airspace enlargement in p16-3MR mice. *Aging Cell* 22, e13850 (2023).
- 89. Hohensinner, P. J. et al. Reduction of premature aging markers after gastric bypass surgery in morbidly obese patients. *Obes. Surg.* **28**, 2804–2810 (2018).
- Madeo, F., Carmona-Gutierrez, D., Hofer, S. J. & Kroemer, G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 29, 592–610 (2019).
- Fontana, L. & Klein, S. Aging, adiposity, and calorie restriction. JAMA 297, 986–994 (2007).
- Green, C. L., Lamming, D. W. & Fontana, L. Molecular mechanisms of dietary restriction promoting health and longevity. *Nat. Rev. Mol. Cell Biol.* 23: 56–73 (2022).
- Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).
- Longo, V. D. & Anderson, R. M. Nutrition, longevity and disease: from molecular mechanisms to interventions. Cell 185, 1455–1470 (2022).
- 95. Fontana, L. et al. The effects of graded caloric restriction: XII. Comparison of mouse to human impact on cellular senescence in the colon. *Aging Cell* 17, e12746 (2018).
- Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span from yeast to humans. Science 328, 321–326 (2010).
- 97. Wang, C. et al. Adult-onset, short-term dietary restriction reduces cell senescence in mice. *Aging* **2**, 555–566 (2010).
- Justice, J. N. et al. Caloric restriction intervention alters specific circulating biomarkers of the senescence-associated secretome in middle-aged and older adults with obesity and prediabetes in an 18-week randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 79, qlad214 (2024).
- Aversa, Z. et al. Calorie restriction reduces biomarkers of cellular senescence in humans. Aging Cell 23, e14038 (2024).
- Schafer, M. J. et al. Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes 65, 1606–1615 (2016).
- Englund, D. A. et al. Exercise reduces circulating biomarkers of cellular senescence in humans. Aging Cell 20, e13415 (2021).
- Demaria, M. et al. Long-term intensive endurance exercise training is associated to reduced markers of cellular senescence in the colon mucosa of older adults. NPJ Aging 9, 3 (2023).
- Justice, J. N. et al. Cellular senescence biomarker p16INK4a⁺ cell burden in thigh adipose is associated with poor physical function in older women. J. Gerontol. A Biol. Sci. Med. Sci. 73, 939–945 (2018).
- 104. Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 12, 489–498 (2013).
- Kulkarni, A. S., Gubbi, S. & Barzilai, N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 32, 15–30 (2020).
- 106. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to target aging. Cell Metab. 23, 1060–1065 (2016).
- Kim, M. N., Moon, J. H. & Cho, Y. M. Sodium-glucose cotransporter-2 inhibition reduces cellular senescence in the diabetic kidney by promoting ketone body-induced NRF2 activation. *Diabetes Obes. Metab.* 23, 2561–2571 (2021).

- Madonna, R. et al. Empagliflozin reduces the senescence of cardiac stromal cells and improves cardiac function in a murine model of diabetes. J. Cell Mol. Med. 24, 12331–12340 (2020).
- Katsuumi, G. et al. SGLT2 inhibition eliminates senescent cells and alleviates pathological aging. Nat. Aging 4, 926–938 (2024).
- Shah, M. & Vella, A. Effects of GLP-1 on appetite and weight. Rev. Endocr. Metab. Disord. 15, 181–187 (2014).
- Oeseburg, H. et al. Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler. Thromb. Vasc. Biol. 30, 1407–1414 (2010).
- Meloni, A. R., DeYoung, M. B., Lowe, C. & Parkes, D. G. GLP-1 receptor activated insulin secretion from pancreatic β-cells: mechanism and glucose dependence. *Diabetes Obes. Metab.* 15, 15–27 (2013).
- Baboota, R. K. et al. Chronic hyperinsulinemia promotes human hepatocyte senescence.
 Mol. Metab. 64, 101558 (2022)
- Westhoff, J. H. et al. Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a. Hypertension 52, 123–129 (2008).
- Liu, S. et al. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Sci. Rep. 5, 17895 (2015).
- Belakova, B. et al. Lipophilic statins eliminate senescent endothelial cells by inducing anoikis-related cell death. Cells 12, 2836 (2023).
- Klein, S. et al. Atorvastatin inhibits proliferation and apoptosis, but induces senescence in hepatic myofibroblasts and thereby attenuates hepatic fibrosis in rats. *Lab. Invest.* 92, 1440–1450 (2012).
- Sierra-Ramirez, A. et al. Transient metabolic improvement in obese mice treated with navitoclax or dasatinib/quercetin. Aging 12, 11337–11348 (2020).
- Hense, J. D. et al. MASLD does not affect fertility and senolytics fail to prevent MASLD progression in male mice. Sci. Rep. 14, 17332 (2024).
- Raffaele, M. et al. Mild exacerbation of obesity- and age-dependent liver disease progression by senolytic cocktail dasatinib + quercetin. Cell Commun. Signal. 19, 44 (2021)
- Hense, J. D. et al. Senolytic treatment reverses obesity-mediated senescent cell accumulation in the ovary. Geroscience 44, 1747–1759 (2022).
- Avila, B. M. et al. Effect of senolytic drugs in young female mice chemically induced to estropause. Life Sci. 357, 123073 (2024).
- Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).
- 124. Wilson, W. H. et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. *Lancet Oncol.* 11, 1149–1159 (2010).
- Afreen, S. et al. BCL-XL expression is essential for human erythropoiesis and engraftment of hematopoietic stem cells. Cell Death Dis. 11, 8 (2020).
- Josefsson, E. C., Vainchenker, W. & James, C. Regulation of platelet production and life span: role of Bcl-xL and potential implications for human platelet diseases. *Int. J. Mol. Sci.* 21, 7591 (2020).
- Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).
- Naqvi, K. et al. Long-term follow-up of lower dose dasatinib (50 mg daily) as frontline therapy in newly diagnosed chronic-phase chronic myeloid leukemia. Cancer 126, 67–75 (2020).
- Ottmann, O. et al. Long-term efficacy and safety of dasatinib in patients with chronic myeloid leukemia in accelerated phase who are resistant to or intolerant of imatinib. Blood Cancer J. 8, 88 (2018).
- 130. Christopher, L. J. et al. Metabolism and disposition of dasatinib after oral administration to humans. *Drug. Metab. Dispos.* **36**, 1357–1364 (2008).
- Graefe, E. U. et al. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol. 41, 492–499 (2001).
- 132. Touil, Y. S. et al. Fisetin disposition and metabolism in mice: Identification of geraldol as an active metabolite. *Biochem. Pharmacol.* **82**, 1731–1739 (2011).
- Grosse, L. et al. Defined p16^{high} senescent cell types are indispensable for mouse healthspan. Cell Metab. 32, 87–99 (2020).
- Born, E. et al. Eliminating senescent cells can promote pulmonary hypertension development and progression. Circulation 147, 650–666 (2023).
- Mannick, J. B. et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci. Transl. Med. 10, eaaq1564 (2018).
- Bitto, A. et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife 5, e16351 (2016).
- 137. Fuhrmann-Stroissnigg, H. et al. Identification of HSP90 inhibitors as a novel class of senolytics. *Nat. Commun.* **8**, 422 (2017).
- Lazaro, I. et al. Targeting HSP90 ameliorates nephropathy and atherosclerosis through suppression of NF-кB and STAT signaling pathways in diabetic mice. *Diabetes* 64, 3600–3613 (2015).
- Lee, J. H. et al. Heat shock protein 90 (HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose regulation in diabetic mice. Biochem. Biophys. Res. Commun. 430, 1109–1113 (2013).
- 140. Samakkarnthai, P. et al. In vitro and in vivo effects of zoledronic acid on senescence and senescence-associated secretory phenotype markers. Aging 15, 3331–3355 (2023).
- 141. Xu, Q. et al. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. *Nat. Metab.* **3**, 1706–1726 (2021).

- Liu, Y. et al. Senolytic and senomorphic agent procyanidin C1 alleviates structural and functional decline in the aged retina. Proc. Natl Acad. Sci. USA 121, e2311028121 (2024).
- 143. Shao, M. et al. Procyanidin C1 inhibits bleomycin-induced pulmonary fibrosis in mice by selective clearance of senescent myofibroblasts. FASEB J. 38, e23749 (2024).
- 144. Gonzalez-Gualda, E. et al. Galacto-conjugation of navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell 19, e13142 (2020).
- Munoz-Espin, D. et al. A versatile drug delivery system targeting senescent cells. EMBO Mol. Med. 10, e9355 (2018).
- Guerrero, A. et al. Galactose-modified duocarmycin prodrugs as senolytics. Aging Cell 19, e13133 (2020).
- Chini, C. C. S. et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD* and NMN levels. Nat. Metab. 2. 1284–1304 (2020).
- 148. Chini, C. et al. The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD* decline. Biochem. Biophys. Res. Commun. 513. 486–493 (2019).
- Ren, C. et al. Nicotinamide mononucleotide ameliorates cellular senescence and inflammation caused by sodium iodate in RPE. Oxid. Med. Cell Longev. 2022, 5961123 (2022)
- Lu, Z. et al. Nicotinamide mononucleotide alleviates osteoblast senescence induction and promotes bone healing in osteoporotic mice. J. Gerontol. A Biol. Sci. Med. Sci. 78, 186–194 (2023).
- Rajman, L., Chwalek, K. & Sinclair, D. A. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 27, 529–547 (2018).
- 152. Zhang, H. et al. NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. *Science* **352**, 1436–1443 (2016).
- Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127-132 (2020).
- 154. Amor, C. et al. Prophylactic and long-lasting efficacy of senolytic CART cells against age-related metabolic dysfunction. Nat. Aging 4, 336–349 (2024).
- Suda, M. et al. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging 1, 1117–1126 (2021).
- Marin, I. et al. Cellular senescence is immunogenic and promotes antitumor immunity. Cancer Discov. 13, 410–431 (2023).
- Chen, H. A. et al. Senescence rewires microenvironment sensing to facilitate antitumor immunity. Cancer Discov. 13, 432–453 (2023).
- Eskiocak, O. et al. Senolytic CART cells reverse aging-associated defects in intestinal regeneration and fitness. Preprint at bioRxiv https://doi.org/10.1101/2024.03.19.585779v1 (2024).
- Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4⁺ CAR T cells. Nature 602, 503–509 (2022).
- Wiley, C. D. & Campisi, J. From ancient pathways to aging cells-connecting metabolism and cellular senescence. Cell Metab. 23. 1013–1021 (2016).
- Onorati, A. et al. Upregulation of PD-L1 in senescence and aging. Mol. Cell Biol. 42, e0017122 (2022).
- Quandt, Z., Young, A. & Anderson, M. Immune checkpoint inhibitor diabetes mellitus: a novel form of autoimmune diabetes. Clin. Exp. Immunol. 200, 131–140 (2020).
- Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019).
- 164. Hansen, E., Sahasrabudhe, D. & Sievert, L. A case report of insulin-dependent diabetes as immune-related toxicity of pembrolizumab: presentation, management and outcome. Cancer Immunol. Immunother. 65, 765–767 (2016).
- 165. Schwartz, C. et al. Innate PD-L1 limits T cell-mediated adipose tissue inflammation and ameliorates diet-induced obesity. Sci. Transl. Med. 14, eabj6879 (2022).
- 166. Nambiar, A. et al. Senolytics dasatinib and quercetin in idiopathic pulmonary fibrosis: results of a phase I, single-blind, single-center, randomized, placebo-controlled pilot trial on feasibility and tolerability. EBioMedicine 90, 104481 (2023).
- Millar, C. L. et al. A pilot study of senolytics to improve cognition and mobility in older adults at risk for Alzheimer's disease. EBioMedicine 113, 105612 (2025).
- 168. Farr, J. N. et al. Effects of intermittent senolytic therapy on bone metabolism in postmenopausal women: a phase 2 randomized controlled trial. Nat. Med. 30, 2605–2612 (2024).
- Wyles, S. P. et al. Cellular senescence in human skin aging: leveraging senotherapeutics. Gerontology 70, 7–14 (2024).
- Yu, G. T. et al. Mapping cellular senescence networks in human diabetic foot ulcers. Geroscience 46, 1071–1082 (2024).
- Yu, G. T. et al. Mapping epidermal and dermal cellular senescence in human skin aging. Aging Cell 24, e14358 (2024).
- Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017).
- Xu, M. et al. Transplanted senescent cells induce an osteoarthritis-like condition in mice.
 J. Gerontol, A Biol. Sci. Med. Sci. 72, 780–785 (2017).
- 174. Weigl, M. et al. Profiling microRNA expression during senescence and aging: mining for a diagnostic tool of senescent-cell burden. Preprint at bioRxiv https://doi.org/10.1101/ 2024.04.10.588794v2 (2024).
- Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 11, 303–327 (2019).
- Fohr, T. et al. Does the epigenetic clock GrimAge predict mortality independent of genetic influences: an 18 year follow-up study in older female twin pairs. Clin. Epigenetics 13, 128 (2021).

- McCrory, C. et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J. Gerontol. A Biol. Sci. Med. Sci. 76, 741–749 (2021).
- 178. Lu, A. T. et al. DNA methylation GrimAge version 2. Aging (Albany NY) 14, 9484-9549 (2022).
- Vaughan, D. E., Rai, R., Khan, S. S., Eren, M. & Ghosh, A. K. Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. *Arterioscler. Thromb. Vasc. Biol.* 37, 1446–1452 (2017)
- 180. Evans, D. S. et al. Proteomic analysis of the senescence-associated secretory phenotype: GDF-15, IGFBP-2, and cystatin-C are associated with multiple aging traits. J. Gerontol. A Biol. Sci. Med. Sci. 79, glad265 (2024).
- Islam, M. T. et al. Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell 22, e13767 (2023).
- Aguayo-Mazzucato, C. et al. Acceleration of beta cell aging determines diabetes and senolysis improves disease outcomes. Cell Metab. 30, 129–142 (2019).
- Xu, M. et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife 4, e12997 (2015).
- 184. Kim, S. R. et al. Progressive cellular senescence mediates renal dysfunction in ischemic nephropathy. J. Am. Soc. Nephrol. 32, 1987–2004 (2021).
- 185. Kim, S. R. et al. Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin. Transl. Res. 213, 112–123 (2019).
- Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132-147 (2017).
- Mylonas, K. J. et al. Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci. Transl. Med. 13, eabb0203 (2021).
- 188. Moncsek, A. et al. Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2^{-/-}) mice. Hepatology 67, 247-259 (2018).
- Yu, S. et al. Quercetin reverses cardiac systolic dysfunction in mice fed with a high-fat diet: role of angiogenesis. Oxid. Med. Cell Longev. 2021, 8875729 (2021).
- Dookun, E. et al. Clearance of senescent cells during cardiac ischemia-reperfusion injury improves recovery. Aging Cell 19, e13249 (2020).
- Walaszczyk, A. et al. Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction. Aging Cell 18, e12945 (2019).
- 192. Anderson, R. et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. *EMBO J.* **38**, e100492 (2019).
- Lewis-McDougall, F. C. et al. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell 18, e12931 (2019).
- Nath, K. A. et al. The murine dialysis fistula model exhibits a senescence phenotype: pathobiological mechanisms and therapeutic potential. Am. J. Physiol. Ren. Physiol. 315, F1493–F1499 (2018).
- Sugihara, H. et al. Cellular senescence-mediated exacerbation of Duchenne muscular dystrophy. Sci. Rep. 10, 16385 (2020).
- Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan EBioMedicine 36, 18–28 (2018).
- Dungan, C. M. et al. Senolytic treatment rescues blunted muscle hypertrophy in old mice. Geroscience 44, 1925–1940 (2022).

- Saccon, T. D. et al. Senolytic combination of dasatinib and quercetin alleviates intestinal senescence and inflammation and modulates the gut microbiome in aged mice.
 J. Gerontol. A Biol. Sci. Med. Sci. 76, 1895–1905 (2021).
- 199. Wang, B. et al. An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo. *Nat. Aging* 1, 962–973 (2021).
- Klier, S. et al. Safety and efficacy of senolytic UBX1325 in diabetic macular edema. NEJM Evid. 4, EVIDoa2400009 (2025).
- Tchkonia, T., Kritchevsky, S. B., Kuchel, G. A. & Kirkland, J. L. NIA Translational Geroscience Network: an infrastructure to facilitate geroscience-guided clinical trials. J. Am. Geriatr. Soc. 72, 1605–1607 (2024).

Acknowledgements

The authors acknowledge the support of the National Institutes of Health (grants R37AG13925, R33AG61456, R01AG72301, R01AG61414, R01AG69690, U54AG75941, R01AG89711 and R01AG75684), the Hevolution Foundation (HF-GRO-23-1199148-3), the Connor Fund, Robert J. and Theresa W. Ryan, and the Noaber Foundation. The authors are grateful to T. Evans, senior program coordinator of the Translational Geoscience Network, for contributing to clinical trials of senolytics.

Author contributions

S.C. and A.K.P. contributed to all aspects of the article. S.P.W. and N.M. contributed to writing the article and to reviewing and/or editing the manuscript before submission. J.L.K. and T.T. contributed to discussion of the content, writing the article and to reviewing and/or editing the manuscript before submission.

Competing interests

T.T., A.K.P. and J.L.K. have a financial interest related to this article, including patents and pending patents covering senolytic drugs and their uses. S.C. holds patents or pending patents on PDL2 at Mayo Clinic and Spanish National Cancer Research Center, some of which have been licensed to Rejuveron Senescence Therapeutics. The other authors declare no competing interests.

Additional information

Peer review information Nature Reviews Endocrinology thanks Cristina Aguayo-Mazzucato, Ippei Shimizu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© Springer Nature Limited 2025