

Viral emergence and pandemic preparedness in a One Health framework

Reina S. Sikkema^{1,2} & Marion Koopmans © ^{1,2}

Abstract

The risk of viral pathogen transmission between humans and animals (spillover events) and subsequent spread has been increasing due to human impacts on the planet, which lead to changes in the interactions between humans, animals, ecosystems and their pathogens. Key factors (drivers) that increase the risk of disease emergence include climate change, urbanization, land-use changes and global travel, all of which can alter human-animal-environment interactions and increase the likelihood of zoonotic spillovers and vector-borne diseases. Incorporating data on these drivers (such as ecological shifts and patterns of animal movement) into disease surveillance systems can help identify hot spots for disease emergence, which could in theory enable earlier detection of outbreaks and, in turn, increase the effectiveness of intervention strategies. A One Health approach, emphasizing the interconnectedness of human, animal and environmental health, is advocated for addressing these complex challenges. Although conceptually clear and widely endorsed, implementation of One Health approaches towards primary prevention of spillovers is extremely challenging. Here, we summarize current knowledge on disease emergence and its drivers, and discuss how this knowledge could be used towards primary prevention and for the development of risk-targeted One Health early warning surveillance. We consider integrating innovative tools for diagnostics, surveillance and virus characterization, and propose an outlook towards more integrated prevention, early warning and control of emerging infections at the human-animal interface.

Sections

Introduction

Change as a driver for emergence

Driver-based spillover risk prediction

One Health surveillance

Implications for preparedness: early warning and prevention

Conclusions

¹Viroscience Department, Erasmus MC, Rotterdam, The Netherlands. ²Pandemic and Disaster Preparedness Research Centre, Erasmus MC, Rotterdam, The Netherlands. e-mail: r.sikkema@erasmusmc.nl; m.koopmans@erasmusmc.nl

Introduction

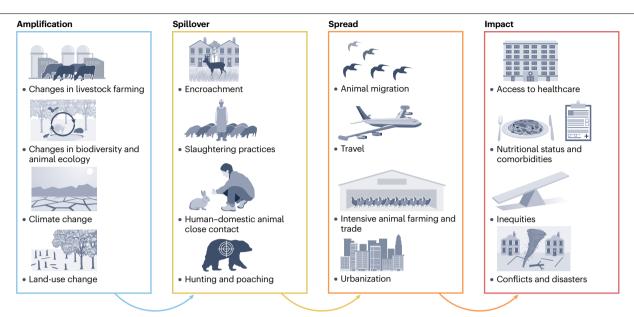
In recent decades, the world has experienced multiple epidemics of novel emerging or re-emerging infectious diseases. The most notable example was the COVID-19 pandemic, which started in 2019 and was caused by the global spread of SARS-CoV-2. In 2022, another public health emergency of international concern (PHEIC) was declared with the global spread of clade Ilb Mpox virus¹. After decades of sporadic cases of Mpox in East, West and Central Africa, with more recent substantial undetected circulation in Nigeria, by 2022 an Mpox outbreak had rapidly spread within Europe, the Americas and, subsequently, globally. Subsequently, a second PHEIC was declared in 2024 when clade Ib Mpox virus was first detected in the East of the Democratic Republic of Congo, which then started spreading across continental borders². Another re-emerging virus is Oropouche virus, which is currently causing an epidemic in Central and South America, and overlaps with the largest dengue epidemic ever in the same region³.

Since the global COVID-19 pandemic, an unprecedented epidemic of highly pathogenic H5Nx clade 2.3.3.4 avian influenza has been ongoing in domestic and wild birds and mammals. Viruses belonging to this clade have spread from Southeast Asia to Europe since 2014, leading to the largest highly pathogenic avian influenza (HPAI) epidemic ever recorded in Europe during 2016–2017. By the end of 2021, the virus had expanded into North America, and reached regions as remote as Antarctica in 2022 and 2023 (refs. 4,5). This epidemic led to mortality estimates of more than 300×10^9 dead wild and domestic birds. Moreover, infections have been reported in at least 70 mammal species, such as wild and domestic carnivores, sea mammals and, most recently, millions of dairy cows in the United States^{4,6}. The number of human infections with the H5N1 clade 2.3.4.4.b avian influenza virus remained limited, with generally mild symptoms. However, since 2024 the number of reported human infections in the United States alone has increased to 70. Scientists worldwide have expressed their concerns on the possible pandemic risk of the circulating H5Nx influenza viruses⁷⁻⁹.

'One Health' is a concept that has been around for several decades but was updated in 2021 by the One Health High-Level Expert Panel (OHHLEP) into a definition that emphasizes that the health of humans. animals (including wildlife) and ecosystems is tightly linked 10. This view is particularly clear in the domain of emerging infectious diseases, where there is consensus that changes in the interactions between humans and animals and our shared ecosystems affect the exchange of microorganisms and viruses within and between species, potentially resulting in the emergence of new infectious diseases or changes in the epidemiology of known diseases¹¹. As the ecology of infectious diseases is complex, their dynamics can be affected by multiple factors, called drivers. Drivers are defined as underlying factors or mechanisms that influence interactions between pathogens, hosts and the environment, and that therefore contribute to the emergence or spread of infectious diseases^{12,13}. As such, research and surveillance of emerging infectious diseases should also take into account these interactions between humans, animals and the environment, and aim for an integrated approach to study and detect the emergence of novel pathogens.

Current literature on emerging infectious diseases, as well as outbreak preparedness plans, focuses mostly on the response to human disease outbreaks, after spillovers of viruses circulating in animals have led to an outbreak. A key question and the main focus of this Review is whether there is potential for early warning and even primary prevention of spillover events, by understanding the process of disease emergence at a fundamental level. This information could then be used to improve our capacity to predict risk of spillovers, and target

surveillance at the human-animal interface to detect outbreaks as early as possible. Although conceptually intuitive, this goal is not easy to achieve. Focusing on the entire system requires the involvement of multiple disciplines and sectors, shared goals (that might differ in different regions) and a long-term vision, all aspects that can be hampered by competing societal, economic and political interests¹⁴. Nonetheless, the continued threat of epidemics resulting from spillover events does call for more fundamental and long-term thinking about the potential for threat reduction. Therefore, we review current scientific literature on viral emergence and its drivers, with a focus on how this knowledge could be included to predict the risk of spillovers, and the design of risk-targeted improved early warning and surveillance systems. We further expand on the implementation of a One Health approach and integrating innovative tools for diagnostics, surveillance and virus characterization. We also provide an outlook towards a proactive approach for primary prevention, early warning and control of emerging infections at the human-animal interface.


Change as a driver for emergence

In this section, we describe which of the main drivers should be considered for potential inclusion in the design of risk-targeted prediction and early warning systems. We specifically focus on drivers for spillover and drivers for amplification and spread. When considering spillover risk, a central theme is the impact of the human presence on the planet through three major and interconnected drivers: climate change and climate change adaptation; land-use changes (including agriculture and urbanization); and changes in human and animal movements (travel, trade and migration).

Climate change

Climate change refers to long-term shifts in weather patterns (such as increasing temperatures and changes in precipitation) that can lead to droughts, heat waves, polarice melt and increases in extreme weather events (Fig. 1). These events in turn trigger increased numbers of wildfires, flooding events and sea-level rise¹⁵. A systematic review of the scientific literature assessed these climatic hazards for effects on infectious diseases and found that out of 375 infectious diseases covered by the review, 218 had at some point had been aggravated by one of the climate hazards and 60 had diminished in some way¹⁵. The different climate hazards do not occur in isolation but are part of a complex system that results in direct and indirect health effects, in a context of other drivers of human and animal disease¹⁶. For instance, extreme weather events and increased temperatures can affect water and soil quality, which increases the risk of food-borne and waterborne diseases (such as cholera and other non-cholera *Vibrio* infections) in humans¹⁴. Moreover, abrupt displacements of humans and animals caused by extreme weather events and other climate disasters can facilitate the introduction of infectious diseases into new geographic areas 15,17,18. More insidious changes in species abundances and migration patterns could also follow from gradual changes in climatic conditions¹⁹. Examples of species that have shown clear shifts in latitude, depth or altitude as a response to changes in climate are marine fish²⁰ and wild birds¹⁹. Changing ecology can affect contact patterns between and among humans and animals, which increases opportunities for viral host jumps in some areas but also decreases them in others¹⁷.

Measures taken in response to climate change can also have impacts on infectious diseases. Urban and rural landscapes are being transformed to deal with increasing temperatures, changing precipitation patterns and subsequent consequences. For example, several

Fig. 1| **Viral emergence and its key drivers.** Four key steps towards high-impact epidemics and pandemics: amplification, spillover, spread and impact. Changes in the environment, including wildlife habitats, affect reservoir demography and behaviour, leading to changes in pathogen circulation. These changes also affect the human–animal interface, increasing the chance of spillover events. Due to our

increasingly connected world, with national and international transport of humans, animals, products and associated viruses, any emerging pathogen has an increased chance of rapid international spread. Changes in human and animal comorbidities, as well as policy changes and disasters, affect the implementation of preventive and response measures, and might increase the impact on human health.

countries are adopting strategies to improve water resource management (during times of drought as well as flooding) by wetland restoration and development of water buffers²¹. Changes in agricultural practices are also necessary, for example, by changing water and soil management and replacing crops to adapt to increasing periods of drought, or salinizing soil and groundwater. In cities, common strategies are the implementation of 'green and blue infrastructures', which include urban parks, green roofs and water buffer areas, to achieve cities with increased water storage capacity, better capacity to deal with peak precipitation, and reduced surface and air temperatures²²⁻²⁴. However, research on possible adverse effects of such climate adaptive measures on human health is very scarce, especially in the area of infectious diseases²⁵. Some work has been done on the effects of urban greening on rat-borne pathogens, where the researchers showed that urban greenness is associated with higher abundances of rats^{26,27}, as well as associated rat-borne zoonotic pathogens²⁸. Another example is the increased malaria incidence that was found near dams, particularly smaller dams, in sub-Saharan Africa. This is likely due to the standing water that is a suitable breeding ground for Anopheles mosquitoes, the primary vectors of malaria parasites²⁹. Urban design could also have a large effect on mosquito proliferation and associated mosquito-borne pathogens24.

Vector-borne diseases are the category of diseases that seem to be the most climate-sensitive; for instance, owing to the effect of temperature on habitat suitability for reservoir hosts and vectors. In addition, temperature can affect vector spread, increase biting rates, and also increase pathogen replication in the vector required for transmission³⁰. Importantly, although the global burden of vector-borne diseases is expected to increase under climate change scenarios, such increases might not always occur at a more local scale. Temperatures could also

surpass the thermal optimum of local habitats with animal hosts, vectors or associated pathogens. This optimum can be different for each vector and associated pathogen. For example, the disease burden of vector-borne diseases in Africa could shift from *Anopheles*-transmitted malaria to arboviruses spread by *Aedes* mosquitoes, with large local differences, due to the direct effects of increasing temperatures³¹.

Factors impacting land use

In addition to climate change, land-use change ranks high as a driver for disease emergence, through several possible trajectories that could overlap.

Changes in agriculture. Around 71% of the Earth's surface is classified as habitable land, without ice or desert, of which almost half is currently in use for agriculture 32 . Around 42 million km² more land is used now than 1,000 years ago, when only 4% of habitable land was used for agricultural purposes 33 . The increase in agricultural land is in line with the increase in the world human population and the associated demand for crops, meat, milk and eggs and associated increase in livestock. Combining grazing land and cropland used for livestock production, 80% of agricultural land is currently in use for livestock production (United Nations Food and Agricultural Organization (FAO) 33,34). In 2022, there were an estimated 1.55×10^9 cattle $(0.94 \times 10^9$ in 1961), 28.3 $\times 10^9$ poultry $(4.3 \times 10^9$ in 1961) and 0.98×10^9 pigs $(0.41 \times 10^9$ in 1961) worldwide. A 2023 study estimated the global protein mass of mammals and found that the majority (94%) of total biomass consists of domesticated animals (mainly livestock) and humans 35 .

High numbers of farmed animals have led to increasing average farm sizes, increased human–domestic animal–wildlife interfaces and general land-use changes, which all increase the risk of zoonotic disease

emergence and spread36,37. For example, increasing farm sizes and overall numbers of domestic poultry increase the chances of novel HPAI viruses, as introductions of low-pathogenic viruses by live birds can be followed by their evolution into HPAI viruses in domestic poultry³⁸. Also, large-scale fur farms with mink or foxes can pose considerable risks when avian influenza viruses are introduced via wild birds, owing to the possibility of generating additional animal reservoirs and ongoing (or increased) evolution of viruses that could become better adapted to mammals^{39,40}. The ongoing increase in agricultural land is associated with deforestation, estimated at 6.4-8.8 Mha per year⁴¹, which has been shown to be a driver of disease emergence on its own^{42,43}. Of specific interest for pathogen spillover is the commercial farming of wildlife. A 2023 review showed that at least 487 wildlife species are farmed globally⁴⁴, resulting in greatly increased circulation of and spillover opportunities for wildlife pathogens. For example, commercially farmed masked palm civets (Paguma larvata) were likely the source of SARS-CoV that led to the early 2000s human outbreak of SARS in Southeast Asia45.

The large numbers of live animals, animal products and food that are traded on the national and international scales can also facilitate rapid spread of existing and novel pathogens. Examples of international spread of infectious diseases partly facilitated by domestic and wild animal trade include swine influenza⁴⁶, African swine fever⁴⁷, Mpox¹, avian influenza⁴⁸ and rabies⁴⁹. Of specific importance are live animal and wildlife markets, as exemplified both by the detection of the novel SARS-CoV-2 at the Huanan Seafood Wholesale Market in Wuhan, China, and the role of live animal markets in the spread and spillover of avian influenza viruses 48,50. At live animal markets, local circumstances can facilitate disease transmission between animals as well as between animals and humans, owing to limited hygienic conditions and large numbers, densities and varieties of animal species in close contact with humans^{51,52}. International trade and consumption of wild meat is also a risk factor for spillover and spread of zoonotic pathogens. A literature review published in 2022 identified more than 90 spillover events resulting from wild meat consumption, including Ebola virus (EBOV), hepatitis E and brucellosis⁵³, Moreover, disease outbreaks in one industry can lead to cascading effects in others. For example, a large African swine fever outbreak in China during 2018–2019 led to the culling of ~150 million pigs, which resulted in a decrease of ~11.5 million metric tons of available pork in 2019. This event might have led to a shift in protein consumption, including wild meat, possibly driving the spillover and spread of SARS-CoV-2 (refs. 54,55).

Urbanization. Urbanization changes local land use and can lead to increased local temperature, increased pollution, and changes in biodiversity and human–animal–environmental interfaces^{56,57} (Fig. 1). Generally, urban expansion is associated with decreased biodiversity⁵⁸, but some native and invasive animal species can adapt to urban environments and their population can increase in cities. The increased presence of these animal reservoirs also changes usuch as rodent-borne protozoans, *Bartonella* spp. and *Leptospira* spp. ^{28,59}, and zoonotic pathogens such as rabies virus and *Leishmania* parasites in urban foxes⁶⁰. Also, reverse zoonotic events are more likely, possibly leading to new animal reservoirs where ongoing pathogen adaptation and evolution occurs, as shown in urban deer infected by SARS-CoV-2 (ref. 61). Overall, as shown in an extensive data analysis of host–pathogen associations, known wildlife hosts of human-shared pathogens and parasites are

found more often in urban ecosystems compared with nearby undisturbed habitats⁶². In addition, urbanization can also affect the local climate, which can result in urban areas experiencing higher temperatures than their surrounding rural areas, a phenomenon called the 'urban heat island effect'. These higher very local temperatures affect mosquitoes, vector-borne pathogens and waterborne pathogens. Additionally, warmer winters and increased food availability in urban settings can increase the replication success of some animal hosts, such as rats⁵⁷.

Approximately 55% of people worldwide live in cities, and this proportion is expected to increase to about 68% by 2050 (ref. 63) leading to substantial local increases in human densities ^{64,65}. The rise in global population, including the urban population, is expected to mainly take place in low and middle-income countries (LMICs), potentially in the context of weak and unstable governance, which will increase poverty, inequality and the further expansion of slums⁶⁶. A clear example of an emerging infectious disease in such an urban context was the 2014-2015 EBOV outbreak in West Africa, where the usual pattern of small-scale localized (Fig. 1) outbreaks in remote areas suddenly shifted to explosive spread involving urban communities in three of the poorest countries of the world⁶⁷. Phylodynamic analysis confirmed that urban areas were pivotal to the spread of the virus, by showing that the population size and higher chances of EBOV introduction are significantly associated with virus dispersal. This outbreak put the world on alert owing to concerns for further international spread^{68,69}. Within urban environments, the risk of infectious diseases can vary notably, often reflecting health inequities driven by underlying social, economic and political factors⁷⁰. The COVID-19 pandemic showed the influence of the socio-economic status of countries, as well as individuals, on the disease burden and impact. The age-specific infection fatality rate was estimated to be twice as high in LMICs compared with high-income countries⁷¹. Also within countries, poverty exacerbated the health consequences of the pandemic^{72,73}.

On the other hand, the prevalence of some infectious diseases is lower in urban areas than in rural areas. Often, the reasons described are improvements in sanitation and access to public health programmes. Example pathogens include those that spread via the faecal–oral route, such as hepatitis A virus 74 . Also, air and water pollution can actually hinder vector proliferation, such as sand flies and *Anopheles* spp. that transmit malaria parasites 75,76 .

Travel, migration and trade

Land-use change is a key driver for disease emergence; however, population growth, urbanization, and migration and travel are important drivers for the spread of infectious diseases⁷⁷ (Fig. 1). Migration and travel result in increased human connectivity and contact rates within and between countries. Large shifts have occurred in both the scale and geographic patterns of human presence and movement in the past decades. The United Nations World Tourism Organization estimates that the number of tourist arrivals increased 56-fold in the period 1950-2018. The contribution of this change to the infectious disease landscape was evident in 2020, when the SARS-CoV-2 outbreak detected in Wuhan rapidly spread across China with the high-speed railway system, and internationally through direct flights from Wuhan to major airports across the globe⁷⁸. The opportunity provided by this widespread seeding undoubtedly played a role in the further adaptation of SARS-CoV-2 to transmission in humans, as was observed over time⁷⁹. In addition, patterns in movements of displaced people can change rapidly over time, following natural disasters or political instability.

Movements of displaced people often result in large shifts in population and contact patterns, and large refugee camps are also known hot spots for infectious disease outbreaks due to high densities of people, influxes of people from different regions, unhygienic circumstances and high chances of malnourishment or other comorbidities that can increase susceptibility for severe disease 80 .

Driver-based spillover risk prediction

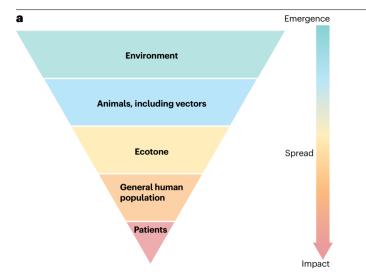
Early detection of outbreaks is key to their containment and control, particularly in the case of infectious diseases that have the capacity to transmit among humans or animals. One example in humans was the containment of the SARS outbreak, which was detected in Hong Kong. The first human patient was detected in November 2002, and on 5 July 2003 the World Health Organization (WHO) declared the global SARS outbreak to be contained⁸¹. Successful containment was due to the rapid implementation of public health interventions in Hong Kong and across the world, including rapid diagnostics development and roll out, case finding and contact quarantine, screening of travellers, social distancing, use of personal protective equipment and travel restrictions⁸². There was an important viral factor: SARS transmission between humans was occurring mostly after people became symptomatic and the viral tropism preference for lower respiratory tissue limited its transmissibility. For outbreaks in domestic animals, early detection is also crucial as a large range of control measures (such as culling and stand-stills) are often imposed to restrict all animal movements around an outbreak83.

Clearly, once a fully human-to-human transmissible pathogen emerges, control of an outbreak becomes incrementally more difficult. The trait of efficient human-to-human transmission, however, is often not fully known with many spillover pathogens, and the window of opportunity for control therefore lies at the earliest possible moment of detection, as has been advocated in pandemic preparedness plans⁸⁴. Yet early (Fig. 2) detection of the needle in the haystack of an early spillover is extremely challenging. A key question is whether mining of the information on drivers for disease dynamics could be incorporated into developing risk-targeted surveillance strategies (Fig. 2). The first question is which drivers to include in such an approach. Literature on hot spots for disease emergence is available, but typically not at the level of granularity needed for risk-targeted surveillance. Studies focusing on single diseases illustrate how complex such approaches can become. It remains to be seen whether risk predictions based on driver data at a more aggregated level will become accurate enough for practical application⁸⁵. For instance, a recent study in seven countries in the Balkan region found remarkable differences in the prevalence of four mosquito-borne diseases, even at this relatively small geographic scale^{86,87}. A study in Australia found that incursion pathways of two species of exotic mosquitoes were fundamentally different, further emphasizing the need for careful validation of any prediction model88.

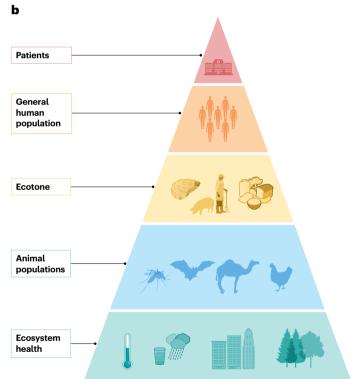
Given the complexity of disease emergence pathways, a driver-based approach would need to be focused on specific modes of transmission. For example, vector-borne disease outbreaks, zoonotic disease outbreaks related to wildlife versus farm animals, and food-borne and waterborne disease outbreaks all have different drivers, although overlap likely exists.

Vector-borne diseases

For vector-borne diseases, studies have been conducted that attempt to predict environmental suitability for specific vector species through


ecological niche modelling and other statistical and modelling approaches (Fig. 2). Such studies can be done either by focusing only on suitability for vector presence, or by combining that information with data on the risk of introduction or spread of specific pathogens⁸⁹. Globally, the impact of many arboviruses is directly related to urbanization and the expanding range of *Aedes* mosquitoes (particularly *Aedes aegypti* and *Aedes albopictus*). Thus, it has been proposed to include global suitability maps and risk predictions in urban planning and the targeting of virus surveillance, disease surveillance and public health measures⁹⁰. Similarly, the risk of tick-borne disease occurrence and geographic expansion has been assessed, showing that forestation and temperature, as well as the presence of the yellow necked mouse (*Apodemus flavicollis*), influence the occurrence of tick-borne encephalitis in humans, linking back to land-use change and climate change drivers⁹¹.

Not only do these studies aim to guide risk-targeted surveillance and early warning detection but they also can be used to inform interventions and risk communication campaigns⁸⁵. Once established, models can be used for longer term forecasting of potential future risks, using climate change scenarios^{89,92}. Validation of models is important and can only be done if high-quality surveillance data are available, which can also be used to explore and identify possible drivers for occurrence and spread, as has been explored with studies on Oropouche virus in the Americas⁹³, tick-borne encephalitis virus in Europe^{91,94} and several infectious diseases in Africa⁹⁵.


Zoonotic spillover hot spots

Similar efforts have tried to identify hot spots for zoonotic spillovers, with many studies focusing on bats (Fig. 2). Bats are hypothesized to serve as important reservoirs for zoonotic viruses 96,97, partly owing to the large species diversity of the taxonomic order Chiroptera, combined with their abundance and global distribution 98. One way to predict spillover risks is to model animal host distribution, as has been done for vampire bat roosts and rabies virus introductions into livestock in Latin America⁹⁹. These hotspot analyses can also shed light on the underlying landscape, including climatic and anthropogenic factors that affect host abundance, although they typically cannot explain underlying causes or mechanisms 99,100. When data are available, possible drivers of pathogen emergence and spread can be connected to actual pathogen data to confirm possible correlations, which could provide additional information in terms of possible risk areas. For example, one study combined the presence and richness of bat species with coronavirus co-evolution patterns and showed that hot spots that are predicted in this manner are different from those that only took species richness into consideration¹⁰¹. Examples of known factors that increase coronavirus infections in several bat species are habitat fragmentation, livestock density, deforestation and mining¹⁰²⁻¹⁰⁴. However, in most studies, human-animal contact rates or at least human density, and thus the true risk of spillover, are not taken into account. As an example of how human density can be considered, one study on the risk of SARS-like coronavirus spillover in China showed that locations of horseshoe bat populations overlap with locations with risk factors for coronavirus presence in bats, as well as human population density¹⁰³.

A key gap in the current scientific literature is the lack of actual spillover data, especially connected to risk and hotspot analyses. Although the risk of spillover of SARS-like viruses has been extensively discussed, actual quantitative information on spillover events is very rare 100,102,103,105,106. One study, again on SARS-like virus spillover,

Zoonotic transmission		Vector-borne transmission		
Driver	Method	Driver	Method	
Habitat loss (e.g. deforestation), livestock-wildlife interactions, wild meat consumption	Satellite imagery, tracking, eDNA, observations, wild meat seizures	Climate change, vector habitat data, vector community change	Weather monitoring, satellite imagery, nuisance reporting, vector monitoring	
Live animal and products trade, animal migration, intensive livestock farming	Trade data, wildlife population data, tracking, farm and livestock density	Urbanization, travel, used tyres and bamboo trade, animal host migration	Satellite imagery, travel and trade trends, bird population trends and tracking	

Fig. 2 | **One Health surveillance to monitor drivers and disease. a**, One Health surveillance of drivers. Surveillance of drivers should focus on the monitoring of drivers that facilitate spillover and spread of zoonotic pathogens, before the development of large human epidemics or pandemics. Examples of drivers and methods for monitoring them are provided for two transmission modes: vector-borne and zoonotic spillover and spread. **b**, One Health disease

Surveillance	Methods	Key outcomes
Healthcare data anomalies Undiagnosed patient follow-up Hospitalized patients with animal contact	Hospital records Patient metagenomics	 Early warning (Disease X detection) Human health impact Human disease prevalence Input risk assessment
Population health (symptoms) Comorbidity prevalence Pathogen circulation Import (travel)	Syndromic surveillance Pathogen and antibody screening (e.g. wastewater, bloodbank) Traveller monitoring	Human health impact Human disease prevalence Early warning (detection) Input risk assessment
Food and feed quality Human and animal risk population health Hotspot monitoring	Targeted pathogen and antibody monitoring Metagenomics	Early warning (disease X detection) Spillover detection Input targeted surveillance and risk assessment
Domestic animal and wildlife health Vector diversity and infections Microbiome and virome	Syndromic surveillance including mortality Pathogen and antibody screening Vector collection, eDNA, citizen science Next-generation sequencing	Risk mapping Animal outbreak detection and impact Input targeted surveillance and risk assessment
Climate Water, soil, air quality and pollution Biodiversity Plant health	Satellite, sensors, citizen science Census, eDNA, bioacoustics Environmental pathogen monitoring	Risk mapping Input targeted surveillance and risk assessment

surveillance. Surveillance of the human–animal–environment interface for integrated zoonotic disease monitoring requires targeted surveillance of risk populations, risk regions and risk interfaces. For each of the targeted populations or interfaces, (a combination of) different methods may be most suitable. eDNA, environmental DNA.

attempted to quantify spillover by including data from the literature on human-bat contacts, SARS-like seroprevalence in humans with bat contact and antibody waning, generating one of very few risk maps that takes into account actual evidence of virus exposure¹⁰⁶. Most likely, however, true risk prediction requires more granular information,

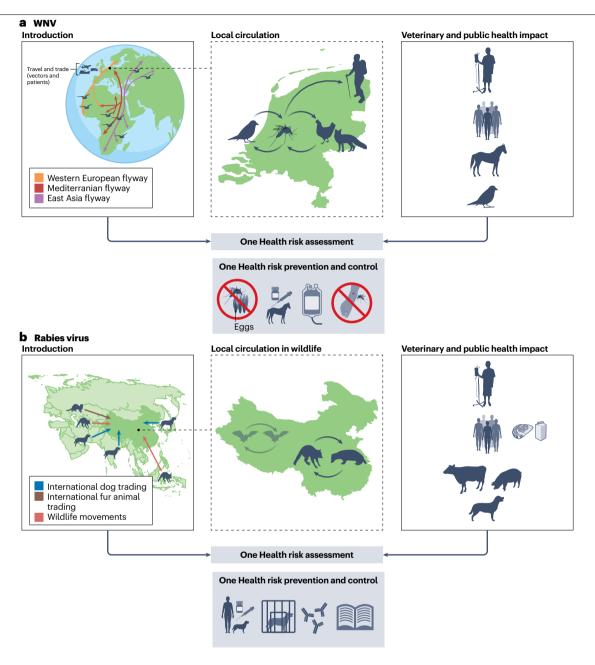
geared towards local practices and incorporating laboratory data on virus infections and exposure, with contact rate information, animal host modelling and environmental drivers, to further refine and validate zoonotic virus surveillance that targets possible hot spots for spillover.

One Health surveillance

Routine surveillance systems for human and animal diseases are typically not designed with a focus on spillover detection. Therefore, risk targeting requires working with other approaches that can be integrated into risk prediction modelling and that will need to be validated for use in routine surveillance.

Tools for ecosystem and pathogen surveillance

In order to better model and map possible spillover hot spots and design interventions, detailed longitudinal data are required on climate, land use, human and animal population structures and movements, as well as prevalence of pathogens and exposures (Figs. 2 and 3). However, traditional field data collection is often time-consuming, laborious and expensive. Therefore, most innovations focus on novel and scalable sampling and identification methods that reduce the amount of manpower involved. One example is the use of earth observation data (such as the use of satellites for remote sensing) to monitor changes in land use, plant phenology and climate, with continuous spatial and temporal coverage107. In addition, satellite data can be used to monitor bird migration and could potentially be used to estimate wildlife population sizes, specifically of the larger mammal and bird species 108. Oher innovations have focused on automated and/or high-throughput detection methods of animals or plants, such as the use of automated mosquito trapping and classification, and the use of bioacoustics for bird identification¹⁰⁹⁻¹¹¹. In addition, initiatives to implement digital health surveillance are increasing 112. A well-known first example was Google Flu trends, which used Google search queries to monitor influenza outbreaks¹¹³. Also, data mining from social media has been used to study and monitor diseases¹¹⁴. Moreover, the rapid development of artificial intelligence and machine learning is expected to vastly advance the opportunities for digital surveillance, on the levels of data collection (for example, biodata via smart watches), data mining (for example, multilanguage online text mining and classification) and real-time risk assessments 115,116.


High-quality data on pathogen characteristics, presence and exposures are key for development of prediction models (Figs. 2 and 3). Usually, individual animal and human samples are used to test for pathogen presence, although this approach often comes with notable challenges including the need for ethical permission, large sample sizes (with associated costs), and inconvenience and welfare concerns in the case of invasive sampling. Implementing sampling of the environment can circumvent many of these disadvantages. For example, coronaviruses in bats have been studied by only testing faecal pallets that were found under their roosting sites¹¹⁷. Moreover, bird-borne infectious agents, such as avian influenza virus and Usutu virus, can also be monitored using environmental surfaces, eggs (for antibodies) or feathers (for RNA)^{118–120}. In addition, some environmental samples represent multiple humans or animals, such as sewage or air samples¹²¹. Currently, multiple countries use wastewater to monitor different variants of SARS-CoV-2, as well as other pathogens and antimicrobial resistance 122-124. Moreover, in-depth studies of the human virome have been described using wastewater, which could also be extended to the animal host virome and microbiome studies¹²⁵. Particularly promising is the use of environmental DNA (eDNA) approaches to assess biodiversity and the presence of possible reservoir animals or vectors, which can also be combined with data on microbial composition. However, the sensitivity of environmental samples could be lower than those using traditional, invasive sample types. For example, in hospital studies where air samplers are placed in rooms of patients infected with respiratory syncytial virus, only a low proportion of the air samples are positive 126,127 . In addition, the inability to link samples to individual humans or animals affects the possibility to understand viral dynamics 128,129 .

Although viral metagenomics is widely implemented, numerous challenges remain in the execution, analysis and interpretation of the data (Box 1). First, obtaining the true composition of viral communities in a sample is challenging; for example, owing to low concentrations of viruses present in some matrices and biases introduced in preprocessing, sequencing and bioinformatic analysis steps 123,130 . In addition, the analysis and interpretation of metagenomic data are not easy, as only the minority of generated sequence data can be annotated to species level, resulting in a large proportion of 'viral dark matter'. Therefore, although metagenomic sequencing has gained in popularity, studies that allow extrapolation of findings for risk mapping are scarce 131 . Looking forward, the continuing expansion of metagenomic datasets combined with artificial intelligence approaches could have an important role in the analysis of metagenomic data and associated possible phenotype and zoonotic risk prediction 132,133 .

Another issue with pathogen detection in environmental and animal reservoirs is that it is difficult to incorporate data from such catch-all methods in risk assessments. For instance, most viruses that are detected in animal hosts through metagenomics are not able to overcome the biological barriers to infect a human host (for example, physical barriers such as skin or mucus, the human immune system or other factors prohibiting receptor binding or cell entry)¹³⁴. In addition, viruses should be able to replicate and spread between humans before there is a true risk of outbreaks or even a pandemic. In order to assess the zoonotic potential of viruses found in animal hosts, follow-up laboratory assays can be performed to assess traits associated with human cell entry and replication¹³⁵ (Box 1). Examples are laboratory infections using human cell lines or cell models (for example, organoids) to assess and quantify infection potential and replication, or immune assays to assess pre-existing immunity against the novel virus¹³⁵. However, performing such extensive follow-up analyses for each novel virus is laborious, time-consuming and expensive. In addition, whether the risks associated with such types of studies outweigh the potential benefits has been debated. The probability of animal to human spillovers is largely determined by human-animal contact rates (frequency of contact between human and animals) and human exposure rates (intensity and duration of contact leading to virus exposure opportunities)¹³⁶.

All of society approaches

Citizen science is also increasingly used to generate data on vector and animal host abundance, water quality, air pollution and many more direct and indirect risk factors for human health¹³⁷. Participation of volunteers can vary from systematic monitoring by competent citizen scientists to 'mass participation' (easy participation by anyone, anywhere), which is often easier and without obligation¹³⁸. One example is Mosquito Alert, an initiative to engage citizens in monitoring mosquito species, bites and breeding sites, involving schools and interested citizens in Europe using the Mosquito Alert app¹³⁹. Similar programmes that use citizen reporting to monitor vectors and wildlife are implemented in other regions^{140,141}. Most initiatives are based on submission of observations or photographs, but citizens can also be involved in actual sample collections; for example, by submitting mosquito specimens or by collecting lake water samples to monitor biodiversity^{142,143}. A very successful example of the involvement of volunteers in disease

monitoring in animals is the collaboration between volunteer ornithologists and bird ringers, who collect samples for the purpose of avian influenza virus or West Nile virus (WNV) monitoring^{144,145}.

Smartphones are also used to support medical, veterinary and public health practice¹⁴⁶. For example, smartphone-based systems can read out point-of-care tests, based on measuring colour intensity or fluorescent signals and smartphone-based microscopy. Such techniques have proven useful, particularly in remote areas without laboratory infrastructure¹⁴⁷. In addition, participatory disease surveillance is increasingly being investigated as a suitable alternative to, or in addition to, traditional surveillance systems. Often, citizens are involved via digital platforms, reporting disease symptoms that can be used to complement traditional healthcare surveillance data¹⁴⁸. Well-known examples of participatory disease surveillance are systems

to monitor influenza-like symptoms, such as those included in the European Influenzanet consortium¹⁴⁹. Also, self-sampling using swabs or dried blood spots is increasingly used to supplement traditional surveillance systems and infectious disease research^{150,151}.

Risk-targeted surveillance to hot spots

To achieve true early warning, risk assessment and prevention of emerging zoonotic pathogens, virus monitoring of animals in risk locations can be performed to detect novel viruses before significant disease is noted (Fig. 3). Guided by outcomes of hotspot prediction studies, surveillance can target populations of farmed animals; a possible effective target for research and surveillance, as high numbers of animals are often kept in high density, which can potentially lead to extensive virus amplification, and their close proximity and contact with humans

Fig. 3 | Examples of regional One Health surveillance: WNV and rabies virus. a, West Nile virus (WNV) surveillance in the Netherlands, combining human, animal and ecosystem surveillance to feed into risk assessments and target One Health interventions 145,183-186. The introduction of WNV can be tracked by monitoring infected humans (travellers), animals (wild birds along flyways) and vectors. Imported infections must be distinguished from local infections and surveillance of the spread of WNV can be performed by testing mosquitoes, resident birds and symptomatic dead-end hosts (horses and humans). Detailed travel and vaccination history is essential. Sentinel animals, such as chickens but also wild boar, rodents or dogs, can be used to further detect WNV circulation in a sensitive and timely manner. The public and veterinary health impact can be assessed by screening symptomatic patients (human and animal) and population surveys. All components of the surveillance system feed into a risk assessment framework for evidence-based control measures to protect humans, animals and the environment. These include mosquito control measures (for example, removal of breeding sites, larvicides and adult mosquito control), vaccination of domestic horses and zoo animals, blood donor screening and mosquito

bite prevention (for example, bed nets, repellants and protective clothing).

b. One Health rabies virus surveillance to monitor rabies at the humananimal interface in China, to feed into risk assessments and target One Health interventions 187,188 . The introduction of rabies virus can be tracked by monitoring infected wildlife, fur animal trade, and domestic and stray dogs. Monitoring local wildlife shows endemic presence and geographical distribution in wildlife populations, including bats and other mammals. Rabies virus infections cause mortality in humans, livestock and domestic dogs, which might also impact human livelihoods. Rabies is almost always fatal unless treated with postexposure prophylaxis. Dogs are the most common reservoir and dog bites are responsible for most infections in humans and livestock. The consumption of milk and meat from a rabies-infected animal is strongly discouraged, although the risk of infection is extremely low. All components of the surveillance system feed into a risk assessment framework for evidence-based control measures to protect humans, animals and the environment. These include the human risk group, dog and wildlife vaccinations, stray dog control, quarantine of exposed or imported companion animals or livestock, rabies post-exposure prophylaxis in the case of human risk contacts with infected animals, and education campaigns for healthcare workers and the community, including dog owners.

increases spillover chances. For example, although wild birds are the main reservoir for avian influenza viruses, most human avian influenza virus infections have been linked to direct contact with poultry, or more recently with infected dairy cattle⁴. Also, farmed animals can function as an intermediate host for viruses with a natural wildlife host, where a virus can further evolve and replicate before spilling over to humans¹⁵². This pathway is seen for many emerging coronaviruses, which often have bats as natural reservoirs. Notable examples are HCoV-OC43, MERS-CoV, SARS-CoV and SARS-CoV-2, with cattle, dromedary camels, palmed civet cats and an unknown animal species acting as an intermediate host, respectively¹⁵³. Ideally, risk-targeted surveillance would require the incorporation of catch-all tools into routine surveillance, rather than the development of separate surveillance systems. For instance, programmes that monitor the health of free-range farm animals could be interesting to access for broad-range testing for other pathogens.

As an alternative, humans in contact with animals can be monitored for novel and existing zoonotic viruses, rather than animals¹⁵⁴. This approach would mean moving from prediction to early warning; yet by targeting the next stage in zoonotic disease emergence, the success rate of actually detecting and identifying a zoonotic pathogen is much higher. A combination of regular serological and virological monitoring of people in frequent contact with bats, or working on live animal markets or farms, can be a valuable tool to assess and quantify the risk of spillover events (Box 1). The use of generic detection methods (such as antibody arrays and metagenomic sequencing) can be used to guide the selection of viruses that should be subjected to further study¹⁵⁴. Importantly, pathogens usually need numerous additional adaptations to move from cross-species transmission to sustained transmission between novel hosts, such as humans. Therefore, most novel viruses that are detected at the human-animal interface do not pose an immediate risk for human outbreaks¹⁵⁵.

One example of a risk population approach is the surveillance of patients presenting with a fever with a history of animal exposure in eastern China. This strategy resulted in the detection of a new *Henipavirus*, Langya henipavirus (LayV). Thirty-five patients with acute LayV were detected and subsequent animal screenings identified shrews as a possible reservoir¹⁵⁶. In this case, the patients with animal contact serve as sentinels: a specific cohort (for example, in a geographic area or population subgroup) that can be monitored to

estimate infectious disease trends in a larger population ¹⁵⁷. A sentinel system can also consist of a selection of healthcare sites that report specific syndromes or pathogens, or strategically placed or selected animals that are monitored regularly. In general, sentinel surveillance is more cost-efficient than population-wide approaches owing to its targeted approach and can generate high-quality data, especially when combined with training and feedback to the sentinel sites and sample providers. Thus, sentinel surveillance can also help correct for gaps in regular surveillance data. Possible selection bias and limited coverage are potential disadvantages of sentinel surveillance systems, as well as the need for committed study sites and continuous support.

To further identify pathways for zoonotic disease spillover, in-depth knowledge of local contexts and cultural habits has been extremely valuable in studying the ecology of novel and existing viruses, and the design of surveillance and risk-targeted interventions. In the case of the emergence of MERS-CoV, knowledge on camel handling and local habits around camel products (such as consumption of raw milk and urine) proved to be indispensable in the understanding of transmission pathways and subsequent control measures¹⁵⁸. The current Mpox outbreaks show that in-depth knowledge of the population at risk and associated risk behaviours, and determinants thereof, are essential in the understanding of disease transmission, as well as when designing appropriate prevention and control measures¹⁵⁹. During the EBOV outbreak in West Africa between 2014 and 2016, social scientists and anthropologists were also successfully involved in outbreak control, and their inclusion led to better knowledge of local practices, improved community engagement and, ultimately, better disease control¹⁶⁰. This success calls for the further inclusion of social sciences in One Health surveillance and research.

Conversely, human infectious disease can also spill-back into animals, which could result in subsequent spread and establishment of an animal reservoir. The circulation of a human pathogenic virus in another host can lead to parallel evolution and accumulation of mutations, which could give rise to new variants with altered properties¹⁶¹. Moreover, animal reservoirs affect the efficacy of human-focused control measures and the chance of viral eradication. However, spill-back events are rarely systematically monitored, even though they could have severe economic and human health consequences¹⁶²⁻¹⁶⁴. One example was the SARS-CoV-2 outbreaks in mink, resulting in mink-adapted viruses that might be less well recognized by the human

Box 1 | The role of genetic monitoring and molecular techniques

Currently, polymerase chain reaction methods are most commonly used to detect genetic material of microorganisms in different matrices of humans, animals and the environment. In addition, next-generation sequencing methods are increasingly implemented. Whole genomes can now be generated with high throughout and at fairly low costs and high speed. The unprecedented number of SARS-CoV-2 sequences produced and shared during the COVID-19 pandemic shows the clear need for and use of whole-genome sequencing for public health surveillance and control¹⁸⁹. Whole-genome sequencing has been used to study the origins of SARS-CoV-2 (ref. 190), to monitor national and international spread of SARS-CoV-2 variants¹⁹¹, to determine introduction and transmission routes in outbreaks (for example, in healthcare facilities¹⁹² and on mink farms¹⁹³) and to distinguish between chronic infections and reinfections¹⁹⁴. Whole-genome sequencing analysis is carried out using phylogenetics, which aims to study the evolutionary history and relationships of pathogen sequences. With more complex phylodynamic and phylogeographic approaches, one can further understand the transmission dynamics of epidemics, by combining evolutionary biology with epidemiology. For example, phylodynamic analyses of the spread of West Nile virus (WNV) in Europe have shown that high coverage of wetlands, intensity of agricultural activities and migratory bird flyways were associated with the WNV spread direction 195. The combination of incidence data, epidemic dynamics models and phylodynamics produces more reliable estimates of transmission rates than epidemiological data alone 196,197. Moreover, specific mutations can be monitored that could affect virus traits, such as antiviral susceptibility 198, vaccine efficacy^{199,200} and mammalian adaptation²⁰¹. These data can be used for public health risk assessments and control measures.

In addition to the targeted sequencing of one pathogen, unbiased metagenomic sequencing can be used to characterize all genomic material (DNA and RNA) in a sample. Furthermore, clinical and environmental samples can be processed with procedures that enrich for bacteria, parasites or viruses, or specific families. The metagenomics research field involves studying and profiling genetic material abundance in diverse matrices and environments, and is rapidly growing. As such, the number of novel viruses that are being discovered and described is increasing²⁰². Considering that most emerging human viruses stem from an animal reservoir, a baseline understanding of the diversity of viruses that can be found in animals is important for preparedness. Although pooled

samples (per species or per location) are certainly of value for virus discovery, analysing viromes and microbiomes of individual animals is necessary for further understanding of virus dynamics and spread in animal reservoirs, including co-infections²⁰³.

Unknown viruses are often classified based on their similarity to known viruses, as the human health risk is considered higher if a new virus belongs to a virus family that also contains known human pathogens. However, all viruses that have been characterized to date likely only make up a minor fraction of the estimated total number of viruses on earth²⁰⁴. Thus, the number of newly identified viruses and possibly also virus families will increase immensely in the coming years. Moreover, the lack of closely related reference virus genomes makes assessment of the phenotype and possible zoonotic potential of novel viruses challenging, when based on genomic information alone²⁰⁴. Even viruses belonging to a known virus family that also includes known human viruses do not necessarily have a risk of spillover to humans. Only for some known viruses can some indications of phenotype or zoonotic risks be derived from the sequence, based on the presence of specific mutations^{200,205}. Also, in silico epitope prediction can sometimes predict B cell epitopes based on sequence data²⁰⁶ as well as possible resistance markers and host binding motifs^{207,208}. However, all such inferences need to be validated with experimental data. When there are indications for a novel virus with zoonotic potential, targeted monitoring in at-risk animal and human populations can supplement in silico and in vitro analyses. Serological and molecular screenings can be executed to understand the prevalence in the possible animal reservoirs^{209,210}. In addition, people in close contact with the possible animal reservoir can serve as sentinels for early detection of spillover events²¹¹.

To be able to make full use of genomic data, the collection and sharing of metadata is paramount for correct interpretation and analysis of the large amount of data that are generated. Metadata, or contextual data, can be subdivided into laboratory (for example, sample type and cycle threshold value), clinical (for example, symptoms), epidemiological (for example, date, place and outbreak type) and methodology (for example, sequencing platform and analysis) information. Although multiple metadata standards exist, these are often not aligned with each other, they require minimal datasets and, even then, poorly described sequence data are submitted²¹². In practice, collecting and sharing metadata can be hampered by practical, ethical and privacy concerns²¹³.

immune system ^{40,165}. Therefore, monitoring of spill-back events is crucial, so control measures can be implemented in a timely manner. This monitoring is particularly important for animals that are in close contact with humans, as well as farmed animals that are kept in large numbers and in close proximity to each other, facilitating large-scale animal-to-animal transmission.

Implications for preparedness: early warning and prevention

One Health surveillance and spillover prevention

One Health surveillance encompasses monitoring activities at the human-animal-environmental interface. A risk-based approach is warranted, based on data collected on local drivers of disease emergence

and spread. National or international monitoring schemes that include such a risk-based approach are very limited ^{166,167}, although some schemes were developed with specific risk populations, locations or timing in mind. Examples are the increased frequency of avian influenza monitoring in free-range poultry as compared with poultry that are kept indoors in the Netherlands ¹⁶⁸, and the targeted surveillance of patients with fever following animal contact in China that led to the detection of LayV ¹⁵⁶. However, with the current body of evidence available, the implementation of such risk-based One Health monitoring schemes seems possible. Collaboration to share challenges, opportunities and best practices will be important when setting up these schemes. This effort will require transforming traditional disease surveillance, by working across silos and

including cost-efficient innovative data streams and agnostic pathogen detection methods.

By setting up multidisciplinary teams, with diversity of knowledge, networks and backgrounds, stronger research teams can be built, with shared improved understanding of viruses at the human-animal interface. This strategy is in agreement with the new One Health definition that was developed by the OHHLEP in 2021, which states: "The approach mobilizes multiple sectors, disciplines and communities at varying levels of society to work together to foster well-being and tackle threats to health and ecosystems. It addresses the collective need for clean water, energy and air, safe and nutritious food, promoting action on climate change, and contributing to sustainable development" 169,170. Indeed, several instruments for international agenda setting, collaboration, and financing pandemic preparedness and response have been set up that include mention of the One Health approach, such as the World Bank Pandemic Fund and the WHO Pandemic Agreement¹⁷¹. However, international concerns have been raised regarding the lack of attention and strategic approach to reduce the risk of spillover events from humans to animals¹⁶³. The currently developed instruments seem to remain anthropogenic in nature, with human health protection as a main goal. Moreover, implementing truly multidisciplinary programmes, policies and research that benefit human, animal and environmental health equally remains a challenge. Including opportunities for critical reflection in One Health approaches is important, in order to assess common goals and objectives, values, impact and collaborations (One Health has been called a silo on its own)¹⁷².

Currently, most funding and efforts are aimed at surveillance and control after a pathogen is already circulating in humans. Oftentimes, medical countermeasures such as vaccines and medication are developed and implemented, sometimes combined with exposure reduction measures such as the use of personal protective equipment, mosquito bed nets and improved biosecurity on farms. When combined with improved One Health surveillance, early warning and risk assessment, these measures can be implemented in an earlier stage of the outbreak, reducing socio-economic and health impacts. Beyond disease outbreaks, reducing the frequency and intensity of interspecies contacts at different ecotones (transitional areas between different ecosystems) would also reduce the number of spillover events. Particularly in predicted hotspot locations, the frequency and intensity of interspecies contacts can be reduced; for example, by personal hygiene measures, use of personal protective equipment, biosecurity approaches, and smart city and landscape design. In addition, interventions can target underlying ecological drivers and risk factors, an approach known as primary prevention (Box 2). Ultimately, true primary prevention should target known drivers of disease emergence, such as deforestation, carbon emission (causing global warming), wildlife trade and large-scale landscape transformations for agriculture. However, intervening at the level of drivers is a long-term challenging process, with many interests and actors involved, and is not likely to generate risk reduction in the short term.

Barriers

Human behaviour is key in infectious disease prevention and control; the uptake of preventive measures is shaped and determined by underlying determinants of behaviour. It has proven extremely difficult to accomplish good levels of adherence to infectious disease preventive measures, especially in the absence of disease. For example, although horse vaccination is an effective and well-known intervention to prevent Hendra virus infections in horses as well as humans (Box 2),

the estimated vaccine uptake in the risk areas of Australia is only around $12\%^{173}$. In addition, an analysis of questionnaires distributed amongst horse owners that live close to previous Hendra cases indicated that the majority of horse owners did not implement preventive measures, such as coverage of food containers or water, or keeping horses off pasture when flying foxes are active. Reasons for the limited uptake of preventative measures were practicalities (for example, costs and daily routines), risk perception and lack of appropriate guidance from the local veterinarian 174 .

Studies of the barriers to and facilitators of the uptake of mitigation measures can help better implement and communicate such measures and improve adherence. Individual variables influence the practical implementation and adoption of mitigation measures, as well as organizational and systemic factors. In the case of the fur farming bans introduced in some countries following SARS-CoV-2 outbreaks (Box 2), political priorities in other countries have favoured economic interests and cultural traditions of mink and fox farming and fur wearing over public health and animal welfare. Similarly, the implementation of One Health surveillance and preventive measures to prevent spillovers between humans and animals is not only a technical challenge but is also largely dependent on local political will, funding and existing infrastructure. Especially in LMICs, where many predicted hot spots for emerging viruses are located, primary prevention and extensive One Health surveillance are generally not a key priority.

Costs of integrated surveillance and prevention

A key question is whether investing in improved One Health surveillance is worth the cost. Spillovers that result in a pandemic are extremely costly. The COVID-19 pandemic had a massive impact, with an estimated 4.4% decrease in the global economy. The total economic losses of the pandemic were estimated at nearly US \$14 trillion (2020–2024)¹⁷⁵. Estimations for the costs of future pandemics range from US 30.1×10^9 to US \$500 × 10⁹ per year 176,177. However, increased preparedness and One Health surveillance also comes with associated costs. For example, a combination of measures that would reduce the worldwide wild meat trade, deforestation and spillovers from livestock, combined with improved monitoring, was estimated at US $22 \times 10^9 - 31 \times 10^9$. This combination of measures was aimed at significantly decreasing disease emergence at the human-animal interface. On the other hand, reduced deforestation could generate US \$4 × 10⁹ per year in societal benefits from reduced greenhouse gas emissions, as well as reduced regional warming and biodiversity loss 178-180. Also, pre-pandemic studies modelled that globally coordinated adaptation strategies for pandemic prevention can significantly and cost-effectively reduce the economic and human health burdens of novel outbreaks¹⁸¹.

Despite such estimates, evidence for the economic benefits of a One Health approach is scarce, as well as cost–benefit analyses of current practices that could alter pandemic risk (such as wildlife trade, land-use changes and more) that take effects on biodiversity, health and climate into account. However, a recent literature review of cost–benefit analyses of a One Health approach to prevention found clear examples of positive cost–benefit ratios, but concluded that it is difficult to provide a global assessment, as these studies are highly dependent on social, cultural, economic, political and ecological contexts and need to be assessed in various settings¹⁴. Nevertheless, financing the necessary actions remains a challenge, especially in LMICs. As a possible step forward, the Independent Panel for Pandemic Preparedness and Response already advised to design and implement a burden-sharing formula, to share the costs of global pandemic

Box 2 | Examples of 'true prevention' — case studies of spillover prevention at the source

Preventing Henipavirus spillover from bats to humans

Hendra virus is a member of the genus Henipavirus of the family Paramyxoviridae, subfamily Orthoparamyxovirinae. Hendra virus was first discovered in 1994 and infects horses as well as humans (via infected horses) after spillover from Pteropus spp. of bats (flying foxes)214,215. A study in subtropical eastern Australia described a shift in lifestyle of flying foxes from nomadic, driven by availability of nectar from flowering trees, to year-round roosting in smaller groups closer to alternative food sources in urban gardens and agricultural areas. The changes were likely driven by the loss of winter foraging habitats²¹⁶. According to this study, an increase in spillover events was further driven by increased virus shedding following food shortages due to the periodic absence of winter flowering 216,217. Taking into account virus epidemiology and risk factors, one approach to limit or prevent spillover events in horses is to restrict their access to trees that are frequented by bats and to refrain from placing feed and water containers under trees, especially during the flowering and fruiting seasons. This intervention would also reduce the risk of infection of humans, as so far all patients were infected following contact with an infected horse²¹⁵. In addition, there is a licensed Hendra vaccine available for horses. In subtropical eastern Australia, the loss of winter foraging forest seems to be a major underlying driver of bat virus spillover events. Therefore, restoration of those habitats, providing sufficient nectar for flying foxes, is expected to reduce spillover events. This effect could also hold true in other regions and for other bat-borne viruses.

Banning fur farming

According to most estimates, approximately 100 million animals per year, mainly mink, foxes and raccoon dogs, are bred for fur²¹⁸. In recent years, multiple outbreaks with human-relevant viruses have been described in these animals, including SARS²¹⁹, SARS-CoV-2 (ref. 220) and highly pathogenic avian influenza (HPAI) H5N1 (ref. 221). Up to 50% of animal workers on SARS-CoV-2-infected mink farms were also infected with variants derived from their mink¹⁹³. Moreover, spill-back infections from humans can lead to adaptation to the animal reservoir, which is particularly relevant for avian influenza viruses, as adaptation to mammals increases the risks of subsequent human infections and human-to-human transmission³⁹. A 2024 study showed that a range of other zoonotic and novel viruses could be found in fur animals in China²²². Moreover, the open set-up of fur farms permits

regular contact with wildlife, increasing risks of spillover to and from wildlife around fur farms 37,222 . National and international organizations recommend increased surveillance of avian influenza virus and SARS-CoV-2, as well as the use of personal protective equipment for animal workers 223,224 . However, surveillance does not cover viruses other than SARS-CoV-2 and avian influenza virus, and the intensity differs per country. Due to the SARS-CoV-2 outbreak in mink that could not be controlled, the Netherlands banned fur farming in 2021-3 years earlier than originally planned. Also, some other European countries banned fur farming, for animal welfare as well as public health reasons. This ban completely eliminates the chance of novel and known virus outbreaks and adaptation in fur animals, as well as associated risks of spillover events to wildlife and humans.

Ecological countermeasures to control mosquitoes

Mosquito species Aedes aegypti and Aedes Albopictus are the main vectors for the mosquito-borne pathogens: dengue virus (DENV), chikungunya virus (CHIKV), zika virus and yellow fever virus (YFV). The effects of climate change, and worldwide increased travel and trade, are expected to result in an extended geographical range of A. aegypti and A. Albopictus, as well as associated viruses³⁰. For many Aedes-transmitted viruses, prevention and treatment options are limited — although novel vaccines against DENV and CHIKV have been developed recently, in addition to the long available YFV vaccine^{225,226}. Therefore, vector control has historically been the key control measure, which mainly includes breeding site removal and use of larvicides and insecticides, combined with avoidance of mosquito bites. However, prevention of mosquito breeding can also start at the level of urban planning. Examples are the installation of a constant water supply to reduce the need for water storage containers, improved solid waste management and designing houses that prevent adult mosquitoes from entering^{24,227}. Careful design of urban environments is especially relevant in the context of urban blueing and greening strategies. A notable example was the enormous mosquito nuisance in new plant-covered residential towers in Chengdu, China²²⁸. Moreover, adding mosquito predators to possible breeding sites such as rice fields or ponds has been attempted, although this approach was not always successful²²⁹. In addition, permanent water bodies that are linked to well-established ecosystems, including mosquito predators, reduce the number of Culex pipiens larvae and adult mosquitoes²³⁰.

preparedness activities and goods, acknowledging mutual dependency and responsibility¹⁸². In addition, the new WHO Pandemic Agreement specifically mentions that countries should provide "financial assistance and support for capacity-strengthening for those Parties that lack the means and resources to implement the provisions of the WHO Pandemic Agreement"¹⁷¹. The Pandemic Fund, established by the World Bank in 2022, could have an important role in this assistance, as it is set up to fund critical pandemic prevention, preparedness and response capacities of LMICs.

Conclusions

In the coming decades, the question is not whether new spillover events will occur, but when, where and how often. However, we can learn from

the past decades to prepare for improved and risk-targeted early warning detection of any emerging virus, thereby increasing chances for successful control of outbreaks. Innovative methods for data collection and surveillance can aid in understanding all components of the One Health triad that could affect spillover events and disease emergence. Moreover, many drivers are anthropogenic by nature, which also poses opportunities to adapt our current behaviours and their effects on the health of humans, animals and our environment, thus preventing novel pandemics. The complicated interplay of different drivers varies between regions, which makes local partnerships and tailored priority setting essential.

Primary prevention of zoonotic spillovers requires addressing the upstream drivers that facilitate pathogen transmission between

animals and humans. Risk-based One Health surveillance plays a critical part in this effort by furthering our understanding of spillover pathways and identifying where the spillover risk is highest. By integrating data across human, animal and environmental health sectors, this approach enables the detection of high-risk interfaces (such as wildlife trade routes, deforestation zones or areas of intensive livestock production) before transmission occurs. These insights enable the design of targeted interventions (such as habitat preservation, improved biosecurity or community engagement) that reduce contact between humans and potential animal reservoirs. In this way, surveillance is not merely reactive but becomes a foundational tool for guiding proactive, evidence-based prevention strategies that can stop pandemics before they start (Box 2).

Global One Health and pandemic preparedness are shared responsibilities requiring collaborative efforts. In the current political climate, with severe budget cuts and lack of support for the WHO and national and international funding mechanisms for infectious disease control, international aid and infectious disease research, these efforts might be increasingly difficult. However, the accelerating series of outbreaks reinforce the need to find and implement global strategies that enable us to co-habit with all other organisms on earth.

Published online: 03 October 2025

References

- 1. Adepoju, P. Mpox declared a public health emergency. Lancet 404, e1-e2 (2024).
- Lawrence, O. G., Ashish, K. J. & Alexandra, F. The Mpox global health emergency a time for solidarity and equity. N. Engl. J. Med. 391, 1265–1267 (2024).
- Taylor, L. PAHO: Americas report record dengue and Oropouche cases. BMJ 387, q2808 (2024).
- Caserta, L. C. et al. Spillover of highly pathogenic avian influenza H5N1 virus to dairy cattle. Nature 634, 669–676 (2024).
 - This study reports the unprecedented spillover and cow-to-cow transmission of HPAI H5N1 in US dairy cattle, highlighting a critical shift in the host range of
- Banyard, A. C. et al. Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic region. Nat. Commun. 15, 7433 (2024).
- Authority, E. F. S. et al. Avian influenza overview December 2024–March 2025. EFSA J. 23, e9352 (2025).
- Krammer, F. & Schultz-Cherry, S. We need to keep an eye on avian influenza. Nat. Rev. Immunol. 23, 267–268 (2023).
- Sah, R. et al. Concerns on H5N1 avian influenza given the outbreak in U.S. dairy cattle. Lancet Reg. Health Am. 35, 100785 (2024).
- 9. Kuiken, T., Fouchier, R. A. M. & Koopmans, M. P. G. Being ready for the next influenza pandemic? *Lancet Infect. Dis.* **23**, 398–399 (2023).
- Adisasmito, W. B. et al. One Health: a new definition for a sustainable and healthy future. PLoS Pathog. 18, e1010537 (2022).
 - In this paper the OHHLEP presents an updated definition of One Health, which is now widely adopted.
- Machalaba, C. M. & Karesh, W. B. Emerging infectious disease risk: shared drivers with environmental change. Rev. Sci. Tech. 36, 435–444 (2017).
- Engering, A., Hogerwerf, L. & Slingenbergh, J. Pathogen-host-environment interplay and disease emergence. Emerg. Microbes Infect. 2, 1-7 (2013).
- Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).
- European Commission: Group of Chief Scientific Advisors and Directorate-General for Research and Innovation. One Health Governance in the European Union (Publications Office of the European Union, 2024).
- Mora, C. et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat. Clim. Change 12, 869–875 (2022).
 - This study presents a systematic review of peer reviewed publications that study the effects of climate change on infectious diseases that impact humans.
- IPCC Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
- Carlson, C. J. et al. Climate change increases cross-species viral transmission risk. Nature 607, 555–562 (2022).
- This review highlights that climate change impacts interactions and spillover events not only at the human-animal interface but also between animal species.
- Greenville, A. C., Wardle, G. M. & Dickman, C. R. Extreme climatic events drive mammal irruptions: regression analysis of 100-year trends in desert rainfall and temperature. *Ecol. Evol.* 2, 2645–2658 (2012).

- Rushing, C. S., Royle, J. A., Ziolkowski, D. J. & Pardieck, K. L. Migratory behavior and winter geography drive differential range shifts of eastern birds in response to recent climate change. Proc. Natl Acad. Sci. USA 117, 12897–12903 (2020).
- Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).
- Musmanni, G. D. The delta blues: why climate change adaptation is crucial in the world's deltas. Global Centre of Adaptation https://gca.org/the-delta-blues-why-climate-changeadaptation-is-crucial-in-the-worlds-deltas/ (2022).
- 22. European Environment Agency. Urban Adaptation in Europe: What Works? (EEA, 2024).
- Geneletti, D. & Zardo, L. Ecosystem-based adaptation in cities: an analysis of European urban climate adaptation plans. Land Use Policy 50, 38–47 (2016).
- Lindsay, S. W., Wilson, A., Golding, N., Scott, T. W. & Takken, W. Improving the built environment in urban areas to control Aedes aegypti-borne diseases. Bull. World Health Organ. 95, 607–608 (2017).
- Rocklöv, J. et al. Decision-support tools to build climate resilience against emerging infectious diseases in Europe and beyond. Lancet Reg. Health Eur. 32, 100701 (2023).
- de Cock, M. P., Esser, H. J., van der Poel, W. H. M., Sprong, H. & Maas, M. Higher rat abundance in greener urban areas. *Urban Ecosystems* 27, 1389–1401 (2024).
- Traweger, D., Travnitzky, R., Moser, C., Walzer, C. & Bernatzky, G. Habitat preferences and distribution of the brown rat (*Rattus norvegicus* Berk.) in the city of Salzburg (Austria): implications for an urban rat management. *J. Pest. Sci.* 79, 113–125 (2006).
- de Cock, M. P. et al. Increased rat-borne zoonotic disease hazard in greener urban areas. Sci. Total. Environ. 896, 165069 (2023).
- Kibret, S., McCartney, M., Lautze, J., Nhamo, L. & Yan, G. The impact of large and small dams on malaria transmission in four basins in Africa. Sci. Rep. 11, 13355 (2021).
- de Souza, W. M. & Weaver, S. C. Effects of climate change and human activities on vector-borne diseases. Nat. Rev. Microbiol. 22, 476–491 (2024).
- Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M. & LaBeaud, A. D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health 4, e416–e423 (2020).

This study shows how climate change may have different effects across regions, vectors and pathogens.

- FAOSTAT. Land Use Statistics and Indicators 2000–2021. Global, Regional and Country Trends Analytical Brief 71 (FAO, 2023).
- Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).
- Livestock, Environment and Development Initiative. Livestock's Long Shadow: Environmental Issues and Options (LEAD & FAO, 2006).
- Greenspoon, L. et al. The global biomass of wild mammals. Proc. Natl Acad. Sci. USA 120, e2204892120 (2023).
- Wegner, G. I. et al. Averting wildlife-borne infectious disease epidemics requires a focus
 on socio-ecological drivers and a redesign of the global food system. eClinicalMedicine
 47. 101386 (2022).
- Sikkema, R. S. et al. Risks of SARS-CoV-2 transmission between free-ranging animals and captive mink in the Netherlands. *Transbound. Emerg. Dis.* 69, 3339–3349 (2022).
- 38. Isabella, M. et al. Emergence of a highly pathogenic avian influenza virus from a low-pathogenic progenitor. *J. Virol.* **88**, 4375–4388 (2014).
- Agüero, M. et al. Highly pathogenic avian influenza A (H5N1) virus infection in farmed minks, Spain, October 2022. Eurosurveillance 28, 2300001 (2023).
- Domańska-Blicharz, K. et al. Cryptic SARS-CoV-2 lineage identified on two mink farms as a possible result of long-term undetected circulation in an unknown animal reservoir, Poland, November 2022 to January 2023. Eurosurveillance 28, 2300188 (2023).
- 41. Pendrill, F. et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science **377**, eabm9267 (2022).
- 42. Faust, C. L. et al. Pathogen spillover during land conversion. Ecol. Lett. 21, 471–483 (2018).
- Walsh, M. G., Mor, S. M., Maity, H. & Hossain, S. Forest loss shapes the landscape suitability
 of Kyasanur Forest disease in the biodiversity hotspots of the Western Ghats, India. *Int. J. Epidemiol.* 48, 1804–1814 (2019).
- Green, J., Schmidt-Burbach, J. & Elwin, A. Taking stock of wildlife farming: a global perspective. Glob. Ecol. Conserv. 43, e02452 (2023).
- Biao, K. et al. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J. Virol. 79, 11892–11900 (2005).
- Nelson, M. I. et al. Global migration of influenza A viruses in swine. Nat. Commun. 6, 1–11 (2015)
- Brown, V. R. et al. Risks of introduction and economic consequences associated with African swine fever, classical swine fever and foot-and-mouth disease: a review of the literature. Transbound. Emerg. Dis. 68, 1910–1965 (2021).
- Moyen, N. et al. Avian influenza transmission risk along live poultry trading networks in Bangladesh. Sci. Rep. 11, 19962 (2021).
- Lankau, E. W. et al. Prevention and control of rabies in an age of global travel: a review of travel- and trade-associated rabies events—US, 1986–2012. Zoonoses Public. Health 61, 305–316 (2014).
- Worobey, M. et al. The Huanan market was the early epicenter of SARS-CoV-2 emergence. Science 377, 951–959 (2022).
- Aguirre, A. A., Catherina, R., Frye, H. & Shelley, L. Illicit wildlife trade, wet markets, and COVID-19: preventing future pandemics. World Med. Health Policy 12, 256–265 (2020).
- Zhou, P. et al. Avian influenza A (H7N9) virus and mixed live poultry-animal markets in Guangdong province: a perfect storm in the making? Emerg. Microbes Infect. 4, 1-3 (2015).

- Milbank, C. & Vira, B. Wildmeat consumption and zoonotic spillover: contextualising disease emergence and policy responses. Lancet Planet. Health 6, e439–e448 (2022).
- Xia, W., Hughes, J., Robertson, D. & Jiang, X. How one pandemic led to another: was African swine fever virus (ASFV) the disruption contributing to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emergence? Preprint at Preprints.org https://doi.org/10.20944/ preprints202102.0590.v2 (2022).
- Lytras, S., Xia, W., Hughes, J., Jiang, X. & Robertson, D. L. The animal origin of SARS-CoV-2. Science 373, 968–970 (2021).
- Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 159, 1974–1983 (2011).
- Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).
 - This review describes and analyses the effects of urbanization on the evolution of microorganisms, plants and animals, and how this affects interactions with humans
- Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. *Trends Ecol. Evolution* 22, 95-102 (2007).
 Egan, S., Barbosa, A. D., Feng, Y., Xiao, L. & Ryan, U. Critters and contamination: zoonotic
- protozoans in urban rodents and water quality. *Water Res.* **251**, 121165 (2024).
 60. Akhtardanesh, B. et al. Survey of common infectious diseases in urban foxes (*Vulpes* spp.)
- Akhtardanesh, B. et al. Survey of common infectious diseases in urban foxes (Vulpes spp.) in southeastern Iran. J. Wildl. Dis. 60, 77–85 (2024).
- Naderi, S. et al. Zooanthroponotic transmission of SARS-CoV-2 and host-specific viral mutations revealed by genome-wide phylogenetic analysis. eLife 12, e83685 (2023).
- Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398-402 (2020).
- 63. United Nations Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision (United Nations, 2018).
- Seto, K. C., Sánchez-Rodríguez, R. & Fragkias, M. The new geography of contemporary urbanization and the environment. *Annu. Rev. Environ. Resour.* 35, 167–194 (2010).
- Schneider, A., Friedl, M. A. & Potere, D. A new map of global urban extent from MODIS satellite data. *Environ. Res. Lett.* 4, 044003 (2009).
- United Nations Human Settlements Programme. World Cities Report 2022: Envisaging the Future of Cities (UN Habitat. 2022).
- Coltart, C. E. M., Lindsey, B., Ghinai, I., Johnson, A. M. & Heymann, D. L. The Ebola outbreak, 2013–2016: old lessons for new epidemics. *Philos. Trans. R. Soc. B: Biol. Sci.* 372, 20160297 (2017)
- Dellicour, S. et al. Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak. Nat. Commun. 9, 2222 (2018).
- Dudas, G. et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 544, 309–315 (2017).
- World Health Organization & United Nations Human Settlements Programme. Hidden Cities: Unmasking and Overcoming Health Inequities in Urban Settings (WHO & UN Habitat, 2010).
- Levin, A. T. et al. Assessing the burden of COVID-19 in developing countries: systematic review, meta-analysis and public policy implications. BMJ Glob. Health 7, e008477 (2022).
- Wachtler, B. et al. Socioeconomic inequalities and COVID-19—a review of the current international literature. J. Health Monit. 5, 3–17 (2020).
- Parolin, Z. & Lee, E. K. The role of poverty and racial discrimination in exacerbating the health consequences of COVID-19. Lancet Reg. Health Am. 7, 100178 (2022).
- 74. Van Damme, P. et al. Hepatitis A virus infection. Nat. Rev. Dis. Primers 9, 51 (2023)
- Boussaa, S., Pesson, B. & Boumezzough, A. Phlebotomine sandflies (Diptera: Psychodidae) of Marrakech city, Morocco. Ann. Tropical Med. Parasitol. 101, 715–724 (2007).
- Kabaria, C. W., Gilbert, M., Noor, A. M., Snow, R. W. & Linard, C. The impact of urbanization and population density on childhood *Plasmodium falciparum* parasite prevalence rates in Africa. *Malar. J.* 16, 1–10 (2017).
- Giles, J. R. et al. The duration of travel impacts the spatial dynamics of infectious diseases. Proc. Natl Acad. Sci. USA 117, 22572–22579 (2020).
- Liu, K. et al. Population movement, city closure in Wuhan, and geographical expansion of the COVID-19 infection in China in January 2020. Clin. Infect. Dis. 71, 2045–2051 (2020).
- Volz, E. et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell 184, 64–75.e11 (2021).
- Castelli, F. & Sulis, G. Migration and infectious diseases. Clin. Microbiol. Infect. 23, 283–289 (2017).
- World Health Organization. SARS outbreak contained worldwide. WHO https://www.who. int/news/item/05-07-2003-sars-outbreak-contained-worldwide (2003).
- Bell, D. M. & World Health Organization Working Group on International and Community Transmission of SARS. Public health interventions and SARS spread, 2003. Emerg. Infect. Dis. 10, 1900–1906 (2004).
- Stegeman, A. et al. Avian influenza A virus (H7N7) epidemic in the Netherlands in 2003: course of the epidemic and effectiveness of control measures. J. Infect. Dis. 190, 2088–2095 (2004)
- World Health Organization. Strengthening Health Emergency Prevention, Preparedness, Response and Resilience (HEPR & WHO, 2023).
- Singer, B. J. et al. Development of prediction models to identify hotspots of schistosomiasis in endemic regions to guide mass drug administration. Proc. Natl Acad. Sci. USA 121, e2315463120 (2024)
- Kasbergen, L. M. R. et al. Multi-antigen serology and a diagnostic algorithm for the detection of arbovirus infections as novel tools for arbovirus preparedness in southeast Europe (MERMAIDS-ARBO): a prospective observational study. *Lancet Infect. Dis.* 25, 678–689 (2025).

- Sigfrid, L. et al. Prevalence, clinical management, and outcomes of adults hospitalised with endemic arbovirus illness in southeast Europe (MERMAIDS-ARBO): a prospective observational study. *Lancet Infect. Dis.* 25, 690–700 (2025).
- Schmidt, T. L. et al. Incursion pathways of the Asian tiger mosquito (Aedes albopictus) into Australia contrast sharply with those of the yellow fever mosquito (Aedes aegypti). Pest. Manag. Sci. 76, 4202–4209 (2020).
- Oliveira, S., Rocha, J., Sousa, C. A. & Capinha, C. Wide and increasing suitability for Aedes albopictus in Europe is congruent across distribution models. Sci. Rep. 11, 9916 (2021).
- Nakase, T., Giovanetti, M., Obolski, U. & Lourenço, J. Global transmission suitability maps for dengue virus transmitted by Aedes aegypti from 1981 to 2019. Sci Data 10, 275 (2023).
- Dagostin, F. et al. Ecological and environmental factors affecting the risk of tick-borne encephalitis in Europe. 2017 to 2021. Euro. Surveill. 28, 2300121 (2023).
- 92. Farooq, Z. et al. European projections of West Nile virus transmission under climate change scenarios. One Health 16, 100509 (2023).
- 93. Romero-Alvarez, D., Escobar, L. E., Auguste, A. J., Del Valle, S. Y. & Manore, C. A. Transmission risk of Oropouche fever across the Americas. *Infect. Dis. Poverty* 12, 47 (2023).
- Kjær, L. J. et al. Potential drivers of human tick-borne encephalitis in the Örebro region of Sweden, 2010–2021. Sci. Rep. 13, 7685 (2023).
- Chemison, A., Ramstein, G., Jones, A., Morse, A. & Caminade, C. Ability of a dynamical climate sensitive disease model to reproduce historical Rift valley fever outbreaks over Africa. Sci. Rep. 14, 3904 (2024).
- Nabi, G. et al. Bats and birds as viral reservoirs: a physiological and ecological perspective. Sci. Total. Env. 754, 142372 (2021).
- Guth, S. et al. Bats host the most virulent—but not the most dangerous—zoonotic viruses. Proc. Natl Acad. Sci. USA 119, e2113628119 (2022).
- Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders
 of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020).
 This study proposes a host-neutral explanation for differences in the number of zoonotic
 pathogens among animal groups.
- Ribeiro, R. et al. Incorporating environmental heterogeneity and observation effort to predict host distribution and viral spillover from a bat reservoir. Proc. Biol. Sci. 290, 20231739 (2023).
- Beyer, R. M., Manica, A. & Mora, C. Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Sci. Total. Env. 767, 145413 (2021).
- Forero-Muñoz, N. R. et al. The coevolutionary mosaic of bat betacoronavirus emergence risk. Virus Evol. 10, vead079 (2024).
 - This study shows that predicted virus hot spots based on the combined presence and richness of bat species may not be correct when they are compared with coronavirus co-evolution patterns.
- Warmuth, V. M., Metzler, D. & Zamora-Gutierrez, V. Human disturbance increases coronavirus prevalence in bats. Sci. Adv. 9, eadd0688 (2023).
- Rulli, M. C., D'Odorico, P., Galli, N. & Hayman, D. T. S. Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nat. Food 2, 409–416 (2021).
- Nyakarahuka, L. et al. Ecological niche modeling for filoviruses: a risk map for Ebola and marburg virus disease outbreaks in Uganda. PLoS Curr. https://doi.org/10.1371/currents. outbreaks.07992a87522e1f229c7cb023270a2af1 (2017).
- Muylaert, R. L. et al. Using drivers and transmission pathways to identify SARS-like coronavirus spillover risk hotspots. Nat. Commun. 14, 6854 (2023).
- 106. Sánchez, C. A. et al. A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia. Nat. Commun. 13, 4380 (2022).
- Horigan, V. et al. Assessing the quality of data for drivers of disease emergence. Sci. Tech. Rev. 42, 90-102 (2023).
- 108. Si, Y., Xin, Q., Prins, H. H. T., de Boer, W. F. & Gong, P. Improving the quantification of waterfowl migration with remote sensing and bird tracking. Sci. Bull. 60, 1984–1993 (2015).
- Johnson, E. et al. Applications and advances in acoustic monitoring for infectious disease epidemiology. Trends Parasitol. 39, 386–399 (2023).
 - This study highlights the promise of integrating ecological methodologies in infectious disease research.
- González-Pérez, M. I. et al. Field evaluation of an automated mosquito surveillance system which classifies Aedes and Culex mosquitoes by genus and sex. Parasites Vectors 17, 97 (2024).
- 111. Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).
- Park, H.-A., Jung, H., On, J., Park, S. K. & Kang, H. Digital epidemiology: use of digital data collected for non-epidemiological purposes in epidemiological studies. *Healthc. Inform.* Res. 24, 253–262 (2018).
- 13. Dugas, A. F. et al. Influenza forecasting with Google Flu trends. PLoS ONE 8, e56176 (2013).
- Rocklöv, J. et al. Using big data to monitor the introduction and spread of Chikungunya, Europe, 2017. Emerg. Infect. Dis. 25, 1041 (2019).
- Wu, J. et al. Mobile health technology combats COVID-19 in China. J. Infect. 82, 159–198 (2021).
- Brownstein, J. S., Rader, B., Astley, C. M. & Tian, H. Advances in artificial intelligence for infectious-disease surveillance. N. Engl. J. Med. 388, 1597–1607 (2023).
- Maganga, G. D. et al. Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon. Sci. Rep. 10, 1–13 (2020).

- Bai, R. et al. Exploring utility of genomic epidemiology to trace origins of highly pathogenic influenza A/H7N9 in Guangdong. Virus Evol. 6, veaa097 (2020).
- Atama, N. C. et al. Evaluation of the use of alternative sample types for mosquito-borne flavivirus surveillance: using Usutu virus as a model. One Health 15, 100456 (2022).
- Hotta, K. et al. Antibody survey on avian influenza viruses using egg yolks of ducks in Hanoi between 2010 and 2012. Vet. Microbiol. 166, 179–183 (2013).
- de Rooij, M. M. T. et al. Occupational and environmental exposure to SARS-CoV-2 in and around infected mink farms. Occup. Env. Med. 78, 893–899 (2021).
- Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019).
- Nieuwenhuijse, D. F. et al. Setting a baseline for global urban virome surveillance in sewage. Sci. Rep. 10, 13748 (2020).
 - This study shows the potential of environmental samples that may benefit pandemic preparedness.
- Lu, J. et al. Capturing noroviruses circulating in the population: sewage surveillance in Guangdong, China (2013–2018). Water Res. 196, 116990 (2021).
- Tisza, M. et al. Wastewater sequencing reveals community and variant dynamics of the collective human virome. Nat. Commun. 14, 6878 (2023).
- Kutter, J. S. et al. Small quantities of respiratory syncytial virus RNA only in large droplets around infants hospitalized with acute respiratory infections. *Antimicrob. Resist. Infect.* Control. 10. 100 (2021).
- Grayson, S. A., Griffiths, P. S., Perez, M. K. & Piedimonte, G. Detection of airborne respiratory syncytial virus in a pediatric acute care clinic. *Pediatr. Pulmonol.* 52, 684–688 (2017).
- Gaide, N. et al. Viral tropism and detection of clade 2.3.4.4b H5N8 highly pathogenic avian influenza viruses in feathers of ducks and geese. Sci. Rep. 11, 5928 (2021).
- Cheung, P. P. et al. Identifying the species-origin of faecal droppings used for avian influenza virus surveillance in wild-birds. J. Clin. Virol. 46, 90–93 (2009).
- Smith, S. E. et al. Emerging technologies in the study of the virome. Curr. Opin. Virol. 54, 101231 (2022).
- Kwok, K. T. T., Nieuwenhuijse, D. F., Phan, M. V. T. & Koopmans, M. P. G. Virus metagenomics in farm animals: a systematic review. Viruses 12, 107 (2020).
- Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
 - This work presents a key artificial intelligence tool that has transformed timely prediction of pathogen properties.
- Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).
- Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).
- Warren, C. J. & Sawyer, S. L. Identifying animal viruses in humans. Science 379, 982–983 (2023).
- One Health High-Level Expert Panel. Prevention of zoonotic spillover: from relying on response to reducing the risk at source. PLoS Pathog. 19, e1011504 (2023).
 In this work the OHHLEP advocates for primary prevention.
- Fritz, S. et al. Citizen science and the United Nations Sustainable Development Goals. Nat. Sustain. 2, 922–930 (2019).
- Pocock, M. J. O., Tweddle, J. C., Savage, J., Robinson, L. D. & Roy, H. E. The diversity and evolution of ecological and environmental citizen science. PLoS ONE 12, e0172579 (2017).
- Palmer, J. R. B. et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat. Commun. 8, 916 (2017).
- Cohnstaedt, L. W., Ladner, J., Campbell, L. R., Busch, N. & Barrera, R. Determining mosquito distribution from egg data: the role of the citizen scientist. *Am. Biol. Teach.* 78, 317–322 (2016).
- Murindahabi, M. M. et al. Citizen science for monitoring the spatial and temporal dynamics of malaria vectors in relation to environmental risk factors in Ruhuha, Rwanda. Malar. J. 20, 1–18 (2021).
- Kampen, H. et al. Approaches to passive mosquito surveillance in the EU. Parasites Vectors 8, 1–13 (2015).
- Larsen, L. Why citizen scientists are gathering DNA from hundreds of lakes-on the same day. Nature https://www.nature.com/articles/d41586-024-00520-y (2024).
- 144. Poen, M. J. et al. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017. Eurosurveillance 23, 17-00449 (2018).
 145. Münger, E. et al. One Health approach uncovers emergence and dynamics of Usutu and
- West Nile viruses in the Netherlands. Nat. Commun. 16, 7883 (2025).

 This extensive study describes how collaboration between different expertise, as
- well as involvement of citizen science, can lead to important insights in zoonotic virus ecology.

 146. World Health Organizaton. mHealth: New Horizons for Health Through Mobile Technologies
- World Health Organizaton. mHealth: New Horizons for Health Through Mobile Technologies (WHO, 2011).
- Kaarj, K., Akarapipad, P. & Yoon, J.-Y. Simpler, faster, and sensitive Zika virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips. Sci. Rep. 8, 1–11 (2018).
- Geneviève, L. D. et al. Participatory disease surveillance systems: ethical framework.
 J. Med. Internet Res. 21, e12273 (2019).
- Koppeschaar, C. E. et al. Influenzanet: citizens among 10 countries collaborating to monitor influenza in Europe. JMIR Public. Health Surveill. 3, e7429 (2017).
- Elliot, A. J. et al. Self-sampling for community respiratory illness: a new tool for national virological surveillance. Eurosurveillance 20, 21058 (2015).

- 151. Su, X. et al. A novel internet sampling for HIV surveillance: feasibility of self-sampling and preparation of DBS for delivery detection of HIV total nucleic acid and complementarity to sentinel surveillance. BMC Infect. Dis. 23, 509 (2023).
- Karesh, W. B. et al. Ecology of zoonoses: natural and unnatural histories. *Lancet* 380, 1936–1945 (2012).

This key study proposes a framework of disease emergence.

- Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro. Surveill. 25, 2000045 (2020).
- Wille, M., Geoghegan, J. L. & Holmes, E. C. How accurately can we assess zoonotic risk? PLoS Biol. 19, e3001135 (2021).
- 155. Wasik, B. R. et al. Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover? *Philos. Trans. R. Soc. B* 374, 20190017 (2019).
- Zhang, X.-A. et al. A zoonotic Henipavirus in febrile patients in China. N. Engl. J. Med. 387, 470–472 (2022).
 - This study is an example of how a human risk population can serve as the sentinel for novel zoonotic viruses.
- Porta, M. S., Greenland, S., Hernán, M., dos Santos Silva, I. & Last, J. M. A Dictionary of Epidemiology (Oxford Univ. Press, 2014).
- Hui, D. S. et al. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. *Lancet Infect. Dis.* 18, e217–e227 (2018).
- 159. Wang, H., de Paulo, K. J. I. d. A., Gültzow, T., Zimmermann, H. M. L. & Jonas, K. J. Brief report: determinants of potential sexual activity reduction in the face of the mpox epidemic. *Int. J. Behav. Med.* 32, 308–324 (2024).
- Wilkinson, A., Parker, M., Martineau, F. & Leach, M. Engaging 'communities': anthropological insights from the West African Ebola epidemic. *Philos. Trans. R. Soc. B: Biol. Sci.* 372, 20160305 (2017).
- Tan, C. C. S. et al. Transmission of SARS-CoV-2 from humans to animals and potential host adaptation. Nat. Commun. 13, 2988 (2022).
- Koopmans, M. SARS-CoV-2 and the human-animal interface: outbreaks on mink farms. Lancet Infect. Dis. 21, 18–19 (2020).
- Hallmaier-Wacker, L. K., Munster, V. J. & Knauf, S. Disease reservoirs: from conceptual frameworks to applicable criteria. Emerg. Microbes Infect. 6, 1–5 (2017).
- 164. Food and Agriculture Organization, World Organisation for Animal Health & World Health Orgaization. Joint statement on the prioritization of monitoring SARS-CoV-2 infection in wildlife and preventing the formation of animal reservoirs. WHO https://www.who.int/ news/item/07-03-2022-joint-statement-on-the-prioritization-of-monitoring-sars-cov-2infection-in-wildlife-and-preventing-the-formation-of-animal-reservoirs (2022).
- Hoffmann, M. et al. SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization. Cell Rep. 35, 109017 (2021).
- Hayman, D. T. S. et al. Developing One Health surveillance systems. One Health 17, 100617 (2023).
- 167. Bordier, M., Uea-Anuwong, T., Binot, A., Hendrikx, P. & Goutard, F. L. Characteristics of One Health surveillance systems: a systematic literature review. *Preventive Vet. Med.* 181, 104560 (2020).
- 168. Vredenberg, I. et al. Assessing the use of different surveillance components to detect highly pathogenic avian influenza outbreaks in poultry in the Netherlands in low-and high-risk years. Transbound. Emerg. Dis. 2025, 7441785 (2025).
- 169. Errecaborde, K. M. et al. Factors that enable effective One Health collaborations a scoping review of the literature. PLoS ONE 14, e0224660 (2019).
- Sikkema, R. & Koopmans, M. One Health training and research activities in Western Europe. Infect. Ecol. Epidemiol. 6, 33703 (2016).
- 171. World Health Organization. WHO Pandemic Agreement (WHO, 2025).
- This work presents the adoption of the WHO Pandemic Agreement, an important milestone towards coordinated, fair preparation and response to future pandemics.
- 172. Stephen, C. & Berezowski, J. Reflective practice is a prerequisite for One Health development. One Health Outlook **6**, 13 (2024).
- 173. Halpin, K., Graham, K. & Durr, P. A. Sero-monitoring of horses demonstrates the Equivac® HeV Hendra virus vaccine to be highly effective in inducing neutralising antibody titres. Vaccines 9, 731 (2021).
- Manyweathers, J. et al. Risk mitigation of emerging zoonoses: Hendra virus and non-vaccinating horse owners. Transbound. Emerg. Dis. 64, 1898–1911 (2017).
- International Monetary Fund. World Economic Outlook: Countering the Cost-of-living Crisis (IMF, 2022).
- 176. Fan, V. Y., Jamison, D. T. & Summers, L. H. Pandemic risk: how large are the expected losses? Bull. World Health Organ. 96, 129 (2018).
- World Bank. Putting Pandemics Behind Us: Investing in One Health to Reduce Risks of Emerging Infectious Diseases (World Bank, 2022).
- Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).
- This study attempts to quantify the costs and benefits of pandemic preparedness.

 179. Butt, E. W. et al. Amazon deforestation causes strong regional warming. Proc. Natl Acad.
- Sci. USA 120, e2309123120 (2023).
 180. Montanarella, L., Scholes, R. & Brainich, A. The Assessment Report on Land Degradation
- Montanarella, L., Scholes, R. & Brainich, A. The Assessment Report on Land Degradation and Restoration: Summary for Policymakers (IPBES, 2018).
- Pike, J., Bogich, T., Elwood, S., Finnoff, D. C. & Daszak, P. Economic optimization of a global strategy to address the pandemic threat. Proc. Natl Acad. Sci. USA 111, 18519–18523 (2014).
- Sirleaf, E. J. & Clark, H. Report of the Independent Panel for Pandemic Preparedness and Response: making COVID-19 the last pandemic. Lancet 398, 101-103 (2021).

- Sikkema, R. S. et al. Detection of West Nile virus in a common whitethroat (Curruca communis) and Culex mosquitoes in the Netherlands, 2020. Eurosurveillance 25, 2001704 (2020)
- 184. de Saint Lary, C.dB. et al. Assessing West Nile virus (WNV) and Usutu virus (USUV) exposure in bird ringers in the Netherlands: a high-risk group for WNV and USUV infection? One Health 16, 100533 (2023).
- Streng, K. et al. Sentinel chicken surveillance reveals previously undetected circulation of West Nile virus in the Netherlands. Emerg. Microbes Infect. 13, 2406278 (2024).
- 186. Streng, K. et al. Orthoflavivirus surveillance in the Netherlands: insights from a serosurvey in horses & dogs and a questionnaire among horse owners. Zoonoses Public. Health 71, 900–910 (2024).
- Tao, X., Liu, S., Zhu, W. & Rayner, S. Rabies surveillance and control in China over the last twenty years. Biosaf. Health 3, 142–147 (2021).
- Liu, H. et al. Rabies viruses in specific wild fur animals in northern China, 2017–2019.
 Transhound Emerg. Dis. 67, 2307–2312 (2020).
- Oude Munnink, B. B. et al. The next phase of SARS-CoV-2 surveillance: real-time molecular epidemiology. Nat. Med. 27, 1518–1524 (2021).
- Holmes, E. C. et al. The origins of SARS-CoV-2: a critical review. Cell 184, 4848–4856 (2021).
- 191. Alm, E. et al. Geographical and temporal distribution of SARS-CoV-2 clades in the WHO
- European region, January to June 2020. Eurosurveillance 25, 2001410 (2020).

 192. Voeten, H. et al. Unravelling the modes of transmission of SARS-CoV-2 during a nursing home outbreak: looking beyond the church super-spread event. Clin. Infect. Dis. 73,
- S163–S169 (2020).
 193. Lu, L. et al. Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands. *Nat. Commun.* 12, 6802 (2021).
- 194. Mulder, M. et al. Reinfection of severe acute respiratory syndrome coronavirus 2 in an immunocompromised patient: a case report. Clin. Infect. Dis. 73, e2841–e2842 (2021).
- Lu, L. et al. West Nile virus spread in Europe: phylogeographic pattern analysis and key drivers. PLoS Pathog. 20, e1011880 (2024).
 - This work presents an extensive multi-institute phylogenetic analysis of WNV in Europe, identifying possible drivers for spread.
- 196. Attwood, S. W., Hill, S. C., Aanensen, D. M., Connor, T. R. & Pybus, O. G. Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2 pandemic. Nat. Rev. Genet. 23, 547–562 (2022).
- Vaughan, T. G. et al. Estimating epidemic incidence and prevalence from genomic data. Mol. Biol. Evol. 36, 1804–1816 (2019).
- Roosenhoff, R. et al. Influenza A/H3N2 virus infection in immunocompromised ferrets and emergence of antiviral resistance. PLoS ONE 13, e0200849 (2018).
- Bai, R. et al. Antigenic variation of avian influenza A (H5N6) viruses, Guangdong province, China, 2014–2018. Emerg. Infect. Dis. 25, 1932 (2019).
- Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).
- Luca, B. et al. Highly pathogenic avian influenza H5N1 virus infections in wild red foxes (Vulpes vulpes) show neurotropism and adaptive virus mutations. Microbiol. Spectr. 11, e0286722 (2023).
- 202. Simmonds, P. & Aiewsakun, P. Virus classification—where do you draw the line? Arch. Virol. 163, 2037–2046 (2018).
- Wang, J. et al. Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential. Nat. Commun. 14, 4079 (2023).
- Geoghegan, J. L. & Holmes, E. C. Predicting virus emergence amid evolutionary noise. Open. Biol. 7, 170189 (2017).
- Suttie, A. et al. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes. 55, 739–768 (2019).
- Potocnakova, L., Bhide, M. & Pulzova, L. B. An introduction to B-cell epitope mapping and in silico epitope prediction. J. Immunol. Res. 2016, 6760830 (2016).
- Joana, D. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl Acad. Sci. USA 117, 22311–22322 (2020).
- Borkenhagen, L. K., Allen, M. W. & Runstadler, J. A. Influenza virus genotype to phenotype predictions through machine learning: a systematic review: computational prediction of influenza phenotype. *Emerg. Microbes Infect.* 10, 1896–1907 (2021).
- Zhou, L. et al. Retrospective detection and phylogenetic analysis of swine acute diarrhoea syndrome coronavirus in pigs in southern China. *Transbound. Emerg. Dis.* 66, 687–695 (2019).
- Edwards, C. E. et al. Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection. Proc. Natl Acad. Sci. USA 117, 26915–26925 (2020).
- Li, H. et al. Human-animal interactions and bat coronavirus spillover potential among rural residents in southern China. Biosaf. Health 1, 84–90 (2019).
- Schriml, L. M. et al. COVID-19 pandemic reveals the peril of ignoring metadata standards. Sci. Data 7, 188 (2020).
- 213. Chen, Z. et al. Global landscape of SARS-CoV-2 genomic surveillance and data sharing. Nat. Genet. **54**, 499–507 (2022).

- Murray, K. et al. A morbillivirus that caused fatal disease in horses and humans. Science 268, 94-97 (1995).
- Plowright, R. K. et al. Ecological dynamics of emerging bat virus spillover. Proc. R. Soc. B: Biol. Sci. 282, 20142124 (2015).
- Eby, P. et al. Pathogen spillover driven by rapid changes in bat ecology. Nature 613, 340–344 (2023).
 - This work presents an extensive 25-year study of bat virus spillover in Australia, providing a knowledge base for the development of interventions for primary prevention of spillover.
- Becker, D. J., Eby, P., Madden, W., Peel, A. J. & Plowright, R. K. Ecological conditions predict the intensity of Hendra virus excretion over space and time from bat reservoir hosts. Ecol. Lett. 26, 23–36 (2023).
- 218. World Health Organization. SARS-CoV-2 in Animals Used for Fur Farming: GLEWS+ Risk Assessment (FAO, WOAH & WHO, 2021).
- Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).
- 220. Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science **371**, 172–177 (2020).
 - This work is the first report of large-scale spillover and spill-back of SARS-CoV-2 between humans and animals.
- 221. Lindh, E. et al. Highly pathogenic avian influenza A (H5N1) virus infection on multiple fur farms in the South and Central Ostrobothnia regions of Finland, July 2023. *Eurosurveillance* **28**, 2300400 (2023).
- 222. Zhao, J. et al. Farmed fur animals harbour viruses with zoonotic spillover potential. *Nature* **634**, 228–233 (2024).
 - This study shows that farmed fur animals can be a reservoir for novel zoonotic viruses, in addition to known risks of SARS-CoV-2 and avian influenza virus infections and adaptation.
- European Food Safety Authority et al. Drivers for a pandemic due to avian influenza and options for One Health mitigation measures. EFSA J. 22, e8735 (2024).
- European Food Safety Authoity. SARS-CoV-2 in animals: susceptibility of animal species, risk for animal and public health, monitoring, prevention and control. EFSA J. 21, e07822 (2023).
- 225. Halstead, S. B. Three dengue vaccines—what now. N. Engl. J. Med. 390, 464-465 (2024).
- 226. Weber, W. C. et al. The approved live-attenuated Chikungunya virus vaccine (IXCHIQ®) elicits cross-neutralizing antibody breadth extending to multiple arthritogenic alphaviruses similar to the antibody breadth following natural infection. *Vaccines* 12, 893 (2024).
- 227. World Health Organization. Global Vector Control Response 2017-2030 (WHO & TDR, 2017).
- Hickmann, M. Plant-covered residential towers in Chengdu attract mosquitos, repel tenants. The Architect's Newspaper https://www.archpaper.com/2020/09/plant-coveredresidential-towers-chengdu-attract-mosquitos-repel-tenants/ (2020).
- Walshe, D. P., Garner, P., Adeel, A. A., Pyke, G. H. & Burkot, T. R. Larvivorous fish for preventing malaria transmission. Cochrane Database Syst. Rev. 12, CD008090 (2017).
- 230. Willott, E. Restoring nature, without mosquitoes? Restor. Ecol. 12, 147–153 (2004).

Author contributions

The authors contributed equally to all aspects of the article.

Competing interests

The authors declare no competing interests.

Additional information

Peer review information *Nature Reviews Microbiology* thanks Gregory Gray, who co-reviewed with Franciso Guerra; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Related links

European countries banned fur farming: https://www.furfreealliance.com/fur-bans/Reported human infections in the United States: https://www.cdc.gov/bird-flu/situation-summary/index.html

World Bank Pandemic Fund: https://www.thepandemicfund.org/

© Springer Nature Limited 2025