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ABSTRACT

Objective: Coffee is one of the most widely consumed beverages globally and has been linked to
favorable health outcomes. However, its system-wide relationships with human biology and the
underlying mechanisms remain poorly characterized. This study aimed to investigate the
relationship between coffee consumption and continuous glucose monitoring (CGM) metrics and

other biological systems in healthy adults.

Research Design and Methods: In the Human Phenotype Project, 8,666 generally healthy
Israeli adults provided two weeks of real-time dietary logs, from which coffee intake was
estimated. Participants wore CGM devices throughout this period, and multimodal data spanning
11 additional systems (e.g., gut microbiome, serum lipidomics, and body composition) were
collected. We employed machine learning approaches to quantify the extent to which each
system reflected coffee intake. We performed linear regression to identify individual traits

associated with coffee intake, with false discovery rates <0.05 considered significant.

Results: This cross-sectional study identified continuously-monitored glucose regulation and gut
microbial composition as the most reflective systems of coffee intake, with further analyses
revealing favorable glycemic profiles spanning diverse aspects of glucose regulation with
increasing coffee intake, and Clostridium phoceensis (i.e., Lawsonibacter asaccharolyticus) as
the most significant species positively associated with coffee intake. Additionally, coffee intake
was favorably associated with traits across body composition, serum lipidomics, and hepatic,

hematopoietic, and renal systems.

Conclusions: This study found that habitual coffee intake was linked to multifaceted favorable

glucose control captured by CGM and favorable profiles across multiple biological systems,
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providing mechanistic insights that may guide precision nutrition strategies for diabetes

prevention.



1 INTRODUCTION

Coffee is one of the most widely consumed beverages globally, with numerous observational
studies linking its habitual intake to favorable health outcomes, such as a lower risk of type 2
diabetes, liver disease, and all-cause mortality [1, 2]. However, the underlying biological
mechanisms remain incompletely understood [2]. Moreover, prior research has predominantly
focused on isolated disease outcomes [3, 4] or limited biomarker panels [5, 6], thus precluding a
holistic understanding of how habitual coffee intake influences human health.

Phenome-wide association studies (PheWAS) extend the genome-wide association
paradigm by systematically testing an exposure against a broad spectrum of phenotypes [7].
Compared with traditional hypothesis-driven approaches, PheWAS provides a system-level
perspective that better reflects the multidimensional nature of human health, emphasizing overall
homeostatic balance rather than isolated disease outcomes [8]. To date, only two studies have
adopted a PheWAS framework to investigate coffee intake, but their findings were contradictory,
partly due to reliance on weak genetic instruments and assessment in a low-consumption
population [9, 10]. Moreover, both studies focused primarily on low-resolution disease
outcomes, leaving the question of how habitual coffee intake influences human biology at a
high-resolution, system-wide level largely unexplored. Indeed, coffee’s global ubiquity across
cultures [11], habitual consumption patterns (typically consumed daily or not at all) [12], and
rich bioactive compound profile [13] make it an ideal model for investigating how habitual
dietary exposures shape human biology across systems.

To address this gap, we conducted the first high-resolution PheWAS of habitual coffee
intake using data from the Human Phenotype Project (HPP), a deeply phenotyped cohort of

8,666 generally healthy adults. We integrated multimodal data spanning 12 biological systems,



including continuous glucose monitoring (CGM), gut microbiome, serum lipidomics, dual-
energy X-ray Absorptiometry (DXA) scan, liver ultrasound, and home sleep apnea testing,
among others. Leveraging this comprehensive phenotyping, our study provides novel

mechanistic insights into how coffee may affect multiple domains of human biology.

2 METHODS

2.1 Study design and population

HPP is an ongoing, deeply phenotyped, prospective cohort of generally healthy adults
established in Israel [14]. The study design has been previously described in detail [14-16]. In
brief, the primary objective of the HPP is to develop prediction models for and identify
molecular biomarkers of disease onset and progression. To achieve this goal, HPP collected
extensive multimodal data, such as DXA, electrocardiography, liver and carotid ultrasound, and
multi-omics profiles. Participants were also requested to wear a CGM device for two weeks,
while simultaneously logging their dietary intake through a smartphone App. HPP was approved
by the Institutional Review Board of the Weizmann Institute of Science (reference number:
1719-1). Our cross-sectional investigation of the HPP study was approved by the Institutional
Review Board of Tulane University (reference number: 2025-618). All participants signed an
informed consent form at the research site.

The HPP enrolled Israeli adults aged 40 to 70 years who did not have major chronic
diseases (e.g., cardiovascular disease, dementia, or cancer), were not pregnant, had no recent or
chronic antibiotic exposure, and had no recent unexplained weight loss (Supplementary Figure
1). Our study included 10,434 Israeli participants enrolled in HPP between December 2018 and

December 2022. To improve the representativeness of participants’ habitual dietary intake, we



excluded those with less than 7 days of valid dietary intake logging. Logging of energy intake
<500 or >4000 kcal was considered invalid. Additionally, we excluded participants with self-
reported physician-diagnosed diabetes to eliminate the impact of antidiabetic medications on
CGM metrics. Finally, to mitigate the impact of extreme values on the phenome-wide
associations of coffee intake, we excluded participants reporting coffee intake greater than 99%
of daily coffee intake at the population level. A total of 8,666 participants were retained as our
analytic sample.
2.2 Assessment of coffee intake
Participants were instructed to record their dietary intake in real time over the two weeks of
wearing CGM using a bespoke smartphone app (“Project 10K app™). The app's food composition
database was built on the Israeli Ministry of Health database and expanded with additional
certified food items to include over 7,000 items. The app allows participants to record food items
along with their weights or portion sizes and submit those entries to their profile, and has
supported multiple studies [17-19]. The dietary data have been found to be correlated with diet-
related serum metabolites, which offers an objective validation [20]. For each participant, we
calculated average daily coffee intake (g/d) using all valid dietary logging days.
2.3 Assessment of biological systems
We grouped most measures into 12 categories representing major biological systems (Figure 1).
All measures in each system, along with the number of non-missing values, are presented in
Supplementary Tables 1.

Glucose regulation was phenotyped using the FreeStyle Libre Pro Flash continuous
glucose monitoring (CGM) system (Abbott), worn for 14 consecutive days, with interstitial

glucose readings recorded every 15 minutes. Based on the raw CGM data, we computed 49



CGM metrics capturing diverse dimensions of glycemic patterns, including general glucose,
euglycemia, hyperglycemia, hypoglycemia, variability, and composite measures and risk scores,
using the R package iglu [21, 22]. Given the substantial intrapersonal variability in fasting
glucose revealed by a recent study [23], we computed the mean fasting glucose and its standard
deviation (SD) as previously reported [23], and derived the coefficient of variation (CV) as
SD/mean x 100% [23].

Fecal sample collection, DNA extraction, library preparation, and metagenome
sequencing were conducted as previously described [24]. Taxonomic profiling was conducted
using MetaPhlAn v4.0.6. We calculated a-diversity as species richness and Shannon index) and
assessed S-diversity with Bray-Curtis distance using R package vegen. We obtained the first two
axes by performing principal coordinate analysis (PCoA) based on the Bray-Curtis dissimilarity
matrix. We excluded species with an average relative abundance of <0.01% or present in <10%
of samples, yielding 311 prevalent taxa. Finally, we performed centered log-ratio (CLR)
transformation on the taxonomic data for downstream analyses.

Body composition was evaluated by whole-body dual-energy X-ray absorptiometry
(DXA) using a GE Lunar Prodigy Advance system (GE Healthcare) with CoreScan software.
Participants underwent supine scans to quantify percentage fat, fat mass, and lean mass across
five regions (arms, legs, trunk, android, and gynoid), yielding 108 regional measures. CoreScan
additionally estimated visceral and subcutaneous adipose tissue area, mass, and volume within
the android region. Body weight, standing height, and waist and hip circumferences were
measured. Given that body mass index (BMI) is a well-established risk factor for multiple health

outcomes [25], we included BMI as a covariate in our statistical models.



Bone mineral density was quantified during the whole-body DXA scan. We obtained 182
site-specific measures at bilateral femoral necks and lumbar spine vertebrae L1-L4.

Liver health was assessed using abdominal ultrasound (Supersonic Aixplorer MACH,;
Supersonic Imagine) combined with two-dimensional shear-wave elastography, which yielded
quantitative measures of tissue viscosity, elasticity, acoustic attenuation, and sound-speed
propagation. Additionally, we included serum biomarkers of hepatic function, including alkaline
phosphatase, alanine aminotransferase, aspartate aminotransferase, total protein, total bilirubin,
platelet count, and albumin, to capture biochemical indices of liver status.

Cardiovascular system was phenotyped using multiple complementary modalities: (1) a
12-lead resting electrocardiogram (PC-ECG1200; NORAYV); (2) brachial blood pressure
measured after five minutes of seated rest with an OMRON oscillometric monitor; (3) ankle—
brachial index (ABI) measured with a Vasionix Falcon device; (3) carotid—femoral pulse-wave
velocity (PWV) assessed via the same Vasionix system; (4) bilateral carotid intima—media
thickness (cIMT) quantified by Doppler ultrasound (Supersonic Aixplorer MACH30; Hologic);
and (6) retinal vascular parameters extracted from retinal imaging using the AutoMorph software
[26].

Blood lipid profiling integrated untargeted lipidomics with routine clinical assays.
Fasting plasma samples were analyzed on a Waters ACQUITY UPLC system coupled to a VVion
IMS QToF mass spectrometer (Waters Corporation), while serum HDL-C, LDL-C, and
triglycerides were quantified by standard enzymatic assays. Lipidomic features missing in > 20%
of samples were removed, and remaining missing values were imputed as half the minimum
observed value per feature. We then performed the rank-based inverse-normal transformation for

the lipidomic features, yielding 133 unique lipids.



Renal function was assessed by standard clinical assays of serum creatinine, blood urea,
and electrolytes (i.e., sodium and potassium).

Hematopoietic system profiling comprised serum ferritin, hemoglobin, hematocrit, mean
corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin
concentration, and red blood cell count and distribution width.

Immune system profiling consisted of measures from complete blood counts, including
total white blood cell count, and absolute and relative (percentage) values for neutrophils,
lymphocytes, monocytes, eosinophils, and basophils.

Frailty was evaluated by combining hand grip strength with appendicular lean mass (arms
and legs) measured by DXA.

Sleep health phenotyping was conducted at home using the WatchPAT 300 device
(Itamar Medical), which integrates peripheral arterial tonometry, finger pulse oximetry, acoustic
snoring, and body-position sensors. Each participant completed three consecutive days of
monitoring. Proprietary software processed the raw data to generate metrics of oxygen

saturation, respiratory events, heart rate, snoring intensity, and sleep-stage architecture. A total

of 57 parameters were retained for data analysis.

All measurements mentioned above were standardized unless explicitly stated otherwise.
2.4 System-level modeling of biological responses to coffee intake
We assessed each biological system’s ability to capture the biological footprint of habitual coffee
intake (g/d) by fitting both elastic-net and XGBoost regression models in a five-fold cross-
validation framework repeated ten times. Features consisted of centered log-ratio transformed
(gut microbiome), inverse-normal transformed (serum lipidomics), or z-score standardized (for

the other biological systems) system-specific measures, together with standardized age and a



binary sex indicator. In each fold, we computed the Spearman correlation (p) between predicted
and observed habitual coffee intake on the validation dataset. Within each repeat, we obtained
the median p across the five folds and summarized overall model performance by the median p
across all ten repeats.

2.5 System-specific traits associated with coffee intake

To evaluate the associations of habitual coffee intake with each biological system measure, we
performed multivariable linear regression analyses, adjusting for age, sex, educational
attainment, household income, BMI, smoking status, smoking cessation time, current smoking
number, alcohol intake status, moderate-to-vigorous physical activity, healthy dietary pattern
score, total energy intake, and tea intake. The dietary pattern score was based on seven
components: (1) vegetables and fruits, (2) whole grains, (3) nuts, (4) legumes, (5) red and
processed meat, (6) fish, and (7) sodium. For each component, participants with intakes above
the sex-specific median were assigned a score of 1, and those below the median a score of 0,
except for red and processed meat and sodium, where scoring was reversed (i.e., intake above the
median = 0, below the median = 1). Within each system, we adjusted P-values for the multiple
comparisons using the Benjamini-Hochberg procedure, with a two-sided false discovery rate
(FDR)-adjusted P-value < 0.05 as statistically significant [15]. Missing values were imputed as
medians for continuous variables and missing categories for categorical variables.

We performed several sensitivity analyses. First, we examined the potential of
non-linearity of the significant associations by comparing models with and without cubic
spline terms (with knots placed at 5", 50, and 95" percentiles), using the likelihood-ratio
test. Second, we evaluated whether associations between coffee intake and biological

system measures varied by coffee type by including an interaction term between coffee
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intake and coffee type (non-coffee drinkers, instant coffee drinkers, ground/filtered coffee
drinkers, decaffeinated coffee drinkers, and other coffee drinkers), using the likelihood
ratio test. Third, to mitigate the potential of reverse causation between coffee intake and
continuously monitored glucose regulation, we evaluated the associations between daily average
coffee intake during the first half of the CGM wear (median: 7 days) and the CGM metrics
derived from the remaining period (median: 7 days). Fourth, to assess the robustness of our
findings to potential dietary confounding, we adjusted for the individual dietary components
underlying the dietary pattern used in the primary analysis. Fifth, to partially mitigate potential
confounding due to coffee sweetening status, we re-examined the associations between coffee
intake and biological system measures after excluding coffee entries labeled as “sweet” or “diet”.
We analyzed all data using R 4.4.3 (R Foundation for Statistical Computing, Vienna,
Austria).
3 RESULTS
3.1 Cohort characteristics
Our study population included 8,666 generally healthy Israeli adults (Supplementary Table 2).
Participants had a median of 14 days (IQR, 13-14) of valid dietary logs. The mean age was 51.8
years (SD, 7.8), and 52.4% were female (n=4,537). Participants had a mean of 20.2 years (SD,
2.9) of education, 44.3% had normal body weight, 62.3% were never smokers, and 71.1%
reported current alcohol consumption. Mean daily energy intake was 1724.7 kcal (SD, 425.9).
Mean daily coffee intake was 110.5 g (SD, 146.8), with few participants classified as heavy
consumers (i.e., 73 participants reported >600 g/day of coffee intake)[27]. Coffee intake declined

slightly with aging (Supplementary Figure 2).
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3.2 System-level links with habitual coffee intake

We employed machine learning approaches (i.e., elastic net regression and XGBoost algorithms)
to assess how well each biological system captures the phenotypic footprint of habitual coffee
intake and ranked them based on their predictive performance (Methods). Across the 12
biological systems, elastic net outperformed XGBoost in nine systems, whereas XGBoost
achieved slightly higher correlations for liver health, renal system, and sleep health, suggesting
that associations between habitual coffee intake and system-specific features were predominantly
linear, as captured by the regularized linear model (Figure 2). Notably, gut microbial species
relative abundances exhibited the highest correlation with habitual coffee intake (median p=0.28
from elastic net regression), indicating that interindividual differences in microbial composition
captured a meaningful portion of variability in habitual coffee intake. Glucose regulation metrics
derived from CGM ranked second (median p=0.17 from elastic net regression) and exhibited the
highest stability in predictive performance across iterations. The cardiovascular system and body
composition reflected coffee intake to a moderate extent, whereas the other biological systems
showed only marginal correlations.

3.3 Coffee intake and continuously monitored glucose regulation

We prioritized glucose regulation for in-depth analyses, as it exhibited one of the strongest
signals related to habitual coffee intake in our previous analytic step. A deeper understanding of
glucose regulation requires a comprehensive collection of metrics derived from CGM. Here, we
derived 49 metrics from the literature [21, 23], and organized them into seven domains,
reflecting general glucose (e.g., mean glucose), fasting state (e.g., continuously-monitored
fasting glucose), euglycemia (e.g., percentage of time in range between 63 and 140 mg/dL),

hyperglycemia (e.g., percentage of time above 140 mg/dL), hypoglycemia (e.g., low blood
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glucose index (LBGI)), glucose variability (e.g., SD), and composite measurements and risk
scores (e.g., J-index) (Figure 3A). Overall, general glycemia measures were strongly positively
correlated with each other (p >0.92). Continuously-monitored fasting glucose exhibited strong
positive correlations with general glycemia measures (p >0.85) but weakly correlated with
fasting glucose variability (|p| <0.20). Among the euglycemia measures, GRADE_eugly
strongly correlated with all time in range measurements (p > 0.79). Of the hyperglycemia
measurements, HBGI, Hyper index, and GRADE_hyper strongly positively correlated with each
other (p >0.95), while their associations with percentage time above threshold declined at higher
cut-offs. Findings were similar for hypoglycemia measures. Variability metrics correlated
positively with each other overall, and composite measures and risk scores exhibited more
heterogeneous interrelationships.

To elucidate how habitual coffee intake shape glucose regulation, we conducted linear
regression analyses adjusting for a broad range of potential confounders, including age, sex,
educational attainment, household income, body mass index (BMI), smoking status, smoking
cessation time, current smoking number, alcohol intake status, moderate-to-vigorous physical
activity, dietary pattern, daily energy intake, and tea intake. Coffee intake was associated with 23
of the 49 CGM metrics (FDR < 0.05) across six domains of glucose regulation (except for
euglycemia), with 21 showing inverse associations (Figure 3B). Specifically, habitual coffee
intake was inversely associated with all six general glucose measures and continuously
monitored fasting glucose levels. Additionally, coffee intake was inversely associated with two
hyperglycemia metrics and nine variability measurements featuring diverse variability, including
overall variability (IQR), within-day variability (SDw), and between-day variability (SDbdm).

Moreover, coffee intake was inversely associated with three composite measures and risk scores,
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including AUC, J index, and COGI. By contrast, coffee intake was positively associated with
two hypoglycemia measurements, including GRADE hypo and LBGI.

3.4 Coffee intake and gut microbiome

Building on our prior analytical step that revealed the highest correlation between coffee intake
and gut microbiome, we next focused on the gut microbiome for further analyses. Overall, coffee
intake was positively associated with gut microbial a-diversity (species richness (P < 0.001) and
Shannon index (P = 0.03)) and associated with g-diversity (the first two principal coordinates of
the Bray-Curtis distance matrix (P < 0.02)) (Figures 4A-C). To identify specific taxa driving
these patterns, we performed multivariable linear regression adjusted for the aforementioned
covariates, with species-level relative abundances processed with centered log-ratio
transformation (CLR) to account for compositionality. Of the 311 prevalent species, habitual
coffee intake was associated with 42 microbial species relative abundances, with 18 showing
positive associations (Figure 4D). The strongest associations were observed for Clostridium
phoceensis (FDR < 10%4) (recently reclassified as Lawsonibacter asaccharolyticus),[27]
followed by the so far uncharacterized taxon ‘GGB9522 SGB14921° (FDR < 10%°), both
exhibiting non-linear relationships with coffee (Figure 4E). In addition, the associations for five
species reached FDR < 10, including Bifidobacterium psedocatenulatum, Clostridium species
AM22 11AC, Blautia stercoris, Faecalibacterium prausnitzii, and uncharacterized ‘GGB9635
SGB15106°.

3.5 Coffee intake and multiple biological systems

Of the 118 body composition metrics, coffee intake was associated with 22 metrics after
adjusting for BMI and other covariates (Figure 5A). Notably, all the associations were inverse,

suggesting that higher coffee intake lowers multiple body composition features. The top ten
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metrics were all related to body fatness, including trunk (left, right, and total) fat mass; visceral
adipose tissue mass, area, and volume; total, left, and right fat mass, and android fat mass.
Additionally, habitual coffee intake was inversely associated with waist circumference after
adjusting for BMI.

Among the 133 lipids, coffee intake was associated with six lipids, with five exhibiting
positive and one exhibiting inverse associations after adjustment for age, sex, BMI, and other
potential confounders (Figure 5B). Specifically, coffee intake was positively associated with
lysophosphatidylethanolamine (LysoPE) 18:0, LysoPE 16:0, lysophosphatidylcholine (LysoPC)
20:4, phosphatidylethanolamine (PE) 34:1, and high-density lipoprotein cholesterol (HDL-C).
By contrast, coffee intake was inversely associated with phosphatidylcholine (PC) 32:1.

Among the 11 liver measures, coffee intake was inversely associated with alkaline
phosphatase activity (Figure 5C). No significant associations were observed for liver ultrasound
measures or enzymes. Of the eight circulating hematopoietic measures, coffee intake was
inversely associated with red blood cell count (Figure 5D). Among the four renal system
measures, coffee intake was positively associated with serum potassium (Figure 5E). All
significant associations were at FDR < 0.05.

3.6 Sensitivity analyses

The association between coffee intake and each biological system measure showed no evidence
of non-linearity (FDR > 0.05), did not vary by coffee type (FDR > 0.05; Supplementary Table
3), and remained robust after adjusting for individual food component that comprised the dietary
pattern controlled for in the primary analysis (Supplementary Table 4) and after excluding coffee
entries labeled as “sweet” or “diet” (Supplementary Table 5). Additionally, the associations

between coffee intake and CGM metrics remained materially unchanged when evaluating coffee
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intake during the first half of the CGM wear (median: 7 days) in relation to CGM metrics

derived from the remaining period (median: 7 days) (Supplementary Table 6).

4 DISCUSSION

In this high-resolution, phenome-wide association study, we demonstrated that habitual coffee
intake was systematically associated with multiple domains of human biology in a deeply
phenotyped, generally healthy adult population. By integrating multi-system physiological,
biochemical, and omics data, we identified gut microbial composition and continuously
monitored glucose regulation as the biological systems most strongly linked to habitual coffee
intake. Further analyses revealed favorable glycemic profiles across diverse aspects of glucose
regulation with increasing coffee intake and identified Clostridium phoceensis, recently
reclassified as Lawsonibacter asaccharolyticus, as the most significant microbial species
positively associated with coffee intake. Beyond these leading systems, coffee intake was
associated with a broad range of features across multiple biological systems, including body
composition, serum lipids, hematopoietic, liver, and renal systems, with most associations

indicating favorable profiles with increasing coffee intake.

To our knowledge, this is the first study to showcase that habitual coffee intake is
favorably associated with multiple dimensions of glucose regulation, as continuously assessed
using a comprehensive panel of CGM-derived metrics. These associations remained robust after
adjusting for BMI, smoking-related variables, and other potential confounders. To date, only two
studies have employed CGM to investigate the glycemic effects of coffee intake in the general
population [28, 29]. However, both focused exclusively on short-term glycemic responses, which

are unlikely to reflect the long-term effects of habitual intake, particularly given the progressive
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development of caffeine tolerance [30]. While cohort and Mendelian randomization studies have
linked habitual coffee intake or its genetic proxy with a lower risk of type 2 diabetes, no study
has explored its influence on continuous glycemic dynamics [31]. Our study advances this
literature by examining how habitual coffee intake shapes real-world glucose regulation. We
found consistent associations with lower glycemic variability, improved composite measures and
risk scores, and more favorable profiles across general glucose, fasting glucose, and
hyperglycemia domains. It is noteworthy that habitual coffee intake was positively associated
with hypoglycemic metrics, including GRADE_hypo and LBGI. While these associations may
reflect tighter glycemic regulation in the general population, they warrant caution in individuals
with diabetes, particularly those on glucose-lowering medications, in whom coffee intake may

potentiate hypoglycemic episodes.

To date, only a handful of studies have explored the relationship between habitual coffee
intake and the human gut microbiome [27, 32, 33], with most of them limited by small sample
sizes and low taxonomic resolution [27, 33]. In our study, gut microbial composition emerged as
a biological system most strongly linked to habitual coffee intake, outperforming other domains
such as glucose regulation and body composition. This suggests that the gut microbiome may be
particularly sensitive to coffee intake and could partly mediate its systemic biological effects.
This observation is further supported by a recent multi-cohort metagenomic study conducted
predominantly in the UK and US cohorts [27]. That study identified coffee as the strongest
dietary correlate of gut microbial composition among 150 food items, reinforcing the central role
of the gut microbiome in response to habitual coffee intake [27]. Additionally, our findings of
increased alpha diversity and significant shifts in beta diversity with increasing coffee intake

align with the existing evidence on the coffee-microbiome relationship [27, 33], and support
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prior evidence linking increased gut microbial diversity to favorable cardiometabolic health
profiles [34, 35]. Moreover, leveraging in-depth metagenomic sequencing, we identified over 40
microbial species whose relative abundances were associated with habitual coffee intake.
Notably, Clostridium phoceensis, which showed the strongest and positive association in our
dataset, was also the species most significantly associated with habitual coffee intake in the
multi-cohort study [27]. Although that study annotated this species as Lawsonibacter
asaccharolyticus, taxonomic analysis confirms both names refer to the same species-level
genome bin, with L. asaccharolyticus now recognized as the correct taxonomic assignment. This
robust association has also been validated experimentally in vitro using both caffeinated and
decaffeinated coffee, indicating the biological effects of coffee components beyond caffeine
[27]. The reproducibility of L.asaccharolyticus (C. phoceensis) across geographically distinct
populations further supports its generalizability as a key microbial indicator of habitual coffee

intake.

We observed inverse associations between habitual coffee intake and multiple adiposity-
related measures, including visceral, trunk, and total fatness, which remained significant after
adjustment for BMI. These associations align with existing evidence indicating that caffeine may
reduce appetite and elevate basal metabolic rate and food-induced thermogenesis via activating
the sympathetic nervous system and brown adipose tissue [36, 37]. Our findings extend beyond
general measures of adiposity by implicating a potential role for coffee intake in shifting fat
distribution toward a more favorable metabolic profile. Given that visceral fat and waist
circumference provide additive predictive value for cardiometabolic risk beyond BMI [38], our
findings highlight the potential for coffee to exert protective effects on cardiometabolic health

through lowering central adiposity.
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Our serum lipidomic analyses identified lysoPE 18:1 as the lipid most strongly and
positively associated with habitual coffee intake. To our knowledge, no prior studies have
reported this, indicating lysoPE 18:1 as a potential novel lipidomic biomarker of coffee
consumption. Although the functionality of lysoPE 18:1 remains to be established, it has
previously been reported to be elevated in patients with systemic lupus erythematosus, an
autoimmune condition linked to insulin resistance and atherosclerosis [39, 40]. In addition,
habitual coffee intake was inversely associated with HDL-C, a classic cardiometabolic biomarker
[41-43], and linked to lower serum alkaline phosphatase, red blood cell count, and higher serum
potassium levels. Collectively, these associations across lipidomic, liver, hematopoietic, and
renal systems suggest that habitual coffee intake may exert multi-system biological effects

beyond glycemic, gut microbial, and adiposity domains.

As the primary component of coffee, caffeine may contribute to the observed associations
through several molecular pathways, primarily by acting as a non-selective adenosine receptor
antagonist that enhances alertness, improves insulin sensitivity, and attenuates inflammatory
responses [2]. Beyond caffeine, coffee contains diverse bioactive compounds that may underlie
its health benefits [2]. For instance, chlorogenic acids and related phenolic compounds exhibit
antioxidant and anti-inflammatory properties, potentially improving glucose regulation and
modulating gut microbial composition [2]. Moreover, melanoidins formed during the roasting
process have been shown to exert prebiotic effects, promoting beneficial microbial taxa [44].
Collectively, these mechanisms suggest that the favorable profiles observed in our study likely
reflect the combined effects of multiple coffee constituents across diverse biological systems.
Further in-depth mechanistic studies are warranted to fully elucidate how coffee and its bioactive

components systematically influence human biology.

19



A major strength of our study lies in the integration of high-resolution, multimodal data
across multiple biological systems in a large, well-characterized, generally healthy population.
This study design enabled a comprehensive systems-level investigation of how habitual coffee
intake maps onto diverse domains of human biology. Leveraging real-time dietary intake logging
further enhances the accuracy of exposure assessment. In addition, we carefully adjusted for a
broad range of potential confounders, including multiple smoking-related variables [4], which
alleviates residual confounding. Nevertheless, our study has several limitations. First, coffee
intake and biological system measures were collected concurrently at baseline. This cross-
sectional design raises the possibility of reverse causation, although our findings remained robust
in a sensitivity analysis that evaluated coffee intake during the first half of the CGM monitoring
period and CGM metrics from the second half. Moreover, several high-impact cross-sectional
investigations from the HPP, such as those linking fasting glucose variability with cardiovascular
disease risk [23] and sleep characteristics with hypertension risk [15], have yielded findings
consistent with large prospective cohorts [45, 46], thereby supporting the validity of HPP-based
cross-sectional investigations. Also, causality cannot be established due to the observational
nature of the study. Second, although a sensitivity analysis excluding coffee entries labeled as
“sweet” or “diet” produced consistent results, the lack of systematic documentation of coffee
sweetening status limited our ability to thoroughly evaluate its health effects [47]. This limitation
highlights the need for future studies with more granular data on coffee sweetening practices.
Finally, our cohort included only Israeli adults, and coffee preparation methods were relatively
uniform, which may limit the generalizability of our findings to other populations and cultural
contexts. Future studies in diverse ancestries, with variation in coffee preparation practices and

long-term interventional designs, will be critical to validate our findings.
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In summary, our phenome-wide association analysis demonstrates the capacity of coffee,
a globally consumed beverage, to influence multiple dimensions of human biology. By
integrating multimodal deep phenotyping data with systems-level analysis, our study provides a
generalizable framework to investigate how habitual exposures systematically shape human
biology in real-world settings. Moreover, our study underscores the potential of dietary
exposures, such as coffee, to serve as potent drivers in developing personalized, systems-

informed nutritional strategies.
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Figure 1. lustration of the high-resolution multimodal data from the Human Phenotype Project,
showing (A) 12 biological systems and (B) their collection timeline.
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Figure 2. Ranks of the biological systems by their capacity to reflect habitual coffee intake-
related variations. The performance for each system was assessed based on the Pearson
correlation coefficient between the actual and predicted coffee consumption using five-fold
cross-validation with elastic net regression or XGBoost (whichever performed better), trained on
system-specific features along with age and sex, and repeated ten times.
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Figure 3. Coffee consumption and glucose regulation captured by continuous glucose
monitoring. (A) Pearson correlation matrix of CGM-derived metabolic metrics. (B) Associations
between habitual coffee intake and individual CGM metrics. Multivariable linear regression
models were performed, adjusted for age, sex, educational attainment, household income,
smoking status, alcohol intake, moderate-to-vigorous physical activity, dietary pattern, daily
energy intake, tea consumption, and percentage of coffee consumption from decaffeinated
coffee. Benjamini—Hochberg False Discovery Rate (FDR)-adjusted P-value < 0.05 was
considered statistically significant. Measurements were standardized before data analyses.
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Figure 4. Habitual coffee intake and gut microbial composition. (A) Associations with species-
level richness. (B) Associations with species-level Shannon diversity index. (C) Associations
with the first two principal coordinates (PCoA) derived from Bray—Curtis dissimilarity. (D)
Associations with relative abundances of individual gut microbial species (centered log-ratio
transformed). (E) Mean (£SE) of CLR-transformed relative abundance of two microbial species
exhibiting non-linear associations with coffee intake (1 cup = 200 g of coffee).
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Figure 5. Associations of habitual coffee intake with measures from (A) body composition, (B)
blood lipids, (C) liver system, (D) hematopoietic system, and (E) renal system. Serum lipidomics
were rank-based inverse-normal transformed, and the other measurements were z-score
standardized. Multivariable linear regression models were performed, adjusted for age, sex,
educational attainment, household income, smoking status, alcohol intake, moderate-to-vigorous
physical activity, dietary pattern, daily energy intake, tea consumption, and percentage of coffee
consumption from decaffeinated coffee. Benjamini—Hochberg False Discovery Rate (FDR)-
adjusted P-value < 0.05 was considered statistically significant.
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Highlights
e Coffee intake was favorably associated with multiple human biological systems
e CGM and gut microbiome are the most reflective systems of coffee intake

e Multifaceted favorable glycemic profiles were associated with higher coffee intake
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