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Abstract
Purpose  Conduct an overview of systematic reviews of the current fracture risk prediction tools in use.
Material and Methods  We included systematic reviews (SRs) that assessed the predictive ability of any tool, score, algo‑
rithm, or other instrument for fracture risk. The primary outcome measure was the area under the curve (AUC) representing 
predicted fracture risk within a specified timeframe obtained from receiver operating characteristic (ROC) analysis. We 
included SRs that studied both men and women with fractures in the general adult population.
Results  The review identified 26 different tools currently in use to predict fracture risk. Within these tools a total, 21,717 
different prediction variables were found. Among the different tools, a different number of factors were used ranging from 
the BWC model that used a single predictor variable to the GSOS tool that incorporated 21,717 predictor variables in its 
model (including many individual SNPs).
Regarding the performance of the tools, AUC ranging from 0.58 to 0.90. None of the models had a prediction capacity greater 
than 90%. Most of the models are within the range of 0.7 and 0.75, but it cannot be said that any specific one stands out over 
the others. Rather, a fluctuating behavior is observed in all models within the different studies.
The discrimination of the two most frequently validated models, including FRAX with and without BMD, varied among the 
studies with AUC/C index ranging from 0.58 to 0.90, respectively. Other commonly validated model, including the Garvan 
Model showed AUC between 0.57 to 0.84.
Conclusions  The vast majority of the models performance is within the range of 0.7 and 0.75. To compare the performance 
of different tools when predicting fracture, it is very important to consider the differences between prediction tools, the num‑
ber of risk factors considered, as well as the nature of the variables as they will have an important impact on the feasibility 
of its use in clinical practice. Likewise, differences in the prediction results may depend on sex, age, types of fractures, as 
well as the temporal intervals of the prediction and could affect the use of the tools in the daily clinical routine.
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Introduction

Osteoporosis is a skeletal disease characterized by low 
bone mineral density (BMD) and deterioration of bone 
architecture which conduced to reduced bone strength and, 
consequently, an increased susceptibility to occurrence of 
fractures [1, 2]. The operational definition of osteoporosis 
provided by the WHO is a bone mineral density (BMD) 
2.5 or more SDs below the average value for young healthy 
individuals of the same gender and ethnic background 
(T-score ≤  − 2.5) [2]. Osteoporosis is three times more 
common in women than in men, partly because women 
have a lower peak bone mass and partly because of the 
hormonal changes that occur at the menopause [2].

Some reports say that at least one in 5 men and one 
in 3 women will suffer a fragility fracture [3]. Fractures 
not only cause temporary or permanent physical disabil‑
ity [4, 5], but can also affect the overall quality of life 
of those affected [6, 7] and place a significant burden on 
healthcare systems [7]. Mainly due to the fact that BMD 
decreases with age, the incidence of fractures increases 
exponentially until it becomes an alarming public health 
problem [8].

In patients who have not yet suffered a fracture, BMD 
measurement by dual energy X-ray absorptiometry (DXA) 
is commonly used to identify people with osteoporosis or 
low BMD. However, many studies have shown that BMD 
measurement alone does not reliably predict whether an 
individual will experience a fracture [6, 9–11]. Since the 
pathogenesis of fractures depends on many factors other 
than low bone mineral density, scientific evidence has 
explored different risk factors that could be involved in 
the occurrence of fragility fractures in addition to BMD 
[12–14].

Joint efforts by different research groups have been 
given the task of compiling in systematic literature reviews 
the different fracture risk prediction tools that have been 
created or adapted from the different fracture risk factors 
identified in the different primary studies. In these system‑
atic reviews, a significant number of different tools have 
been reported that differ in the different clinical risk fac‑
tors considered, the number of variables included in each 
prediction model, the populations evaluated, the acces‑
sibility of the tools to measure BMD, and therefore the 
predictive capacity that each tool currently has.

Such a panorama and due to the complexity of the prob‑
lem, a need arises to carry out an overview of systematic 
reviews where all the existing evidence is collected on the 
different fracture risk prediction tools and the predictive 
capacity of all of them that are currently used in clinical 
practice, since this information can be useful for health 
professionals that allows them to choose the tool that 

adapts to their conditions in their clinical environment, 
population and objective of prediction, but in the same 
way this review will help to visualize possible points on 
improvement of these different tools. Therefore, the objec‑
tive of this review was to conduct a comprehensive analy‑
sis of systematic reviews, specifically focusing on fracture 
prediction tools with external validation and summarize 
the evidence on these tools in their predictive capacity.

Methods

Design and registration

The study design was established as a systematic review 
of reviews and followed the methodology proposed by the 
Cochrane Collaboration [15] and the Preferred Reporting 
Items for Systematic Review and Meta-analysis (PRISMA) 
[16]. The detailed protocol of the present study has been 
previously published (Priego, G. A. C. 2022, August 31). 
Predictive capacity of fracture risk assessment tools: Over‑
view of Systematic Reviews. https://​doi.​org/https://​doi.​org/​
10.​17605/​OSF.​IO/​7SK2M).

Selection criteria

The criteria for inclusion were as follows: Systematic 
reviews of observational studies either prospective or ret‑
rospective cohorts, as well as case–control studies. All arti‑
cles were identified as meta-analysis or systematic review in 
the title or abstract. Each of these reviews aimed to assess 
the predictive ability of validated tools for fracture risk 
prediction.

We included systematic reviews that assessed the predic‑
tive ability of any fracture risk prediction tool, score, algo‑
rithm, or any other instrument to predict fracture risk (with 
or without BMD measurement). SRs that included primary 
studies that have studied the observed occurrence of the event 
of interest (fractures) were taken into account. The fractures 
have to be confirmed by reports, or medical records.

The primary outcome measure was the area under the 
curve [17] of the predicted fracture risk and its SE, at the 
specified time interval that were obtained from the receiver 
operating characteristic (ROC) analysis. We included sys‑
tematic reviews that had studied both men and women with 
fractures in the general adult population.

In the same way, we excluded reviews that include pri‑
mary studies based on animal models, also the SRs which 
have included tools lacking external validation, as well as 
investigations evaluating intermediate or surrogate outcomes 
only. Reviews were not excluded by language or date of 
publication.

https://doi.org/
https://doi.org/10.17605/OSF.IO/7SK2M
https://doi.org/10.17605/OSF.IO/7SK2M
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Identification and selection of studies

An independent, paired systematic search for SRs was per‑
formed in the following electronic libraries: MEDLINE, 
Cochrane, Epistemonikos, TripDatabase, PROSPERO, 
and grey literature (Worldcat, Manchester library search, 
Health knowledge) without restrictions by date of publica‑
tion or language. The search terms used were as follows: 
“Models risk fracture, Prediction risk fracture, Validity 
tool for risk fracture, Validity tools for risk of bone frac‑
ture, Fracture risk assessment tool, Validity of models for 
risk of bone fractures, Precision of models for risk of bone 
fractures, Precision of models for risk fracture, Validity 
tools for prediction of risk fracture, Validity of risk frac‑
ture index, Models of risk fracture, Validity risk fracture 
instrument, Validity risk fracture assessment tool, Valida‑
tion studies fracture risk assessment tool, Risk fracture 
assessment tool, Osteoporosis risk assessment instrument, 
Accuracy and precision risk fracture models, Accuracy 
and precision risk fracture tool, Risk fracture scale, Osteo‑
porosis risk fracture models, Prediction models risk frac‑
ture, Mathematical models risk fracture prediction, Risk 
fracture index” (Supplementary Table 1).

SRs as a filter was used when available in electronic 
libraries, and after the general search. The complete search 
strategy and its adaptations in the different libraries are 
found in supplementary material I. Additionally, a man‑
ual search was carried out in the list of references of the 
reviews found in the primary search.

Two reviewers assessed the secondary studies found 
(G-A C-P and B A-N); first by title and abstract to exclude 
articles that were not systematic reviews or meta-analyses 
related to the objective of the review. Later they were 
reviewed in full text.

The selection criteria were applied independently by 
both reviewers while the full texts were being analyzed. 
Conflicts were resolved by a third reviewer (L MS).

Overlap assessment

A citation matrix was constructed with the primary stud‑
ies of the included systematic reviews and the overlap was 
calculated with the “Corrected Covered Area” theorem 
described by Pieper et al. [18].

Data collection

Data was extracted from each review included in a Micro‑
soft Excel® spreadsheet in a previously defined form. One 
review author (G-A C-P) extracted the data and the second 

carried out the accuracy and completeness check of the 
abstracted data (B A-N).

Information regarding the objective, population (type 
of primary studies), intervention, comparator, outcome, 
and participants (type of patients in the primary studies) 
was extracted from each of the included reviews. We ana‑
lyzed the methodology used in each of the SRs (Electronic 
Search and evaluation of the risk of bias of the primary 
studies). However, for the present overview, we did not 
review any of the primary studies as stated and detailed 
in the Cochrane handbook for systematic reviews to not 
repeat a review of the original trials.

Methodological quality assessment

Two review authors independently assessed the methodo‑
logical quality of the included reviews using the “assess‑
ment of risk of bias in systematic reviews (ROBIS)” tool. 
This tool has three phases; to assess relevance, identify 
concerns in the review process, and judge risk of bias. 
The second of these phases is divided into four domains: 
eligibility criteria, identification and selection, data col‑
lection and evaluation of studies, as well as synthesis and 
findings. In each domain, the information used to support 
the judgment, the signaling questions, and the judgment 
about concern about the risk of bias are studied.

Synthesis strategy

Due to the heterogeneity of the data, a meta-analysis of 
these SRs was not acceptable; therefore, it was decided to 
carry out only a qualitative synthesis of the information.

Results

The search carried out in the digital libraries as mentioned 
in methods, independently by two authors of this review; 
up to October 2023, it yielded a total of 20,583 system‑
atic reviews, of which 3093 were in PUBMED, 193 in the 
Cochrane Library, 1429 in Epistemonikos, 5940 in Trip‑
Database, 13 records in PROSPERO, and the rest of them 
were gray literature. Seventy-five SRs related by title were 
found. When analyzing by abstract, 10 were excluded. In 
this way, a total of 6 systematic reviews were of potential 
interest according to the pre-established selection criteria, 
to be analyzed in full text [19–24]. After this process, a 
total of six systematic reviews were included in this review 
of reviews (PRISMA chart) (Fig. 1).
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Description of included reviews

The reviews were published between 2013 and 2023. The 
number of primary studies in the included reviews ranged 
from 6 to 68, and after the overlap between the SRs was 
reviewed, 107 primary studies were identified. The char‑
acteristics of each primary article are described in Supple‑
mentary Table 2. The population size ranged from 390 to 
4,726,046. All of the SRs comprised prospective or retro‑
spective observational studies, RCTs, and cross-sectional 
studies. The age of the participants in most primary studies 
was over 40 years old; with the exception of the FRAMO 
tools that only included people between 70 and 100 years 
old and the QFracture that consider people between 30 and 
99 years old. The characteristics of the systematic reviews 
included are detailed in Table 1.

To facilitate the interpretation of the predictive per‑
formance of fracture risk assessment tools, and given 
the heterogeneity in study methods and populations, we 
focused our main analysis on tools that had been externally 
validated in at least two independent studies. We extracted 
the number of publications reporting each fracture risk 
prediction tool as identified in the included systematic 
reviews. This count includes studies with reported use or 

performance metrics of the tools, regardless of whether 
they were explicitly labeled as external validations.

Table 2 summarizes the reported publications per tool, 
along with whether internal and/or external validation was 
conducted. A total of 26 tools were identified; however, only 
a subset of them (n = 11) had been evaluated in at least two 
external validation studies, suggesting stronger evidence 
of reproducibility across different populations. These tools 
were prioritized in the synthesis of our main results. Tools 
with limited external validation (n < 2) were included in 
Supplementary Material to ensure completeness without 
overloading the main findings.

This structured overview highlights the disparity in the 
degree of validation across available tools. The limited num‑
ber of models with robust external validation underscores 
the challenges in generalizing predictive performance across 
diverse populations and clinical settings.

The objective of these six reviews was to evaluate the 
predictive capacity of the tools for fractures. From the pri‑
mary studies that have reported the follow-up time, it was 
observed that this varied from 2 to 13.4 years. However, only 
in 25% of all studies the follow-up time was comparable to 
the prediction time of the tools (the most common of these 
being the prediction of 10-year fracture risk).

Fig. 1   Flowchart of studies included in the overview
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In about three-quarters of the studies, hip fracture was 
confirmed by medical records or by confirmatory radiog‑
raphy. Of the remaining percentage, most of them were 
self-reported or no data for this variable was available.

A total of 26 different tools were found and are cur‑
rently used to predict fracture risk. These are broken down 
in Supplementary Table 3, as well as the variables con‑
sidered in each of them. These tools have been developed 
and validated in different countries around the world: 
Canada, USA, Denmark, Sweden, Australia, New Zea‑
land, Poland, UK, Ireland, Israel, France, Japan, Spain, 
China, Italy, Germany, Netherlands, Finland, Thailand, 
Norway and Portugal; while there were no models devel‑
oped using data from Africa, Central and South America, 
and the Middle East.

Regarding the number of predictive risk factors used in 
these tools, a total of 21,717 different prediction variables 
were found (Supplementary Table 3). Among the different 
tools, a different number of risk factors are used, ranging 
from the model that has a single predictor variable (BWC) to 
the tool that has the greatest number of predictor risk factors 
(GSOS) that has 21,717 variables (many of these risk factors 
are single nucleotide polymorphisms (SNPs) from GWAS).

A majority of models contained similar predictors, such 
as age (84.61%) and weight (80.0%). Other common vari‑
ables were previous fractures (73.07%), femoral neck BMD 
(50%), smoking (42.30%), height (34.61%), sex (34.61%), 
use of glucocorticoids (30.76%), and rheumatoid arthri‑
tis (30.76%). These data are described in Supplementary 
Table 3.

Table 2   Summary of reported 
publications for fracture risk 
prediction tools

This table lists the fracture risk assessment tools identified in the included systematic reviews. It shows 
whether each model underwent internal and/or external validation, along with the number of reported pub‑
lications per tool. Tools with at least two publications suggesting external validation were prioritized in the 
main analysis; others are detailed in supplementary materials
Note: The number of publications refers to the studies identified in the included systematic reviews that 
reported using or validating each tool. In some cases, although the study design suggests external valida‑
tion (e.g., testing in an independent cohort with performance metrics), it was not explicitly labeled as such 
by the original systematic review authors

Tool Internal vali‑
dation

External vali‑
dation

Reported publica‑
tions for each tool 
(n)

Computer model for osteoporotic fracture risk Yes Yes 1
FRAMO Yes Yes 2
FRAX Yes Yes 50
FRC Yes Yes 2
FRISC Yes Yes 2
FRISK Yes Yes 2
GARVAN Yes Yes 16
Q-Fracture Yes Yes 4
Updated Q-Fracture (2012) Yes Yes 2
Score for estimating the long-term risk of fracture 

in post menopausal women
Yes Yes 1

Simplified fracture risk system Yes Yes 1
SOF Yes Yes 3
WHI Yes Yes 3
OSIRIS Yes Yes 1
ORAI Yes Yes 1
OST Yes Yes 1
SCORE Yes Yes 1
FRAX + TBS Yes Yes 5
FRA-HS Yes Yes 1
ABONE Yes Yes 1
BWC Yes Yes 1
EPESE Yes Yes 1
Pentosidine + FRISC Yes Yes 1
GSOS Yes Yes 1
DeFRA Yes Yes 1
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Most of the tools were developed using logistic regression 
and Cox proportional hazards models, although for a minor‑
ity of the primary studies information on the mathematical 
model was not available. Validation of these tools were done 
using mainly three methods: cross validation, geographical 
validation and in some of them, the bootstrapping technique.

Model performance was assessed by discrimination and 
calibration. Discrimination is often quantified by the area 
under the receiver operating characteristic curve [17]. AUC 
less than 0.5 suggests no discrimination, 0.5 to 0.7 is poor, 
0.7 to 0.8 is acceptable, 0.8 to 0.9 is excellent, and higher 
than 0.9 is outstanding [20].

The AUC values ranged from 0.58 to 0.90. Around a quar‑
ter of the studies these values were not available. None of the 
models had a prediction capacity greater than 90%. The vast 
majority of the models are within the range of 0.7 and 0.75, 
meaning they had acceptable to excellent performance.

The discrimination of the four most frequently validated 
models (Table 3), including FRAX with BMD (for MOF 
and for hip fracture), and FRAX without BMD (for MOF 
and for hip fracture) varied among the studies, with AUC/C 
index that ranged from 0.58 to 0.90, respectively. There were 
some FRAX extension models based on FRAX predictors 
and other predictors, such as FRAX plus trabecular bone 
score (TBS). Other commonly validated models, including 
the Garvan Model 1 and Garvan Model 2 in females, showed 
AUC between 0.70 and 0.85.

Comparisons of multiple tools within individual 
cohorts

A limited number of cohort studies included in the system‑
atic reviews evaluated the predictive performance of two or 
more fracture risk assessment tools within the same popula‑
tion. This approach enables a more robust comparison under 
uniform conditions. For example, Dagan et al. (2017) [25] 
assessed FRAX, FRAX + TBS, and QFracture in a large 
Israeli cohort, reporting notable differences in discrimi‑
nation (AUCs) between tools despite a shared population 

framework. Similarly, Holloway-Kew et al. (2019) [26] and 
Bolland et al. (2011) [27] compared FRAX and Garvan 
models, highlighting variation in performance based on sex 
and fracture type. While these comparative analyses offer 
valuable insights, differences in subpopulation characteris‑
tics, model inputs, and statistical handling still pose limita‑
tions to drawing definitive conclusions.

Methodological quality of included systematic 
reviews

For the methodological quality, we assessed the risk of bias 
in the included SRs using the ROBIS tool. Globally, a 50% 
risk of unclear bias was observed in the reviews, mostly 
given by the assessment of synthesis and findings in the 
reviews as well as the studies eligibility criteria. Two sys‑
tematic reviews were rated at high risk of bias, which is 
equivalent to 33.3% of the total of SR’s, and only one review 
was rated at low risk of bias. Only one of the included sys‑
tematic reviews provided information about any priori reg‑
ister of their protocol. The summary and evaluation of the 
risk of bias are presented in Fig. 2.

Regarding the domain of the study eligibility criteria, 3 of 
the SRs had unclear concern and 3 had low concern, mainly 
for not providing information about having an a priori pro‑
tocol, and the appropriateness of their restrictions on eli‑
gibility criteria based on information electronic databases 
sources. The identification and selection of the domain of 
studies presented two studies with high concern and the 
remaining four with low concern due to poor information 
on the justification of the restrictions of the search periods, 
in one case without additional search methods other than 
databases and the appropriateness of publication, language, 
and date restrictions.

Two studies were rated high concerns and low concern 
of six SR’s, given some concerns about lack of informa‑
tion about efforts made to minimize errors in data extrac‑
tion. Finally, for the synthesis and findings domain, three 
studies were rated as having unclear concerns, two as hav‑
ing high concern, and only one at low risk of bias. The 
main reasons for these ratings were due to concerns about 
the appropriateness of the synthesis given the nature and 
similarity of the research questions, the study designs and 
results, how heterogeneity was addressed, and the methods 
(or the absence of them) used to demonstrate the solidity 
of the results.

Discussion

This report summarizes the evidence related to the perfor‑
mance of fracture risk prediction tools based on six sys‑
tematic reviews. However, due to the heterogeneity of the 

Table 3   Predictive capacity of the most used tools

Tool Range of 
predictive 
capacity

FRAX with BMD 0.59 to 0.88
FRAX without BMD 0.58 to 0.90
FRAX plus trabecular bone score (TBS) 0.85
Garvan with BMD (10-year prediction) 0.70 to 0.85
Garvan with BMD (5-year prediction) 0.78 to o.79
QFracture 2009 (10-year prediction) 0.86 to 0.89
QFracture 2012 (5-year prediction) 0.83
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populations evaluated across the studies, it was not possible 
to pool the data for a more in-depth quantitative analysis.

As shown, there are currently at least 26 fracture risk 
prediction tools that have validation studies: computer 
model for osteoporotic fracture risk, FRAX, FRAX + TBS, 
FRAMO, FRC, FRISC, FRISK, GARVAN-GRX, QFracture, 
Updated QFractured, Score for estimating the long-term risk 
of fracture in postmenopausal women, Simplified fracture 
risk system, SOF, WHI, OSIRIS, ORAI, OST, SCORE, 
FRA-HS, ABONE, BWC, EPESE, Pentosidine + FRISC, 
GSOS, and DeFRA.

In clinical practice, FRAX, QFracture, and Garvan are 
among the most frequently used tools. Additionally, some 
models—such as FRA-HS and WHI—have demonstrated 
good external performance and hold potential clinical value.

The number of risk factors included in these tools’ ranges 
widely, from just 1 to over 27,000, and their nature signifi‑
cantly affects the feasibility of implementation in routine 
care. Variations in predictive outcomes depending on sex, 
age, fracture type, and prediction time horizon may also 
impact clinical applicability. While all tools estimate the 
risk of osteoporotic fractures, not all distinguish between 
hip fractures and major osteoporotic fractures.

The complexity of summarizing predictive capacity in 
a single range arises from several factors, particularly the 
characteristics of the populations used in validation stud‑
ies, while some studies used the general population, some 
others included specific patients with osteoporosis or at risk 
of osteoporosis. Unfortunately, in some of the reviews, the 
eligibility criteria were not completely well defined and, as 
in the vast majority of reviews, there was no registration of 
a review protocol.

Another factor complicating the assessment of tool per‑
formance is the length of follow-up. As noted in the results, 
only a small proportion of studies had follow-up periods 
that matched the tools’ prediction horizons. In cases where 
follow-up and prediction periods did not align, no statisti‑
cal adjustments were made to correct for this discrepancy—
likely affecting reported performance metrics.

No single tool consistently outperforms the others across 
individual studies. Nevertheless, all models demonstrate 
variability in performance depending on the specific study 
context.

Using the area under the receiver operating characteristic 
curve (AUC) to compare predictive performance presents 
significant limitations. As previously discussed, the AUC is 
highly sensitive to underlying population characteristics—
such as age distribution, baseline fracture risk, and follow-up 
duration—making direct cross-study comparisons problem‑
atic [28]. Kanis et al. (2012) emphasized that AUC may 
underestimate clinical utility, especially when differences in 
calibration and decision thresholds are not considered [29]. 
Similarly, Halligan et al. (2015) [30] pointed out that reli‑
ance on AUC alone can obscure clinically relevant differ‑
ences in predictive accuracy when applied to heterogeneous 
populations. These limitations are particularly relevant in 
this overview, where the included systematic reviews applied 
varied methodologies and often lacked harmonization of 
comparator groups. Consequently, while AUC remains a 
commonly reported metric, it should be interpreted with 
caution and ideally supplemented with calibration measures, 
decision curve analysis, or net benefit metrics to provide a 
more complete assessment of model performance, as Steyer‑
berg et al. (2010) [31] highlight in their proposed framework 
combining discrimination, calibration, and clinical utility.

The variability observed in the predictive capacity of 
some tools, such as the FRAX calculator, could be hypothe‑
sized to be due to the large spectrum of populations in which 
they have been evaluated but not validated. Validation of the 
instrument has only been carried out in Japan, England, Can‑
ada, and New Zealand, while in other countries, only calibra‑
tions have been performed. This suggests that predictions 
may need revision to account for differences across racial or 
ethnic groups. This is particularly important, since it would 
be necessary to study whether the weight of the different 
risk factors within the calculator is the same for all types 
of populations. On the other hand, speaking especially of 
calibrations, the performance of the tool will depend on the 

Fig. 2   Summary and graph 
of risk of bias assessment, 
assessed with ROBIS tool
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quality of the epidemiological data that the countries must 
carry out this process. In this way, if the fracture data in the 
countries are underdiagnosed, it could lead to the prediction 
not being as accurate as reality. Therefore, this represents a 
clear avenue for future investigation.

The performance of prediction algorithms also depends 
heavily on the validation methodology. When tools are tested 
in populations similar to those used in their development, pre‑
dictive performance is often more favorable. However, such 
results may not generalize to other settings or patient groups.

The broad range of variables included in these tools 
reflects the wide array of factors that may influence fracture 
risk prediction and what directly tells us about the complex‑
ity of the phenomenon to be modeled. This complexity is 
due to physical, physiological, and biological factors; this 
in turn can lead to there not being a total consensus on the 
most suitable factors for predicting fragility fractures and 
that are a limitation to being able to completely predict the 
phenomenon and only remain an approximation.

Of course, clinical researchers are invited to form an 
international consensus between the different tools that are 
currently used to evaluate the contribution of the different 
variables used in prediction, collecting those that are most 
significant for prediction. Additionally, researchers should 
aim to provide greater transparency regarding the procedures 
and mathematical methods used in model development, the 
score weights applied in the final calculators, and whether 
predictions from different tools can be effectively used to 
guide treatment decisions. Only knowledge of all these 
areas involved in prediction will allow first contact doctors 
to know which tool to use in their clinical environment.

The relevance of these considerations lies in the clini‑
cal implications of the predictive capacity of the tools. For 
instance, if a model predicts a fracture risk of 52% in a given 
population, how confident should clinicians be in prescrib‑
ing first-line anti-osteoporotic treatments versus second-line 
options? The choice of therapy hinges not only on the mag‑
nitude of predicted risk but also on the reliability of the 
prediction tool in that specific context.

A key strength of this overview lies in the rigorous adher‑
ence to the methodology proposed by the Cochrane Col‑
laboration for conducting overviews of systematic reviews, 
which is widely recognized as the gold standard for evi‑
dence synthesis. This ensures a transparent, structured, and 
reproducible approach. Furthermore, we prioritized tools 
with external validation in at least two independent studies, 
enhancing the robustness of our findings. Comparative eval‑
uations of models within shared cohorts also provided more 
reliable insights into their relative predictive performance. 
Nonetheless, several limitations must be acknowledged. 
The considerable heterogeneity across study designs, popu‑
lations, and prediction horizons precluded a quantitative 
meta-analysis. Many tools lack validation in regions such 

as Africa, Latin America, and the Middle East, limiting their 
generalizability. Additionally, the methodological quality of 
the included reviews was variable, with a substantial propor‑
tion rated as having high or unclear risk of bias. These con‑
straints should be considered when interpreting the results 
and highlight the need for future multicenter comparative 
studies with standardized methodologies.

Conclusion

This overview summarizes the current landscape of frac‑
ture risk prediction tools, highlighting the variability in 
their development, validation, and predictive performance. 
While over two dozen tools are available, only a limited 
subset have undergone multiple external validations, and 
even fewer have been directly compared within the same 
cohort. Comparisons based on AUC alone are inherently 
limited due to cohort differences and methodological vari‑
ability, underscoring the need for cautious interpretation. 
Future research should prioritize head-to-head comparisons 
of validated tools in diverse populations, using a broader set 
of performance metrics beyond AUC. Such efforts are essen‑
tial to guide clinicians in selecting the most appropriate tool 
for their specific patient populations and clinical settings.
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