Sepsis-induced lipid droplet accumulation enhances antibacterial innate immunity through mechanisms dependent on DGAT-1 and interferon-beta

Filipe S. Pereira-Dutra, Julia Cunha Santos, Ellen Kiarely Souza, Rodrigo Vieira Savi, Tamyris S. Souza, Helen Gil, Hugo Espinheira-Silva, Felipe Ferraro-Moreira, Guilherme Iack, Tamires Cunha-Fernandes, Tathiany Igreja-Silva, Lohanna Palhinha, Mariana Macedo Campos, Ester Fernanda Terra Souza, Amanda França Cordeiro, Pablo Andrade-dos-Santos, Douglas Mathias Oliveira, Vinicius Soares Cardoso, Matheus A. Rajão, Livia Teixeira, Luciana Souza-Moreira, Maria Fernanda Souza Costa, Patrícia Alves Reis, Patrícia T. Bozza

PII: S0026-0495(25)00258-6

DOI: https://doi.org/10.1016/j.metabol.2025.156389

Reference: YMETA 156389

To appear in: *Metabolism*

Received date: 1 March 2025

Accepted date: 10 September 2025

Please cite this article as: F.S. Pereira-Dutra, J.C. Santos, E.K. Souza, et al., Sepsis-induced lipid droplet accumulation enhances antibacterial innate immunity through mechanisms dependent on DGAT-1 and interferon-beta, *Metabolism* (2025), https://doi.org/10.1016/j.metabol.2025.156389

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

1 Sepsis-induced lipid droplet accumulation enhances antibacterial innate immunity

2 through mechanisms dependent on DGAT-1 and interferon-beta

3

- 4 Filipe S. Pereira-Dutra ^{1,2,3*}, Julia Cunha Santos ^{1,2}, Ellen Kiarely Souza ¹, Rodrigo Vieira
- 5 Savi ^{1,2}, Tamyris S. Souza ^{1,2}, Helen Gil ^{1,2}, Hugo Espinheira-Silva ^{1,2}, Felipe Ferraro-
- 6 Moreira ¹, Guilherme Iack ^{1,2,4}, Tamires Cunha-Fernandes ^{1,2}, Tathiany Igreja-Silva ¹,
- 7 Lohanna Palhinha ^{1,2}, Mariana Macedo Campos ^{1,2}, Ester Fernanda Terra Souza ⁵,
- 8 Amanda França Cordeiro ⁵, Pablo Andrade-dos-Santos ⁵, Douglas Mathias Oliveira ^{1,2},
- 9 Vinicius Soares Cardoso ^{1,2}, Matheus A. Rajão ⁶, Livia Teixeira ¹, Luciana Souza-Moreira
- 10 ¹, Maria Fernanda Souza Costa ⁴, Patrícia Alves Reis ⁵, Patrícia T. Bozza ^{1,2,*}.

11

12

- 13 1. Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation
- 14 (FIOCRUZ), Rio de Janeiro, Brazil.
- 2. Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies,
- Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.
- 17 3. Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de
- 18 Janeiro, Brazil.
- 4. Laboratory of Immunobiology of Inflammation, Fluminense Federal University, Niterói,
- 20 Brazil.
- 5. Biochemistry Department, Roberto Alcântara Gomes Biology Institute, State University of
- 22 Rio de Janeiro, Rio de Janeiro, Brazil
- 23 6. Program of Immunology and Tumor Biology, National Cancer Institute (INCA), Rio de
- Janeiro, Brazil.

- *Corresponding author: Filipe S. Pereira-Dutra, Email: filipe.dutra@ioc.fiocruz.br,
- 27 <u>filipe.spd@gmail.com</u>; and Patrícia T. Bozza Email: <u>pbozza@ioc.fiocruz.br</u>,
- 28 patricia.bozza@fiocruz.br; Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz,
- 29 Fundação Oswaldo Cruz, Avenida Brasil, 4036, Manguinhos, Rio de Janeiro, RJ, CEP
- 30 21045–900, Brazil.

ABSTRACT

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

31

Lipid droplets (LDs) are lipid-rich organelles recognized as central players in lipid homeostasis, signaling, and inflammation. While their functions in inflammation are well-documented, the mechanisms of LDs in antibacterial immunity and infection resistance remain less understood. Our results show that E. coli-infection trigger immunometabolic reprogramming and LD accumulation in macrophages. Moreover, purified LDs from LPS-stimulated and E. coli-infected macrophages exhibited direct E. coli anti-bacterial activity. Pharmacological inhibition or genetic knockdown of DGAT1, a key enzyme in triglyceride synthesis, reduced LD formation, bacterial clearance, and pro-inflammatory responses (nitric oxide, PGE₂, CCL2, IL-6). Notably, DGAT1 inhibition impaired the expression of IFN-B and several interferon-stimulated genes (ISGs), including viperin, iNOS, cathelicidin and IGTP, in E. coli-infected macrophages. In a cecal-ligation and puncture model of sepsis in C57BL/6 mice, DGAT1 inhibition reduced sepsis-induced LD accumulation in peritoneal cells and decreased levels of IFNβ, CCL2, nitric oxide, and lipid mediators (PGE₂, LTB₄, and RvD1). Furthermore, DGAT1 inhibition accelerated sepsis-related mortality, coinciding with elevated bacterial loads in the peritoneum and bloodstream at 6- and 24-hour post-sepsis. Our results demonstrate that LDs are critical regulators of innate immunity infection resistance, contributing to both bacterial clearance and the coordination of a protective proinflammatory response during sepsis through mechanisms dependent on DGAT-1 and Type I IFN.

1. INTRODUCTION

Lipid droplets (LDs) are dynamic lipid-rich organelles that play essential intracellular roles, including regulating cell lipid homeostasis, intracellular signaling, and inflammatory processes 1,2 . LD accumulation is heavily influenced by the flux of cellular lipid metabolism, including both the uptake and synthesis of neutral lipids, as well as lipid-consuming processes like lipolysis and β -oxidation 3 . Accumulate evidence place LDs in leukocytes and other cells of innate immunity as major organelles in inflammation and critical regulators of different inflammatory diseases, acting as markers of leukocyte activation 4 and platforms for a broad-range synthesis of eicosanoids and cytokine signaling 4,5 .

Numerous studies on pathogen-leukocyte interactions have demonstrated a strong link between LDs and bacterial infections ^{6–8}. Activation of Toll-Like Receptors (TLRs) plays a central role in inducing LD accumulation in leukocytes ^{9–12}. Additionally, bacterial virulence factors have been shown to drive LD formation during infections by pathogens such as *Salmonella enterica* Typhimurium, *Listeria monocytogenes*, and *Mycobacterium tuberculosis* ^{13–15}. Intracellular bacteria may exploit LDs as an energy source and as a mechanism to evade the immune system ⁶. In pathogenic bacteria, LDs serve as platforms for prostaglandin E₂ (PGE₂) synthesis, which has been linked to increased IL-10 production and suppression of Th1 cytokines, promoting bacterial survival and/or proliferation ^{16–18}.

The perception of LDs solely as pro-pathogenic factors in infectious and inflammatory contexts has recently been challenged ^{19–21}. Emerging evidence suggests that LDs play a pivotal role in interferon (IFN) signaling pathways and the effectiveness of early innate responses ^{22–24}. Recent data show that LDs are a central hub in innate immunity, responding to danger signals by reprogramming cellular metabolism and

serving as autonomous platforms for innate immune responses ²⁵. In this context, the presence of antibacterial peptide cathelicidin (CAMP) in LDs confers greater protection against bacterial infection in human macrophages ²⁵. These findings position LDs as key regulators of metabolic reprogramming and facilitators of antimicrobial mechanisms ²⁵. Furthermore, the involvement of LDs in the antibacterial response is evolutionarily conserved, being first reported in *Drosophila* ²⁶.

Sepsis is a complex life-threatening syndrome caused by dysregulated inflammatory and metabolic host response to infection ²⁷. The balance between infection resistance and tissue tolerance may be central to understanding sepsis at the molecular level ^{28,29}. Alterations in lipid metabolism and increased LDs are observed during sepsis ^{12,30}, however although LD functions in inflammation are well-documented, the role of LDs in antibacterial immunity and infection resistance and their roles in sepsis survival remain less understood. During sepsis, LDs are critical for amplifying the proinflammatory response but also contribute to the disruption of tissue tolerance mechanisms leading to increased organ dysfunction ³⁰. Notably, the pathways driving the breakdown of tissue tolerance may play a key role in infection resistance ^{28,29}. In this study, we investigated the formation of LDs and the triglyceride synthesis in antibacterial innate immunity during sepsis. Our results demonstrate that LDs are critical regulators of resistance to infection, contributing to both bacterial clearance and the coordination of a protective proinflammatory response during sepsis.

2. Materials and Methods

103

104

102

Reagents

105 Recombinant Murine interferon y (IFNy) was obtained from PeproTech. E. RedTM conjugate **Bioparticles** 106 coli (K-12 strain) Texas (Cat# E2863), 107 Lipopolysaccharides from *Escherichia coli* (serotype O111:B4, Cat# L4931), A922500 (Cat# A1737), PF-04620110 (Cat# PZ0207), CI976 (Cat# C3743), oleic acid (Cat# 108 O1008), saponin from *Quillaja* bark (Cat# S7900), and Oil Red O (Cat# O0625) were 109 obtained from Sigma-Aldrich/Merck (St. Louis, MO). The Luria-Bertani broth (Cat# 110 K25-1551), and Tryptic Soy Agar (Cat# K25-610052) was obtained from Kasvi (São José 111 do Pinhais, PR, Brazil). RPMI-1640 (cat# 22400-089), penicillin-streptomycin (Cat# 112 15140148), gentamicin (Cat# 15750060), and L-glutamine (Cat# 25030081) were 113 114 obtained from Gibco (Grand Island, NY, USA). DAPI (Cat# D1306) and Fluoromount-G Mounting Medium (Cat# 00-4958-02) were purchased from ThermoFisher Scientific 115 116 (Waltham, MA, USA).

117

118

119

120

121

122

123

124

125

126

Mice

Adult male C57BL/6J mice (25-30 g, 10-12 weeks old) were supplied by the Institute of Science and Technology in Biomodels from Oswaldo Cruz Foundation. Mice were maintained with standard rodent diet (AIN-93 M) and water available *ad libitum* with 12/12 h light/dark cycle (7:00 AM-7:00 PM) under controlled temperature (23 \pm 1 °C) and humidity (60 \pm 5%). The Institutional Animal Welfare Committee approved all animal experiments in agreement with the Brazilian National guidelines supported by CONCEA (Conselho Nacional de Controle em Experimentação Animal) under license number L025/15 and L005/20 (CEUA/FIOCRUZ).

Macrophages cell culture

To obtain bone marrow-derived macrophages (BMDM), bone-marrow cells isolated from femur and tibia of mice were cultured for 7 days in RPMI-1640 medium supplemented with 18% (vol/vol) L929-derived M-CSF conditioned medium, 20% (vol/vol) heat-inactivated fetal bovine serum, 1% L-glutamine (vol/vol), and 1% penicillin-streptomycin (vol/vol) as previously described by Assunção et al., (2017). Differentiation was performed at 37 °C in a humidified 5% CO₂ incubator. After seven days, adherent macrophages were harvested and seeded for assays. Differentiated macrophages were cultured in RPMI-1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS, vol/vol), 1% L-glutamine (vol/vol), and 1% penicillin/streptomycin (vol/vol). BMDM cells culture was performed at a density of $0.1x10^6 - 1x10^6$ cells/ml, and the cell culture were performed at 37°C in 5% CO₂.

Bacterial strains and growth conditions

Escherichia coli strain Seattle 1946 (ATCC 25922) used in this study were obtained from the Enterobacteria Collection (CENT) of the Oswaldo Cruz Foundation. $E.\ coli$ strain Seattle 1946 is a whole-genome sequenced quality control strain that does not produce verotoxin and that does not present antibiotic resistance mechanisms. The bacteria were cultured in Luria-Bertani broth (LB) for 16–18 h at 37°C to obtain stationary growth phase cultures. Before infection, the bacteria were washed three times with Phosphate-Buffered Saline (PBS), centrifuged $(1,000 \times g)$ for 10 min at 4°C. The bacteria were resuspended in PBS and diluted in RPMI with FBS to an appropriate multiplicity of infection (MOI) according to the optical density (OD) at 600 nm. E.

coli (K-12 strain) Texas Red™ conjugate Bioparticles were also washed three times with
PBS, centrifuge $(1,000 \times g)$ for 10 min at 4°C, and resuspended in PBS.

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

151

152

E. coli infection of macrophages and treatments

dissolved in dimethyl sulfoxide (DMSO; Sigma).

An in vitro gentamicin protection assay was used to measure the phagocytosis and intracellular survival of E. coli based on the method described by Lissner et al. (1983), with modifications of Souza et al. (2021). The macrophages were seeded at 1×10^5 and 5×10^5 x 10⁵ cells per well in 24- and 12-well places (flat-bottom, tissue-culture-treated plates; Costar), respectively, and were incubated for 12 h. Meanwhile, E. coli cells were cultured overnight at 37°C with agitation. Macrophages were infected with E. coli at a MOI of 100 for 1 h. Then, the culture medium was discarded, and the cells were washed with PBS with 100 µg/mL gentamicin three times. RPMI-1640 supplemented with 100 µg/mL gentamicin was added to each well to kill non-phagocyted bacteria, and incubation was continued for another 1 h. After incubation, media with gentamicin were removed, and fresh media was added for the remainder of the time. A similar protocol was used for E. coli bioparticles stimulation at MOI of 100. Alternatively, BMDMs were stimulated with LPS serotype 0111:B4 (500 ng/mL) plus murine IFNy recombinant (10 ng/mL) for 24h. All experiments were done in triplicate. To enhance LD accumulation, 40 µM oleic acid was added to the cell culture and incubated for 16 h prior to E. coli infection. To inhibit LD biogenesis, the DGAT1 inhibitors A922500 or PF-04620110, or the ACAT1 inhibitor CI976, were added 30 min before infection and maintained throughout the infection period. All inhibitors were

For Colony-forming unit (CFU) analysis, BMDM cells were washed three times
with PBS and lysed with 10% Triton X-100 solution at the indicated time points. The
CFU of bacteria was counted by plating the appropriate dilution in TSA plates.

Lipid droplets staining and quantification

BMDM were fixed with 3.7% formaldehyde for 10 min, and LDs were stained with 0.3% Oil Red O' (diluted in isopropanol 60%) as previously described ³³. Preparations were analyzed with a 60× objective in FluoView FV10i Olympus confocal microscope (Tokyo, Japan). Images were acquired, colored, and merged using Olympus FV10-ASW and open-source ImageJ software (https://imagej.nih.gov/ij/). The Oil red O-stained LDs were measured using the open-source ImageJ software.

Measurement of Lactate

Lactate levels in cell-free culture supernatant were measured using an enzymatic lactate kit (Labtest, cat. # 138-1/50) performed as per manufacturer's instruction.

Nitric Oxide Assay

The nitric oxide (NO) levels in culture supernatants and peritoneal lavage supernatants were measured by the colorimetric Griess assay. Briefly, 25μL of the sample was mixed with an equal part of Griess reagent (1% sulfanilamide / 0,1% N-(1-naphtyl) -ethylenediamine dihydrochloride in 2.5% H₃PO₄) in a 96-well plate. The color development was assessed at 450 nm with a microplate reader (Spectramax, Molecular Devices, Inc., USA). As a standard curve, a solution of sodium nitrite (NaNO₂) was used at an initial concentration of 200μM, diluted in fresh culture medium.

199

200

Quantitative PCR (qPCR)

201	RNA was extracted with QIAamp Viral RNA (Qiagen®) from cells seeded (10 ⁵
202	cells/well) in 24-well plates. Quantitative RT-PCR was performed using a dye-based
203	GoTaq 1-Step RT-qPCR System (Promega, Fitchburg, WI, USA) in a StepOne TM Real-
204	Time PCR System (ThermoFisher, Carlsbad, CA, USA). Amplifications were carried out
205	in 15 μ L reaction mixtures containing 2× reaction mix buffers, 1x of probe-based oligos
206	from predesigned TaqMan Gene Expression Assays (ThermoFisher, Carlsbad, CA, USA),
207	and 5 μL of RNA template. The program for probe-based amplifications was 10 min at
208	95 °C followed by 50 cycles of 15 s at 95°C and 1 min at 60 °C. The relative mRNA
209	expression was calculated by the 2- $\Delta\Delta$ Ct method. The β -actin (actb) expression was
210	used as a reference gene. The probe-based oligos were all Predesigned Taqman Gene
211	Expression Assays: fasn (ref: Mm00662322, g1, FAM), dgat1 (ref: Mm00515643_m1,
212	FAM), dgat2 (ref: Mm00499536_m1, FAM), acat1 (ref: Mm00507463_m1, FAM), plin2
213	(ref: Mm00475794_m1, FAM), plin3 (ref: Mm04208646_g1, FAM), pnpla2 (ref:
214	Mm00503040_m1, FAM), camp (ref: Mm01241632_g1, FAM), cd36 (ref:
215	Mm01135198_m1, FAM), <i>abca1</i> (Ref: Mm00442646_m1, FAM), <i>il-1β</i> (ref:
216	Mm00434228_m1, FAM), il-10 (ref: Mm00439614_m1, FAM), ptgs2 (ref:
217	Mm00478374_m1, FAM), 5-lo (ref: Mm01182747_m1, FAM), 15-lo (Cat#
218	Mm00507789_m1) nox2 (ref: Mm00440502_m1, FAM), arg1 (ref: Mm00475988_m1,
219	FAM), chi3l3 (ref: Mm00657889_m1, FAM), mr1 (ref: Mm00468487_m1, FAM), and
220	actb (ref: Mm02619580_g1, FAM).

221

222

Immunofluorescence staining

BMDMs were seeded on coverslips and fixed using 3.7% formaldehyde after 48 h of infection for 20 min at room temperature. Cells were rinsed three times with PBS containing 0.1 M CaCl₂ and 1 M MgCl₂ (PBS/CM) and then permeabilized with 0.1% Triton X-100 plus 0.2% BSA in PBS/CM for 10 min (PBS/CM/TB). Cox-2 was labeled by the rabbit polyclonal antibody anti-COX-2 (cat. sc-1745, Santa Cruz Biotechnology) at a 1:500 dilution overnight, followed by a mouse anti-IgG-DyLight 550 at a 1:1,000 dilution for 1 h with 0.2 μg/ml BODIPY493/503 dye for 5 min for LD staining. Slides were mounted using antifade mounting medium (VECTASHIELD). Nuclear recognition was based on DAPI staining (1 μg/ml) for 5 min. Fluorescence microscopy was analyzed with a 100x objective lens (Olympus).

Flow cytometry

Macrophages (5x10⁵) were incubated with the appropriate amount of purified rabbit polyclonal antibody anti-GLUT1 (Cat# 21829-1-AP, Proteintech, USA), Alexa Fluor® 488 rat anti-mouse CD206 (MMR) Antibody (Cat# 141710, Biolegend, USA), APC mouse anti-mouse CD36 (Cat# 562744, BD Biosciences, USA), APC hamster anti-mouse CD80 (Cat#560016), and/or PE rat anti-mouse F4/80 Antibody (Cat#123109, Biolegend, USA) for 30 min at 4°C, after incubation with 10% of FBS in PBS/0.1% Sodium Azide to block non-specific binding. For GLUT1 staining, Alexa546 goat anti-rabbit IgG was added to all wells and incubated for 30 min. As negative control cells receive only secondary antibodies. At least 10⁴ cells were acquired per sample in FACSCalibur flow cytometer and CellQuest™ software (Becton Dickinson, San Jose, CA, USA). All data were displayed on a log scale of increasing fluorescence intensity and presented as histograms. Analysis was performed by using FlowJo™ Software (Becton Dickinson, San Jose, CA, USA).

Sepsis Induction and Treatment

Sepsis was induced by Cecal Ligation and Puncture (CLP), according to Reis et al. (2017), with modifications of Teixeira et al. (2023). Briefly, C57BL/6 mice were anesthetized with intraperitoneal injections of ketamine (100 mg/kg) and xylazine (10 mg/kg) and a 1 cm incision was made on the abdomen. The cecum was exposed and linked below the ileocecal junction. Four perforations were created using a 22-gauge needle (severe sepsis model), allowing a small amount of fecal material to be expelled into the peritoneal cavity, and the cecum was gently relocated. The area was sutured with nylon 3-0 (Shalon) in two layers. Sham-operated animals (control) with identical laparotomy but without ligation and punctures.

After 6h and 24h post-surgery, Sham and CLP mice were orally treated with A922500 at a dose of 3 mg/kg or vehicle. All mice received 500 μL of sterile saline with meropenem (10 mg/kg; Merck) subcutaneously as fluid resuscitation and antibiotic therapy at 6h and 24h hours after surgery. Animals were monitored for 48h for survival and clinical score analysis. The clinical score was determined by the observation of following signs: piloerection, curved trunk, alterations in gait, seizures, limb paralysis, coma, respiratory rate, skin color alterations, heart rate, lacrimation, palpebral closure, decreased grip strength, limb, abdominal and body tone and body temperature alterations. The clinical evaluation was based on a multifactorial SHIRPA protocol, with the modifications of Reis et al. (2017). Blood glucose levels were measured using a glucose meter (Gtech) at 6h and 24 post-surgeries. A small incision was made at the tip of the mouse's tail, and a drop of blood was placed on the test strip inserted into the device.

Six or twenty-four hours after sepsis induction, the animals were euthanized, blood was collected via cardiac puncture, and the peritoneal cavity was opened and

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

washed with 3 ml of sterile saline. The peritoneal lavage was collected for total and differential cell count, CFU evaluation, LDs, cytokines, chemokines, lipid mediators, and NO quantification. For CFU evaluation, peritoneal lavage and serum from each animal was diluted and plated on tryptic soy agar (TSA) plates. After 24 hours of incubation at 37°C, the bacterial colonies were enumerated manually. Myeloperoxidase activity was measured spectrophotometrically, following the method of by Bradley et al., (1982) with minor modifications. Briefly, liver tissue samples were homogenized in 0.5% hexadecyltrimethylammonium bromide (HTAB; Sigma Chemical Co., St. Louis, MO) prepared in 50 mmol/L potassium phosphate buffer (pH 6.0), using 100 µL of buffer per 50 mg of tissue. The homogenates were centrifuged at $40,000 \times g$ for 30 minutes at 4°C. Supernatants were collected for MPO activity analysis. In 96-well plates, 50 µL of the supernatant was mixed with 50 µL of HTAB buffer and 50 µL of orthodianisidine dihydrochloride (0.167 mg/mL; Sigma), followed by incubation at 37°C for 30 minutes. Subsequently, 50 µL of hydrogen peroxide (0.0005%, Sigma) was added to initiate the reaction. After 10 minutes, absorbance was measured at 460 nm using a spectrophotometer. MPO activity was normalized to tissue weight (mg).

In each experiment, 7 to 15 cages, each containing 5 mice, were used. After weighing, cages were randomly assigned to experimental groups. Within each cage, all mice were numbered from 1 to 5 using tail markings. Each experiment included 5 mice from the sham group, 10–15 from the CLP group, and 10–15 from the CLP+iDGAT1 group. The experimental n was determined based on the 50% mortality rate associated with severe sepsis, as previously documented in the literature³⁶. All surviving mice from each experiment were included in all subsequent analyses. A total of 5 independent experiments were conducted, involving 175 animals, including those used for bone marrow collection for macrophage differentiation.

Leukocyte Count and Lipid Droplet Staining

Peritoneal lavage samples were diluted in Turk's solution (2% acetic acid), and the total cell counts were performed with optical microscopy in the Neubauer Hemocytometry chamber. For differential cell count and LD Staining, the samples were cytocentrifuged in a microscope slide and fixed with 3.7% formaldehyde for 10 min. Cells were washed three times in PBS, slides were stained with 0.3% Oil Red O' (diluted in isopropanol 60%) for 2 minutes at room temperature. Cells were washed once in 30% isopropanol and three times in distilled water. Slides were rinsed and counterstained with Mayer's hematoxylin for 3 minutes. After incubation, the slides were washed three times in distilled water. Mounting solutions and coverslips were added. LDs were enumerated by optical microscopy in 50 consecutive leukocytes.

Measurements of Cytokines and Chemokines

CXCL1 / KC, CCL2 / MCP-1, IL-1β, IL-6, IL-10, IL-12p40, TNF-α, IFN-β and IFN-γ in cell-free culture supernatants and peritoneal lavage were measured using mouse Duoset ELISA kit (R&D Systems, USA) according to manufacturer's instructions. Cathelicidin-related antimicrobial peptide (CAMP) in peritoneal lavage was measured using mouse Sandwich ELISA kit (Cat# CSB-E15061m, CUSABIO, USA). The level of IFN-alpha in cell-free culture supernatants and peritoneal lavage was measured using mouse IFN-alpha All Subtype ELISA Kit (Catalog #MFNAS0, R&D Systems, USA)

Measurements of Lipid mediators of inflammation

	According	to	the	manufacturer's	instructions,	levels	of	Prostaglandin	E2
(PGE	E ₂), Leukotrie	ne I	34 (I	LTB ₄) and Resol	vin D1 (RvD1) in ma	crop	phages superna	ıtanı
and p	peritoneal lava	age '	were	measured using	EIA kits (Cay	yman C	hem	nical, USA).	

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

321

322

323

Lipid droplets purification and Bacterial Plate Assay

BMDMs were seeded at a density of 25×10^7 cells/ flask (175 cm²). The next day, cells were stimulated with LPS serotype 0111: B4 (500 ng/mL) plus murine IFN-y recombinant protein (10 ng/mL), oleic acid (40 µM) or E. coli (MOI 100) for 24 h, at 37°C in 5% CO₂. LDs were isolated from 4 culture flasks for each condition as previously described by Samsa et al, 2009 37. Cells were gently scraped into the media and centrifuged at 200g for 15 minutes at 4°C using a swing-out bucket rotor.. The cell pellet was washed twice in PBS and then resuspended in 2.5 mL of lysis buffer (20 mM Tris, 1 mM EDTA, 1 mM EGTA, 100 mM KCl buffer (pH 7.4), followed by incubation on ice for 5 min. Using a Cell Disruption Vessel, we lysed cells by applying 750 psi of nitrogen gas for 5 minutes in an ice bath. The cell lysate was collected in 15 mL conical tubes. The total cell lysate was centrifuged at 900g for 15 min at 4°C. The resulting post nuclear supernatant was collected and applied to a sucrose gradient (1.08 M, 0.27 M, and 0.135 M) and subjected to ultracentrifugation (150,000 x g for 70 min at 4°C). After ultracentrifugation, the first fraction was rich in isolated LDs. TEE-KCl buffer was added to the first fraction, and the LDs were isolated a second time by centrifugation at 14,000 × g for 15 min. As a control for proper cell fractionation, the activity of the cytoplasmic enzyme lactate dehydrogenase (LDH; Promega, G1780) was assayed.

Colony formation assays were conducted to assess the antibacterial activity of LDs as described by Bosch *et al* (2020). Exponentially growing *E. coli* cultures in LB broth at 37 °C were harvested at an OD_{600} of 1. The cells were then centrifuged, washed,

and resuspended in 10 mM Tris-HCl buffer (pH 7.4) supplemented with 1% (v/v) LB
medium. Aliquots of 100 μL of this bacterial suspension were incubated with 100 μL of
intact LDs prepared using a sucrose gradient. Following incubation, the samples
underwent 6-8 serial 1:10 dilutions in 10 mM Tris-HCl (pH 7.4) and were plated in
triplicate on LB agar plates. CFU were quantified after 16 hours of incubation at 37 °C.

DGAT1 Knocking down assays.

BMDMs were plated (2,5 x 10⁵ cells/well) in 24-well culture plates and incubated for 12 h at 37 °C and 5% CO₂. Cells were transfected with 100 pmol/μL siRNA targeting DGAT1 (Cat# s64951, ThermoFish Scientific) or scramble RNA (Cat# 4390844, ThermoFish Scientific) in Opti-MEM (Gibco, USA), using Lipofectamine RNAiMax (ThermoFish Scientific). Alternatively, macrophages were also transfected with 5μM self-deliverable AUM*silence* oligos for DGAT1 (Cat# AUM-SIL-A-100-Dgat1-1) or scramble RNA (AUM-SCR-A-100) according to the manufacturers' instructions (AUM BioTech, LLC, USA). After 48 hours of recovery, BMDMs were then infected with *E. coli*. The efficiency of *knocking down assays* was measured 48-72 h post-transfection through quantitative RT-PCR performed using dye-based GoTaq 1-Step RT-qPCR System.

Western blotting

BMDM cells were harvested using ice-cold lysis buffer pH 8.0 (1% Triton X-100, 2% SDS, 150 mM NaCl, 10 mM HEPES, 2 mM EDTA containing protease inhibitor cocktail - Roche). Cell lysates were heated at 100°C for 5 min in the presence of Laemmli buffer pH 6.8 (20% β-mercaptoethanol; 370 mM Tris base; 160 μM bromophenol blue; 6% glycerol; 16% SDS). Twenty μg of protein/sample were resolved by electrophoresis

on SDS-containing 10% polyacrylamide gel (SDS-PAGE). After electrophoresis, the separated proteins were transferred to nitrocellulose membranes and incubated in blocking buffer (5% nonfat milk, 50 mM Tris-HCl, 150 mM NaCl, and 0.1% Tween 20). Membranes were incubated overnight with a 1:1000 dilution of the following primary antibodies: anti-Cathelicidin (#ab180760, Abcam), anti-IRGM3 (#14979S, Cell Signaling), anti-Viperin (#13996S, Cell Signaling), anti-iNOS (#ab15323, Abcam), anti-PLIN-2 (#15294-1-AP, ProteinTech), anti-β-tubulin (66240-1-Ig, ProteinTech), and anti-β-actin (#66009-1-Ig, ProteinTech). After the washing steps, they were incubated with IRDye—LICOR or HRP-conjugated secondary antibodies. All antibodies were diluted in blocking buffer. The detections were performed by Supersignal Chemiluminescence (GE Healthcare) or by fluorescence imaging using the Odyssey system. Densitometric analyses were performed using Image Studio Lite version 5.2. Protein expression levels were first normalized to β-actin or β-tub expression and then further normalized to the uninfected group.

Statistical analysis

Data obtained in this study were presented as mean \pm SEM of three to six independent experiments. The unpaired two-tailed t-test was used to evaluate the significance of the two groups. Multiple comparisons among three or more groups were performed by one-way ANOVA followed by Tukey's multiple comparison test. The significance of the survival curves was evaluated using the log-rank (Mantel–Cox) test. For all analyses, a p-value of ≤ 0.05 was considered statistically significant. The statistical analysis was conducted using GraphPad Prism v.8 software (GraphPad, La Jolla, CA, USA).

396 **3. RESULTS**

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

Escherichia coli induced LD accumulation is part of pro-inflammatory reprogramming of murine macrophages.

LD accumulation in leukocytes is a well-documented phenomenon both in experimental models of sepsis as well as in septic patients ^{12,38}. However, the role of LD during infections caused by extracellular bacteria has not been fully clarified. Our first step was to investigate the participation of LD in the antibacterial response of macrophages. For it, we infected primary macrophages with Escherichia coli, a classical extracellular bacterium. The E coli infection led to a significant LD accumulation in macrophages at 24 hours post-infection (hpi) (Figure 1A-B and S1A). To deepen this finding, we evaluated the expression of the main genes involved in lipid metabolism and LD formation in BMDMs at 12 hpi. Differently from the classical LPS + IFN-γ model (Figure S1B), the E. coli infection induced a discrete change in gene expression of lipid metabolism-associated genes at 12 hpi (Figure 1C). The E. coli infection led to a slight increase of lipid metabolism-associated genes plin2, dgat1 and cd36, and a decrease in the expression of lipolytic gene pnpla2/atgl (Figure 1C). In comparison, stimulation with LPS + IFN-γ led to a more expressive remodeling of the expression of all genes involved in lipid metabolism (Figure S1B). These findings indicate that E. coli infection triggers a lipid metabolic profile distinct from that induced by the classical LPS + IFN-γ.

Our next step was to evaluate whether the accumulation of neutral lipids could be associated with *E. coli* intracellular viability. Unlike pathogenic bacteria ^{14,39}, *E. coli* viability decreased sharply between 1 hour and 24 hours (**Figure 1D**), suggesting that LD accumulation does not contribute to the intracellular survival of bacterium. We investigated the potential association between LD accumulation and a pro-inflammatory

response during E. coli infection. First, we evaluated the expression of the key enzymes
involved in lipid mediator synthesis (cox-2, 5-lo, and 15-lo). The E. coli infection
increases the expression of cox-2 and decreases the expression of 5-lo and 15-lo (Figure
1E). In addition, COX-2 expression was elevated and found near LDs (Figure 1F).
Reinforcing this finding, the infection led to an increase in the synthesis of PGE ₂ , but not
LTB ₄ or RvD1 (Figure 1G). Moreover, <i>E. coli</i> infection induces classical glycolytic shift
(Figure S1C and 1H) and pro-inflammatory reprogramming in macrophages. This was
evidenced by elevated nitric oxide production (Figure 11), increased expression of
inos/nox2 and il-1b mRNA (Figure 1J), and higher levels of pro-inflammatory
chemokines (CCL2 and CXCL1) and cytokines (IL-1 β , IL-6, IL-12p40, and TNF) in the
supernatant (Figure 1K). There was no increase in the gene expression of M2 biomarkers
(il-10, arg-1, ch3l3) (Figure 1J), nor in the production of IL-10 (Figure 1K). In host-
pathogen interaction, several works have reported that LDs are essential for enhancing
the synthesis of IFN in infected cells, playing a critical role in the early innate response
to viral infection ⁴⁰ . Our next step was to evaluate whether <i>E. coli</i> infection could trigger
IFN production in macrophages. Interestingly, the E. coli infection induces the release of
IFN- β but not IFN- α or IFN- γ by macrophages (Figure 1L), suggesting a selective IFN
response within this extracellular bacterial context.

LDs exhibit anti-bacterial functions in murine macrophages.

Our previous data in human macrophages indicated that the interaction between LDs and *E. coli* was associated with a decrease in bacterial viability ²⁵. In murine macrophages, LDs interact with *E. coli* (**Figure 2A**), but these interactions are relatively infrequent, occurring in only about 19% of cases. Bacterial interactions with LDs can promote bacterial survival or inhibit their viability depending on the bacteria and the host

cell and stimulatory conditions ⁶ . Using bioparticles of <i>E. coli</i> , we observed that this
interaction occurred independently of bacterial viability (Figure 2B). As a proof-of-
principle of the protective role of LDs for bacterial infection, we purified LDs (Figure
2C) from LPS+IFN-stimulated macrophages, and we conducted a BPKA assay as
reported by Bosh et al. (2020). LDs from LPS+IFN-γ-stimulated macrophages
demonstrated enhanced bactericidal activity than the control (Figure 2D-G). We also
investigated whether LDs from E. coli-infected BMDMs exhibit bactericidal activity. As
shown in Figure 2H-J, LDs from E. coli-infected BMDMs displayed enhanced
bactericidal activity, comparable to that induced by LPS+IFN and greater than the control.
Notably, LDs from OA-stimulated BMDMs did not exhibit bactericidal activity. (Figure
2H-I).
Our next step was to investigate the contribution of these findings to control
bacterial loads into the macrophages. Our first experimental strategy was to stimulate LD
biogenesis by pretreating macrophages with 40 µM oleic acid (OA) for 16 h before
bacterial infection. Pretreatment with OA promoted LD biogenesis, increasing LDs size
and numbers at 1 hpi and 24 hpi (Figure 2K-L). OA reduced the number of viable
intracellular bacteria at 24 hpi (Figure 2M and Figure S2A). However, the reduction in
bacterial numbers at 1 hpi following OA pretreatment suggests it may also be linked to
decreased bacterial uptake, indicating that OA may modulate bacterial load through an
LD-independent pathway.
Our next strategy was to impair LD accumulation by inhibiting the main pathway
associated with neutral lipid synthesis (Figure 2N). Treatment with a DGAT1 inhibitor
(iDGAT1) significantly reduced E. coli-induced LD accumulation (Figure 2O), while the
ACAT1 inhibitor showed minimal effects on LD biogenesis. We then examined whether

DGAT1 inhibition increased intracellular bacterial counts to 24 hpi (Figure 2P), a
phenomenon not associated with altered bacterial uptake (Figure S2B). In contrast,
ACAT1 inhibition did not affect macrophage bactericidal activity. We further evaluated
whether iDGAT1 could influence E. coli proliferation. The iDGAT1 treatment showed no
effect on E. coli growth in LB medium (Figure S2C). Taken together, these results
suggest that changes in the lipid metabolism of macrophages affect the killing capacity
of macrophages, with LDs exerting anti-bacterial functions.

Inhibition of LD accumulation reduced the inflammatory response of macrophages and impaired the IFN production and function.

Next, we evaluated whether the inhibition of LD accumulation by A922500 treatment could influence the pro-inflammatory response induced by *E. coli* infection in macrophages. Inhibiting LD accumulation was associated with a significant decrease in the inflammatory lipid mediator PGE₂ but not LTB₄ in this model (Figure 3A). Additionally, DGAT1 inhibition reduced the levels of lactate production (Figure 3B). These results prompted us to analyze the activation of macrophages treated with iDGAT1. We found that DGAT1 inhibition did not affect the expression levels of F4/80 (Figure S3A), CD80 (Figure S3B), and GLUT1 (Figure S3C). Likewise, the expression of M2-marker CD206 remained unchanged when compared to *E. coli* infection in untreated group (Figure S3D). Interestingly, *E. coli* infection-induced CD36 expression was enhanced by iDGAT1 treatment (Figure S3E), suggesting a potential compensatory mechanism.

Next, we evaluated the impact of iDGAT1 treatment on inflammatory cytokines and chemokines production. The inhibition of LD accumulation reduced the production of CCL2, IL-1β and IL-6 induced by *E. coli* infection (**Figure 3C**), but not the lytic cell

496	death induced by bacterial infection measured by LDH activity (Figure 3D). However,
497	no alteration was observed in $E.\ coli$ -induced CXCL1, IL-10, IL-12p40, TNF or IFN- γ
498	in the iDGAT1-treated group (Figure S3F). These results suggest that DGAT1 pathway
499	plays a selective role in modulating inflammatory mediators without fully deactivating
500	the macrophage response.
501	Furthermore, preventing LD accumulation with iDGAT1 inhibits E. coli-induced
502	IFN- β (Figure 3E). In addition, we investigated whether iDGAT1 treatment affects the
503	expression of interferon-stimulated genes (ISGs). iDGAT1 reduced E. coli-induced
504	expression of camp and nox2 at the mRNA level, but not of Plin2 (Figure 3F). To confirm
505	these findings at the protein level, we assessed the expression of CAMP and iNOS.
506	Inhibition of DGAT1 in macrophages decreased CAMP and iNOS protein levels (Figure
507	3G-H) and impaired nitric oxide production, consistent with the reduced iNOS expression
508	(Figure 3I). Moreover, treatment with iDGAT1 partially reduced Plin2 expression in E .
509	coli-infected macrophages (Figure 3G-H). We also evaluated the expression of Viperin,
510	and IRGM3/IGTP, which have previously been linked to LDs presence in host cells ^{25,41,42} .
511	As shown in Figure 3J-K, treatment with the DGAT1 inhibitor reduced the expression of
512	Viperin and IRGM3 in E. coli-infected macrophages.
513	To confirm these findings, we tested whether another DGAT1 inhibitor could
514	replicate the effects observed with A922500 during E. coli infection. For this purpose, we
515	used PF-04620110, a structural unrelated high selective DGAT1 inhibitor ⁴³ . We found
516	that DGAT1 inhibition by PF-04620110 also reduced LD accumulation (Fig. S4A-C),
517	which was followed by decreased PGE2 synthesis (Fig. S4D). Furthermore, DGAT1
518	inhibition with PF-04620110 diminished the levels of IFN- β , IL-1 β , IL-6, CCL2 and TNF
519	(Fig. S4E-I). Moreover, the inhibition of DGAT1 also reduced lactate and nitric oxide
520	(NO) production (Fig. S4J-K). Notably, DGAT1 blockade led to an increased bacterial

load at 24 hours post-infection (hpi) (Fig. S4L). Together, these findings suggest a
significant role of DGAT1 and LD accumulation in the host signaling response critical
for resistance to bacterial infection.

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

521

522

523

The loss of DGAT1 expression decreases LD accumulation and inflammatory function in bacterial infection.

To further confirm the role of DGAT1 in LD accumulation and inflammatory response during E. coli infection, we knocked down dgat1 expression in murine macrophages. Initially, we tested two methods. The first approach utilized siRNA with lipofectamine, which reduced dgat1 expression by approximately 50% (Figure S5A). The second approach employed self-delivery siRNA technology, which achieved around 75% knockdown efficiency in primary macrophages (Figure 4A and Figure S5B-C). Due to its higher effectiveness, we proceeded with the self-delivery siRNA method. Knockdown of dgat1 reduced E. coli-induced LD accumulation (Figure 4B-C) and increased bacterial persistence but did not affect bacterial uptake (Figure 4D and S5D). In alignment with the pharmacological inhibition findings, reducing DGAT1 expression decreased the production of PGE₂ (Figure 4E), and the levels of IL-6, CCL2, and IFN-B (Figure 4F-H). We also evaluated the expression of nox-2 and camp, critical genes involved in control of bacterial infection. We found that DGAT1 knockdown corresponded with reduced camp and nox2 at the mRNA level (Figure 4I-J) and decreased NO production (Figure 4K) at 24hpi. Furthermore, DGAT1 knockdown by siRNA also attenuated the E. coli-induced upregulation of Ptgs2 expression at the mRNA level (Figure 4L).

Mammals possess two diacylglycerol acyltransferase isoforms (DGAT1 and DGAT2) that catalyze the final and committed step in triglyceride synthesis ⁴⁴. While

previous studies demonstrated that TLR agonists can induce DGAT2 expression in macrophages⁴⁵, we sought to evaluate this effect in our experimental system. Both *E. coli* infection and LPS+IFN-γ treatment significantly upregulated *dgat2* expression by 12 hours post-infection (hpi) (Figure 4M). To determine whether DGAT1 siRNA knockdown might exert off-target effects or trigger compensatory DGAT2 upregulation, we assessed *dgat2* expression following DGAT1 silencing. Notably, DGAT1 siRNA treatment did not alter *dgat2* expression in either uninfected or *E. coli*-infected cells (Figure 4M). Unlike pharmacological DGAT1 inhibition, DGAT1 knockdown did not impact lactate production (Figure 4O) or LDH release (Figure 4P). Collectively, these results confirm the central role of DGAT1 in LD accumulation and in regulating bacterial activity in murine macrophages.

DGAT1 inhibition prevents sepsis-induced LD accumulation and downregulates the protective inflammatory response.

We next investigated whether the DGAT1 inhibitor A922500 could prevent sepsis-induced LD accumulation in peritoneal leukocytes during the early stages of sepsis (Figure 5A). In 6h and 24h post-sepsis, the DGAT1 inhibition reduced sepsis-induced LD accumulation in peritoneal leukocytes (Figure 5B-C). During sepsis, LDs have been shown to serve as a platform for the synthesis of lipid inflammatory mediators in leukocytes ⁴⁶. The inhibition of LD accumulation significantly reduced the production of lipid inflammatory mediators, including PGE₂, LTB₄ and RvD1 (Figure 5D). The prevention of LD accumulation also impaired sepsis-induced IL-6 and CCL2 in 6h and 24h post-sepsis, respectively (Figure 5E-F). No significant differences were observed between untreated and treated sepsis groups in IL-1β, IL-12p40, IL-10, CXCL1 and TNF production (Figure S6A-E). Due to reduced CCL2 levels, we also investigated whether

inhibiting DGAT1 could impair the activation of peritoneal macrophages. However, our
results showed that the treatment did not reduce the pro-inflammatory activation
macrophages marker (F4/80) (Figure S6F). There was an increase in CD80 and GLUT1
expressions in cells derived from the CLP-iDGAT1 treated group, but no changes in
CD206 expressions were observed between the groups (Figure S6F-I).

Our previous work showed that LPS-induced LDs in the liver are associated with upregulation of several interferon-stimulated genes (ISGs), including Viperin and CAMP ²⁵. Here we show that Viperin, HMGB1 and CAMP are upregulated in the hepatic sepsisinduced LDs (Figure S7A-B), suggesting elevated systemic interferon levels during sepsis. In this context, we investigated whether sepsis induces ISG upregulation in peritoneal macrophages. We observed sepsis-induced expression of IRGM, followed by increased Plin2 expression in these cells. (Figure 5G). We also investigated the interferon production in the peritoneal lavage induced by sepsis. The polymicrobial sepsis did not affect the production of IFN-α (Figure 5H) but increased the production of IFN-β at 24h (Figure 5I), accompanied by a modest and transient elevation in IFN-y levels at 6h postsepsis (Figure 5J). The downregulation of LD accumulation induced by the IDGAT1 inhibition during sepsis was followed by a significant decrease in IFN-β levels 24h postsepsis (Figure 51). We then evaluated whether DGAT1 inhibition could impair the antibacterial mechanisms during infection. We found that preventing LD accumulation reduced sepsis-induced increase of NO (Figure 5K) and impaired secretion of antibacterial peptide CAMP (Figure 5L). Altogether, these data support the role of DGAT and lipid accumulation in leukocyte inflammatory response during sepsis.

593

594

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

The inhibition of DGAT1 led to the loss of control of the bacterial load in sepsis

The impairment of resistance mechanism compromises the host's ability to
control infections ^{28,47} . Furthermore, the increased bacterial burden in the peritoneal
cavity is directly linked to the impaired bactericidal capacity of peritoneal leukocytes ⁴⁸ .
In this context, we assessed the bacterial load in both the peritoneal cavity and the
bloodstream during sepsis. Bacterial load was significantly higher in the peritoneum of
septic mice treated with iDGAT1 compared to untreated mice at both 6h and 24h post-
sepsis (Figure 6A). To determine whether the loss of bacterial control was associated
with impaired leukocyte recruitment, we also evaluated the cell number in the peritoneal
cavity. However, no significant differences were observed in the total or differential
leukocyte counts between untreated and treated sepsis groups at either 6 hours (Figure
6B) or 24 hours post-sepsis (Figure 6C). Moreover, the bacterial load was also
significantly elevated in the serum of iDGAT1-treated mice at both times analyzed
(Figure 6D), indicating increased bacterial dissemination and a loss of control over the
infection. During systemic infection, the liver plays a critical role in clearing bacteria
from the bloodstream, thereby preventing their dissemination throughout the body ⁴⁹ . To
investigate whether DGAT1 inhibition affects hepatic leukocyte recruitment, we
measured myeloperoxidase activity. iDGAT1-treated mice exhibited significantly
reduced hepatic myeloperoxidase activity both at 6h (Figure 6E) and 24 h (Figure 6F),
indicating decreased leukocyte infiltration. This impaired recruitment may contribute to
the observed increase in bacteremia. Collectively, our findings demonstrate that LD
accumulation enhances both the antibacterial capacity of macrophages and their
inflammatory response during sepsis.

We further assessed whether DGAT1 inhibition could modulate systemic metabolism, which might ultimately influence LD biogenesis in leukocytes. iDGAT1 treatment did not affect the acute hyperglycemia associated with ketamine/xylazine

anesthesia in mice ^{50,51} at 6h post-surgery (Figure S6C). However, iDGAT1 promoted
recovery from sepsis-induced hypoglycemia at 24 h post-surgery (Figure S6D). Notably,
DGAT1 inhibition had no effect on sepsis-induced hypertriglyceridemia at either point
analyzed (Figure S6E-F). We next investigated whether pretreatment with the DGAT1
inhibitor in combination with the antibiotic meropenem would affect clinical outcomes in
severe sepsis models. iDGAT1 pretreatment worsened clinical scores at 6 hours post-
sepsis, with scores remaining elevated throughout all the observation period (Figure 6F).
Furthermore, DGAT1 inhibition, even in the presence of meropenem, accelerated
mortality in severe sepsis, shifting the mortality peak to the first 24 hours (Figure 6G).
These findings suggest that triglyceride synthesis plays an essential protective role in
sepsis survival.

4. DISCUSSION

LDs are evolutionary conserved organelles with major functions in metabolism and immune response ^{1.4}. In leukocytes and other cells of innate immunity LDs are signaling induced organelles acting as platforms for amplified synthesis of eicosanoids and cytokine signaling ^{4,5}. LDs have been reported in infectious disease across all pathogen classes, from viruses ^{52,53} and protozoa ^{54,55}, to bacteria ^{11,16} and fungi ⁵⁶. Host LDs are often exploited by specialized pathogens to evade the immune system and/or serve as an energy source for their survival and/or replication ^{19–21}. However, recent findings highlight a drastic transformation in the participation of LDs within infectious and inflammatory contexts. Emerging research suggests that LDs support host defense ^{19–21,57}, acting as regulators of immunometabolism ²⁵ and essential platforms for producing protective eicosanoids, cytokines and antibacterial peptides ^{46,57}. Additionally, neutral lipid synthesis and LD accumulation significantly enhance the pro-inflammatory profile of macrophages ^{58,59}

LD biogenesis is strongly associated with PAMP recognition by TLRs in leukocytes ^{9,12}, with different TLRs being engaged depending on the specific pathogen ^{9,11}. Similar to the classic LPS model, *E. coli* infection induces LD accumulation in macrophages, which is associated with glycolytic reprogramming ^{59–61}. This *E. coli* induced LD accumulation is a multifaceted process primarily linked to increased lipid uptake (via CD36), reduced lipolysis (via ATGL), and elevated expression of LD structural proteins. These findings align with those of Feingold *et al.* (2012), who showed that TLR activation promotes neutral lipid accumulation in macrophages through multiple pathways ⁶⁰. However, *E. coli*-induced LD accumulation involves minimal changes in the

expression of lipid synthesis enzymes. In fact, *de novo* lipid synthesis is not required for the LD formation of classical activated macrophages ⁶².

This work demonstrates that LDs play a central role in the response to bacterial infections, serving both as hubs integrating the immunometabolic response of macrophages and as direct players in antibacterial activity. Importantly, the direct antibacterial function of LDs is observed in models that involve activation of the innate immune response. This interpretation is reinforced by the lack of antibacterial activity in LDs from OA stimulation. Beyond LD direct antimicrobial role, LDs contribute to prohost defense through additional mechanisms. Inhibition of LDs through the genetic and pharmacological inhibition of DGAT1, decreased the expression of key proteins in the control of the antibacterial response, in particular iNOS and ISGs as well as modulate eicosanoid synthesis. In vitro, this disruption increased bacterial load, and in vivo, it led to the loss of infection control and systemic bacterial dissemination.

Despite catalyzing the same reaction, DGAT1 and DGAT2 play distinct roles in triglyceride synthesis, DGAT1 primarily mediates lipid remodeling, whereas DGAT2 drives de novo synthesis pathways ⁶³. Although DGAT2 is more highly expressed in activated macrophages ⁴⁵, in LPS-stimulated macrophages rely more critically on DGAT1 for triglycerides synthesis and LD accumulation, while DGAT2 may contribute to triglyceride synthesis in a supportive capacity ⁵⁹. Our findings highlight DGAT1 central role in both LD accumulation and the antibacterial response of macrophages, consistent with this phenomenon. Notably, modulation of DGAT1 expression did not affect DGAT2 levels, suggesting independent regulatory mechanisms for these enzymes. On the other hand, recent findings demonstrate that DGAT2 affects glucose uptake and oxidation, presumably by facilitating the synthesis of triglycerides from endogenous fatty acids ^{64,65}. Additionally, some DGAT1 inhibitors, at concentrations typically used to block lipid

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

droplet formation, may also partially affect DGAT2 activity ^{43,66,67}. This cross-reactivity could help explain some of the differences seen between siRNA-mediated DGAT1 knockdown and pharmacological inhibition, especially in lactate and nitric oxide production. However, other potential off-target effects of these inhibitors cannot be excluded.

In the context of immunometabolism, triglyceride synthesis has been identified as a critical component of the inflammatory response in various experimental models ^{30,58,68}. Castoldi et al. (2020) reported that triglyceride synthesis and LD accumulation significantly enhance the pro-inflammatory profile of LPS-stimulated macrophages, primarily by serving as a platform for PGE₂ synthesis ⁵⁹. Pharmacological or genetic inhibition of DGAT1 attenuated the proinflammatory response, characterized by reduced IL-1\beta and IL-6 production. This impaired cytokine production in DGAT1-deficient macrophages was restored upon PGE₂ supplementation ⁵⁹. These results agree with what we observed in E. coli infection, where blocking LD accumulation resulted in decreased PGE₂ synthesis, reduced IL-6 and IL-1β production, and increased bacterial load. In sepsis, DGAT1 inhibition reduced the eicosanoids and IL-6 synthesis but failed to inhibit IL-1β synthesis. These differences between *in vitro* and *in vivo* findings may be attributed to the considerable heterogeneity in function and metabolic programming among macrophage subsets ^{69–71}. Peritoneal macrophages have a heightened oxidative phosphorylation capacity under homeostatic conditions, driven by glutamine and fatty acid oxidation, when compared to BMDMs or alveolar macrophages. This distinctive metabolic phenotype may explain the increased CD80 expression observed in peritoneal macrophages from iDGAT1-treated animals, suggesting enhanced proinflammatory activation, a response that was absent in BMDMs. In contrast, iDGAT1 did not affect the upregulation of GLUT-1, a well-established marker of proinflammatory activation ^{71, 59}.

Notably, DGAT1 overexpression has been shown to reduce fatty acid-induced inflammatory responses in macrophages from diet-induced insulin-resistant mice ⁷².

LDs serve as reservoirs of arachidonic acid and upon stimulation compartmentalize eicosanoid synthesis enzymes, which fuels the heightened synthesis of eicosanoids - key inflammatory lipid mediators ⁴. Therefore, blocking LD formation has a similar effect to inhibiting the mobilization or utilization of these lipid stores ⁴. In this context, key enzymes such as ATGL and HSL, which release arachidonic acid from triglycerides, and cPLA2, which act on phospholipids, play essential roles in eicosanoid synthesis. Their coordinated activity ensures the availability of free arachidonic acid required to produce eicosanoids. The inhibition of cPLA2 reduces the synthesis of PGE2 and consequently inflammatory responses induced by pathogenic bacteria, including *Samonella* Thyphimurium ¹⁴, *L. monocytogenes* ¹⁵ and hypervirulent *Klebsiella pneumoniae* ⁷³. Similarly, inhibiting ATGL-mediated triglyceride breakdown in BMDMs ⁷⁴ and microglia ^{75,76} impaired eicosanoid synthesis and dampened the pro-inflammatory response. The finding that blocking LD accumulation attenuates inflammatory responses parallels studies showing that inhibition of LD lipolysis similarly reduces LPS-induced inflammation ^{74–76}.

Our data highlights further the complexity of PGE₂'s role in inflammation and infection both *in vitro* and *in vivo*. Notably, PGE₂ can be either pro-inflammatory or anti-inflammatory depending on the pathogen, the infection site and stage, and the concentration of this mediator at the infection site ^{77–81}. During *S. typhimurium* infection, PGE₂ was also identified as an inducer of glycolytic reprogramming and the pro-inflammatory response in macrophages ⁸⁰. On the other hand, lactate also stimulates PGE₂ synthesis ⁸², which can inhibit β-oxidation and lead to LD accumulation ⁸³. Additionally, PGE₂ regulates iNOS in macrophages, acting as either an activator or repressor,

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

depending on its concentration ⁸⁴. Moreover, non-primed BMDMs have been shown to preferentially produce higher levels of PGE₂ over LTB₄ ⁸⁵, whereas peritoneal macrophages have been reported to secrete these eicosanoids in relatively similar amounts but in a stimulus-dependent way ^{48,86,87}.

In this pro-host context, the protective role of LDs in infection has been associated with IFN response ^{24,40,88}. However, the role of type I IFNs in bacterial infections remains less understood compared to their role in viral infections 89,90. Our results demonstrate that preventing LD accumulation through DGAT1 inhibition impairs IFN-B release, reducing the expression of key antibacterial proteins, including iNOS and CAMP, which leads to an increase in bacterial load and sepsis-induced mortality. It is important to emphasize that the increase in bacterial load observed in vivo is not attributed to sepsisinduced impairment of leukocyte migration to the infection site. The results are consistent with Mancuso et al. (2006), who reported that IFN-α/β signaling is essential for host defense against various bacteria, including E. coli 91. In the absence of IFN- α/β signaling, a marked reduction in macrophage production of NO, and TNF-α was observed after stimulation with live bacteria or with purified LPS ⁹¹. Moreover, IFN-β also mediates time-dependent increases in the mRNA levels of microsomal PGE synthase-1 and COX-2, and induced PGE₂ production ⁹². In the polymicrobial sepsis model, mice deficient in IFN-α/β receptor (IFNAR) display persistently elevated peritoneal bacterial counts compared with wild-type mice ⁹³. Furthermore, Bosch et al. (2020) reported that LPS triggered remodeling of the LD proteome, leading to an increase in several innate immune proteins, many of which belonged to the ISG family, including Viperin, IGTP and CAMP. Interestingly, we observed that inhibiting LD accumulation not only reduced IFN-B release but also suppressed ISG expression. Our findings align with recent evidence demonstrating that type I IFN production and signaling is strongly dependent on cellular

metabolism ^{94,95}. Further studies will be required to better characterize the signaling and the interplay of LDs in type I interferon biology and functions. One limitation of this study was the difficulty in isolating enough LDs from primary macrophages for thorough proteomic analysis. While we had enough LDs to show they had antibacterial activity, the quantity was insufficient for the detailed proteomic analysis needed to identify specific proteins such as CAMP and their exact location within the LDs. To address this, protein from sepsis-induced liver LDs, which contain a higher protein content, was analyzed, and CAMP was detected. This finding provides supporting evidence for the association of CAMP with LDs in the context of inflammation.

The role of LDs as enhancers of inflammatory response also can be a two-edged sword. In sepsis, tissue damage results from a maladaptive inflammatory and metabolic response mounted to resist infection; this is associated with inadequate mechanisms of tissue tolerance ⁹⁶. Recently, our group demonstrated that inhibiting hepatic LD accumulation by targeting the enzyme DGAT1 reduces levels of inflammatory mediators and lipid peroxidation while improving liver function in sepsis ³⁰. The exacerbation of mechanisms of resistance to infection has been associated with tissue damage, which ultimately can lead to multiple organ failure ^{28,29}. However, these same mechanisms involved in organ failure are essential to control bacterial loading, such as LTB₄, NO, and CCL2 ^{48,97}. The same phenomenon has been reported to IFN-β, its effects during bacterial infections can be either protective or detrimental, depending on the specific bacterium and host status ^{98,99}.

In summary, our data suggests that LD biogenesis in *E. coli*-infected macrophages plays a critical role in controlling bacterial load and enhancing the innate immune response. In sepsis, preventing LD accumulation through DGAT1 inhibition disrupts the production of inflammatory mediators and antibacterial factors, leading to increased

bacterial load and higher sepsis-associated mortality. These findings highlight LD
accumulation as a component of cellular metabolic reprogramming and a molecular
switch in innate immunity. Given the growing resistance to current antibiotics, this study
provides insights into the molecular mechanisms underlying antimicrobial defense, which
could inform the development of novel anti-bacterial strategies.

Acknowledgments

The authors are grateful to the Microscopy Facility of the Brazilian National Cancer Institute for the acquisition of confocal images; and to FIOCRUZ Luminex Platform (*RPT03C* Rede de Plataformas PDTIS, FIOCRUZ/RJ) and the assistance of Edson F. de Assis for the use of Luminex facilities. The authors are also grateful to Dr. Dumith Cheque Bou-Habib and M.Sc. Lucas Tiné Pereira da Silva for their assistance with the ultracentrifuge platform at the Leonidas Deane Pavilion, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro.

Declaration of Competing Interest

The authors declare no competing interests.

Funding

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant 311686/2019-2), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ grant E-26/211.316/2021 and E-26/200.992/2021), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, grant 23038.003950/2020-16, Finance Code 001) and Human Frontier Science Program (HFSP, grant RGP 0020/2015). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding authors upon reasonable request.

Author Contributions:

FP-D and PB conceptualized the study. FP-D was responsible for design and conducting the experiments, literature review, prepared the figures and tables. The manuscript was written by FP-D and PB and edited by all authors. JCS, EKS, RVS, HGG, HE-S, TSS, TC-F, FFM, LP, MMC, DMO, VCS and LS-M contributed to the *in vitro* data collection and analysis. EKS, GI and MAJ contributed to microscopy data collection and analysis. GI and MFSC contributed to cytometry data collection and analysis. FP-D, LT, EFTS, TSS, AFC, PMAS, TC-F, TI, and PAR performed *in vivo* treatment and infection. LT, LS-M, MFSC, PAR, and PB contributed to study design and critically revised the article. All authors approved the submitted version.

Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work the author(s) used ChatGPT4/OpenAI, Deepseek, Gemini/Google and Copilot/Microsoft in order to improve readability and language of the work. After using these tools/services, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

830	REF	ERENCES
831		
832 833 834	1.	Bosch, M. & Pol, A. Eukaryotic lipid droplets: metabolic hubs, and immune first responders. <i>Trends in Endocrinology and Metabolism</i> vol. 33 Preprint at https://doi.org/10.1016/j.tem.2021.12.006 (2022).
835 836 837	2.	Bozza, P. T., Magalhães, K. G. & Weller, P. F. Leukocyte lipid bodies - Biogenesis and functions in inflammation. <i>Biochim Biophys Acta Mol Cell Biol Lipids</i> 1791 , 540–551 (2009).
838 839	3.	Pereira-Dutra, F. S. & Bozza, P. T. Lipid droplets diversity and functions in inflammation and immune response. <i>Expert Rev Proteomics</i> 18 , 809–825 (2021).
840 841 842	4.	Bozza, P. T., Bakker-Abreu, I., Navarro-Xavier, R. A. & Bandeira-Melo, C. Lipid body function in eicosanoid synthesis: An update. <i>Prostaglandins Leukot Essent Fatty Acids</i> 85 , 205–213 (2011).
843 844	5.	Roingeard, P. & Melo, R. C. N. Lipid droplet hijacking by intracellular pathogens. <i>Cell Microbiol</i> 1–8 (2017) doi:10.1111/cmi.12688.
845 846	6.	Pereira-Dutra, F. S. <i>et al.</i> Fat, fight, and beyond: The multiple roles of lipid droplets in infections and inflammation. <i>J Leukoc Biol</i> 106 , 563–580 (2019).
847 848 849	7.	Libbing, C. L., McDevitt, A. R., Azcueta, RM. P., Ahila, A. & Mulye, M. Lipid Droplets: A Significant but Understudied Contributor of Host–Bacterial Interactions. <i>Cells</i> 8 , 354 (2019).
850 851	8.	Bosch, M., Sweet, M. J., Parton, R. G. & Pol, A. Lipid droplets and the host–pathogen dynamic: FATal attraction? <i>Journal of Cell Biology</i> 220 , 9–11 (2021).
852 853 854	9.	Nicolaou, G., Goodall, A. H. & Erridge, C. Diverse Bacteria Promote Macrophage Foam Cell Formation Via Toll-Like Receptor-Dependent Lipid Body Biosynthesis. <i>J Atherosclei Thromb</i> 19 , 137–148 (2012).
855 856	10.	Hsieh, WY. <i>et al.</i> Toll-Like Receptors Induce Signal-Specific Reprogramming of the Macrophage Lipidome. <i>Cell Metab</i> 32 , 128-143.e5 (2020).
857 858 859	11.	Mattos, K. A. <i>et al.</i> TLR6-Driven Lipid Droplets in Mycobacterium leprae-Infected Schwann Cells: Immunoinflammatory Platforms Associated with Bacterial Persistence. <i>The Journal of Immunology</i> 187 , 2548–2558 (2011).
860 861 862	12.	Pacheco, P. et al. Lipopolysaccharide-Induced Leukocyte Lipid Body Formation In Vivo: Innate Immunity Elicited Intracellular Loci Involved in Eicosanoid Metabolism. <i>The Journal of Immunology</i> 169 , 6498–6506 (2002).
863 864 865	13.	Costa, M. F. de S. <i>et al. Mycobacterium tuberculosis</i> induces delayed lipid droplet accumulation in dendritic cells depending on bacterial viability and virulence. <i>Mol Microbiol</i> 119 , 224–236 (2023).
866 867 868	14.	Kiarely Souza, E. <i>et al.</i> Lipid droplet accumulation occurs early following Salmonella infection and contributes to intracellular bacterial survival and replication. <i>Mol Microbiol</i> 117 , 293–306 (2022).

- Pereira-Dutra, F. S. et al. Accumulation of lipid droplets induced by Listeria
 monocytogenes in macrophages: implications for survival and evasion of innate
 immunity. J Leukoc Biol (2024) doi:10.1093/jleuko/qiae115.
 D'Avila, H. et al. Neutrophils recruited to the site of Mycobacterium bovis BCG infection
- undergo apoptosis and modulate lipid body biogenesis and prostaglandin E2 production by macrophages. *Cell Microbiol* **10**, 2589–2604 (2008).
- Mattos, K. A. *et al.* Modulation of lipid droplets by Mycobacterium leprae in Schwann
 cells: A putative mechanism for host lipid acquisition and bacterial survival in
 phagosomes. *Cell Microbiol* 13, 259–273 (2011).
- Almeida, P. E. *et al.* Mycobacterium bovis Bacillus Calmette-Guérin Infection Induces
 TLR2-Dependent Peroxisome Proliferator-Activated Receptor γ Expression and
 Activation: Functions in Inflammation, Lipid Metabolism, and Pathogenesis. *Journal of Immunology* 183, 1337–1345 (2009).
- Haldar, A. K. et al. IRG and GBP Host Resistance Factors Target Aberrant, "Non-self"
 Vacuoles Characterized by the Missing of "Self" IRGM Proteins. PLoS Pathog 9,
 e1003414 (2013).
- Anand, P. et al. A novel role for lipid droplets in the organismal antibacterial response.

 Elife 1, 1–18 (2012).
- Hinson, E. R. & Cresswell, P. The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic ?-helix. *Proceedings of the National Academy of Sciences* **106**, 20452–20457 (2009).
- Seo, J.-Y., Yaneva, R. & Cresswell, P. Viperin: A Multifunctional, Interferon-Inducible Protein that Regulates Virus Replication. *Cell Host Microbe* **10**, 534–539 (2011).
- Saka, H. A. & Valdivia, R. Emerging roles for lipid droplets in immunity and host-pathogen interactions. *Annu Rev Cell Dev Biol* **28**, 411–437 (2012).
- 894 24. Monson, E. A., Crosse, K. M., Das, M. & Helbig, K. J. Lipid droplet density alters the early innate immune response to viral infection. *PLoS One* **13**, 1–18 (2018).
- 896 25. Bosch, M. *et al.* Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. *Science* (1979) **370**, (2020).
- 898 26. Anand, P. *et al.* A novel role for lipid droplets in the organismal antibacterial response. 899 *Elife* **1**, 1–18 (2012).
- 900 27. Singer, M. *et al.* The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). *JAMA* **315**, 801 (2016).
- 902 28. McCarville, J. & Ayres, J. Disease tolerance: concept and mechanisms. *Curr Opin Immunol* **50**, 88–93 (2018).
- 904 29. Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease Tolerance as a Defense Strategy. 905 Science (1979) **335**, 936–941 (2012).
- 906 30. Teixeira, L. *et al.* Prevention of lipid droplet accumulation by DGAT1 inhibition ameliorates sepsis-induced liver injury and inflammation. *JHEP Reports* **6**, (2024).

908	31.	Assunção, L. S. et al. Schistosomal-derived lysophosphatidylcholine triggers M2
909		polarization of macrophages through PPARγ dependent mechanisms. <i>Biochimica et</i>
910		Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1862, 246–254 (2017).

- 911 32. Lissner, C. R., Swanson, R. N. & O'Brien, A. D. Genetic control of the innate resistance of mice to Salmonella typhimurium: expression of the Ity gene in peritoneal and splenic macrophages isolated in vitro. *J Immunol* **131**, 3006–13 (1983).
- 914 33. Melo, R. C. N., D'Ávila, H., Bozza, P. T. & Weller, P. F. Imaging Lipid Bodies Within 915 Leukocytes with Different Light Microscopy Techniques. in *Methods Mol Biol* 149–161 916 (2011). doi:10.1007/978-1-60761-950-5_9.
- 917 34. Reis, P. A. *et al.* Statins prevent cognitive impairment after sepsis by reverting
 918 neuroinflammation, and microcirculatory/endothelial dysfunction. *Brain Behav Immun*919 **60**, 293–303 (2017).
- 920 35. Bradley, P. P., Priebat, D. A., Christensen, R. D. & Rothstein, G. Measurement of
 921 Cutaneous Inflammation: Estimation of Neutrophil Content with an Enzyme Marker.
 922 Journal of Investigative Dermatology 78, 206–209 (1982).
- 923 36. Reis, P. A. *et al.* Statins prevent cognitive impairment after sepsis by reverting neuroinflammation, and microcirculatory/endothelial dysfunction. *Brain Behav Immun* 925 **60**, 293–303 (2017).
- 926 37. Samsa, M. M. *et al.* Dengue virus capsid protein usurps lipid droplets for viral particle formation. *PLoS Pathog* **5**, (2009).
- 928 38. Garofalo, A. M. *et al.* Histopathological changes of organ dysfunction in sepsis. *Intensive* 929 *Care Med Exp* **7**, 45 (2019).
- 930 39. Daniel, J., Maamar, H., Deb, C., Sirakova, T. D. & Kolattukudy, P. E. Mycobacterium 931 tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a 932 dormancy-like phenotype in lipid-loaded macrophages. *PLoS Pathog* **7**, (2011).
- 933 40. Monson, E. A. *et al.* Intracellular lipid droplet accumulation occurs early following viral infection and is required for an efficient interferon response. *Nat Commun* **12**, 4303 (2021).
- Hinson, E. R. & Cresswell, P. The antiviral protein, viperin, localizes to lipid droplets via
 its N-terminal amphipathic ?-helix. *Proceedings of the National Academy of Sciences* 106, 20452–20457 (2009).
- Haldar, A. K. *et al.* IRG and GBP Host Resistance Factors Target Aberrant, "Non-self"
 Vacuoles Characterized by the Missing of "Self" IRGM Proteins. *PLoS Pathog* 9,
 e1003414 (2013).
- 942 43. Dow, R. L. *et al.* Discovery of PF-04620110, a potent, selective, and orally bioavailable inhibitor of DGAT-1. *ACS Med Chem Lett* **2**, 407–412 (2011).
- 944 44. Buhman, K. K., Chen, H. C. & Farese, R. V. The Enzymes of Neutral Lipid Synthesis. 945 *Journal of Biological Chemistry* **276**, 40369–40372 (2001).
- Huang, Y. L. *et al.* Toll-like receptor agonists promote prolonged triglyceride storage in
 macrophages. *Journal of Biological Chemistry* **289**, 3001–3012 (2014).

- 948 46. Pacheco, P. et al. Monocyte Chemoattractant Protein-1/CC Chemokine Ligand 2 Controls 949 Microtubule-Driven Biogenesis and Leukotriene B4-Synthesizing Function of 950 Macrophage Lipid Bodies Elicited by Innate Immune Response. The Journal of 951 Immunology 179, 8500-8508 (2007). 952 47. Wang, A., Luan, H. H. & Medzhitov, R. An evolutionary perspective on 953 immunometabolism. Science (1979) 363, eaar3932 (2019). 954 48. Li, X. J. et al. Dual role of leukotriene B4 receptor type 1 in experimental sepsis. Journal 955 of Surgical Research 193, 902-908 (2015). 956 49. Strnad, P., Tacke, F., Koch, A. & Trautwein, C. Liver-guardian, modifier and target of 957 sepsis. Nature Reviews Gastroenterology and Hepatology vol. 14 Preprint at 958 https://doi.org/10.1038/nrgastro.2016.168 (2017). 959 50. Brown, E. T., Umino, Y., Loi, T., Solessio, E. & Barlow, R. Anesthesia Can Cause Sustained 960 Hyperglycemia in C570BL6J Mice. (2005). 961 51. Saha, J. K., Xia, J., Grondin, J. M., Engle, S. K. & Jakubowski, J. A. Acute Hyperglycemia 962 Induced by KetaminelXylazine Anesthesia in Rats: Mechanisms and Implications for 963 Preclinical Models. (2005). Carvalho, F. A. et al. Dengue Virus Capsid Protein Binding to Hepatic Lipid Droplets (LD) 964 52. 965 Is Potassium Ion Dependent and Is Mediated by LD Surface Proteins. J Virol 86, 2096-966 2108 (2012). 967 53. Samsa, M. M. et al. Dengue virus capsid protein usurps lipid droplets for viral particle 968 formation. PLoS Pathog 5, (2009). 969 54. Gomes, A. F. et al. Toxoplasma gondii-skeletal muscle cells interaction increases lipid 970 droplet biogenesis and positively modulates the production of IL-12, IFN-g and PGE2. 971 Parasit Vectors 7, 47 (2014). 972 55. Mota, L. A. M. et al. Culture of mouse peritoneal macrophages with mouse serum 973 induces lipid bodies that associate with the parasitophorous vacuole and decrease their 974 microbicidal capacity against Toxoplasma gondii. Mem Inst Oswaldo Cruz 109, 767-774 975 (2014).976 56. Sorgi, C. A. et al. Histoplasma capsulatum Cell Wall -Glucan Induces Lipid Body 977 Formation through CD18, TLR2, and Dectin-1 Receptors: Correlation with Leukotriene 978 B4 Generation and Role in HIV-1 Infection. The Journal of Immunology 182, 4025–4035 979 (2009).980 57. Knight, M., Braverman, J., Asfaha, K., Gronert, K. & Stanley, S. Lipid droplet formation in 981 Mycobacterium tuberculosis infected macrophages requires IFN- γ / HIF-1 α signaling 982 and supports host defense. PLoS Negl Trop Dis 14, 1–26 (2018).
- 985 59. Castoldi, A. *et al.* Triacylglycerol synthesis enhances macrophage inflammatory function. 986 *Nat Commun* **11**, 4107 (2020).

inflammatory mediators. PLoS Pathog 16, e1009127 (2020).

Dias, S. da S. G. et al. Lipid droplets fuel SARS-CoV-2 replication and production of

983

984

58.

- 987 60. Feingold, K. R. *et al.* Mechanisms of triglyceride accumulation in activated macrophages.

 988 *J Leukoc Biol* **92**, 829–839 (2012).
- 989 61. Feingold, K. R. *et al.* ADRP/ADFP and Mal1 expression are increased in macrophages treated with TLR agonists. *Atherosclerosis* **209**, 81–88 (2010).
- Rosas-Ballina, M., Guan, X. L., Schmidt, A. & Bumann, D. Classical Activation of
 Macrophages Leads to Lipid Droplet Formation Without de novo Fatty Acid Synthesis.
 Front Immunol 11, (2020).
- 994 63. Villanueva, C. J. *et al.* Specific role for acyl CoA:Diacylglycerol acyltransferase 1 (Dgat1) in hepatic steatosis due to exogenous fatty acids. *Hepatology* **50**, 434–442 (2009).
- 996 64. Irshad, Z., Dimitri, F., Christian, M. & Zammit, V. A. Diacylglycerol acyltransferase 2 links 997 glucose utilization to fatty acid oxidation in the brown adipocytes. *J Lipid Res* **58**, 15–30 998 (2017).
- 999 65. Bu, S. Y. Role of Dgat2 in Glucose Uptake and Fatty Acid Metabolism in C2C12 Skeletal Myotubes. *J Microbiol Biotechnol* **33**, 1563–1575 (2023).
- King, A. J. et al. Diacylglycerol acyltransferase 1 inhibition lowers serum triglycerides in the zucker fatty rat and the hyperlipidemic hamster. *Journal of Pharmacology and Experimental Therapeutics* 330, 526–531 (2009).
- 1004 67. Cao, J. et al. Targeting acyl-CoA:Diacylglycerol Acyltransferase 1 (DGAT1) with small
 1005 molecule inhibitors for the treatment of metabolic diseases. Journal of Biological
 1006 Chemistry 286, 41838–41851 (2011).
- 1007 68. Dias, S. S. G. *et al.* Metabolic reprogramming and lipid droplets are involved in Zika virus replication in neural cells. *J Neuroinflammation* **20**, (2023).
- Wculek, S. K., Dunphy, G., Heras-Murillo, I., Mastrangelo, A. & Sancho, D. Metabolism of
 tissue macrophages in homeostasis and pathology. *Cellular and Molecular Immunology* vol. 19 384–408 Preprint at https://doi.org/10.1038/s41423-021-00791-9 (2022).
- 1012 70. Boucher, D. M., Vijithakumar, V. & Ouimet, M. Lipid Droplets as Regulators of Metabolism and Immunity. *Immunometabolism* **3**, (2021).
- 1014 71. O'Neill, L. A. J. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. *Journal of Experimental Medicine* **213**, 15–23 (2016).
- 1016 72. Koliwad, S. K. *et al.* DGAT1-dependent triacylglycerol storage by macrophages protects
 1017 mice from diet-induced insulin resistance and inflammation. *Journal of Clinical Investigation* 120, 756–767 (2010).
- Jung, H. J. et al. Inhibiting lipid droplet biogenesis enhances host protection against
 hypervirulent Klebsiella pneumoniae infections. Med Microbiol Immunol 213, (2024).
- 74. van Dierendonck, X. A. M. H. *et al.* Triglyceride breakdown from lipid droplets regulates
 the inflammatory response in macrophages. *Proceedings of the National Academy of Sciences* 119, (2022).
- 1024 75. Li, H. *et al.* Pharmacological Upregulation of Microglial Lipid Droplet Alleviates
 1025 Neuroinflammation and Acute Ischemic Brain Injury. *Inflammation* 46, 1832–1848
 1026 (2023).

- 76. Robb, J. L. *et al.* Blockage of ATGL-mediated breakdown of lipid droplets in microglia
 alleviates neuroinflammatory and behavioural responses to lipopolysaccharides. *Brain Behav Immun* 123, 315–333 (2025).
- 1030 77. Agard, M., Asakrah, S. & Morici, L. A. PGE2 suppression of innate immunity during mucosal bacterial infection. *Front Cell Infect Microbiol* **4**, 1–11 (2013).
- 1032 78. Nakanishi, M. & Rosenberg, D. W. Multifaceted roles of PGE2 in inflammation and cancer. *Semin Immunopathol* **35**, 123–137 (2013).
- 1034 79. Pecchi, E., Dallaporta, M., Jean, A., Thirion, S. & Troadec, J. D. Prostaglandins and sickness behavior: Old story, new insights. *Physiol Behav* **97**, 279–292 (2009).
- Sheppe, A. E. F. et al. PGE2 Augments Inflammasome Activation and M1 Polarization in
 Macrophages Infected With Salmonella Typhimurium and Yersinia enterocolitica. Front
 Microbiol 9, 1–16 (2018).
- 1039 81. Kalinski, P. Regulation of Immune Responses by Prostaglandin E 2. *The Journal of Immunology* **188**, 21–28 (2012).
- Wei, L. *et al.* Lactate promotes PGE2 synthesis and gluconeogenesis in monocytes to benefit the growth of inflammation-associated colorectal tumor. *Oncotarget* **6**, 16198–16214 (2015).
- Henkel, J. *et al.* Stimulation of fat accumulation in hepatocytes by PGE2-dependent
 repression of hepatic lipolysis, β-oxidation and VLDL-synthesis. *Laboratory Investigation* 92, 1597–1606 (2012).
- Milano, S. *et al.* Prostaglandin E2 regulates inducible nitric oxide synthase in the murine macrophage cell line J774. *Prostaglandins* **49**, 105–115 (1995).
- 1049 85. Sorgi, C. A. *et al.* GM-CSF priming drives bone marrow-derived macrophages to a pro-1050 inflammatory pattern and downmodulates PGE2 in response to TLR2 ligands. *PLoS One* 1051 **7**, (2012).
- Kang, J. S., Jeon, Y. J., Park, S. K., Yang, K. H. & Kim, H. M. Protection against
 lipopolysaccharide-induced sepsis and inhibition of interleukin-1β and prostaglandin E2
 synthesis by silymarin. *Biochem Pharmacol* 67, 175–181 (2004).
- 1055 87. Kwon, S.-Y., Ro, M. & Kim, J.-H. Mediatory roles of leukotriene B4 receptors in LPS-1056 induced endotoxic shock. *Sci Rep* **9**, 5936 (2019).
- 1057 88. Crosse, K. M. *et al.* Viperin binds STING and enhances the type-I interferon response following dsDNA detection. *Immunol Cell Biol* **99**, 373–391 (2021).
- Zhang, S. Y. et al. Inborn errors of interferon (IFN)-mediated immunity in humans:
 Insights into the respective roles of IFN-α/β, IFN-γ, and IFN-λ in host defense.
 Immunological Reviews vol. 226 29–40 Preprint at https://doi.org/10.1111/j.1600-
- 1062 065X.2008.00698.x (2008).
- 1063 90. Yang, K. *et al.* Human TLR-7-, -8-, and -9-mediated induction of IFN- α /β and - λ Is IRAK-4 dependent and redundant for protective immunity to viruses. *Immunity* **23**, 465–478 (2005).

1066 1067	91.	Mancuso, G. <i>et al.</i> Type I IFN Signaling Is Crucial for Host Resistance against Different Species of Pathogenic Bacteria. <i>The Journal of Immunology</i> 178 , 3126–3133 (2007).
1068 1069 1070 1071	92.	Kim, J. Y., Choi, G. E., Yoo, H. J. & Kim, H. S. Interferon potentiates toll-like receptor-induced prostaglandin D2 production through positive feedback regulation between signal transducer and activators of transcription 1 and reactive oxygen species. <i>Front Immunol</i> 8 , (2017).
1072 1073 1074	93.	Kelly-Scumpia, K. M. <i>et al.</i> Type I interferon signaling in hematopoietic cells is required for survival in mouse polymicrobial sepsis by regulating CXCL10. <i>Journal of Experimental Medicine</i> 207 , 319–326 (2010).
1075 1076 1077	94.	O'Carroll, S. M., Henkel, F. D. R. & O'Neill, L. A. J. Metabolic regulation of type I interferon production. <i>Immunological Reviews</i> vol. 323 276–287 Preprint at https://doi.org/10.1111/imr.13318 (2024).
1078 1079 1080	95.	O'Carroll, S. M. <i>et al.</i> Itaconate drives mtRNA-mediated type I interferon production through inhibition of succinate dehydrogenase. <i>Nature Metabolism</i> Preprint at https://doi.org/10.1038/s42255-024-01145-1 (2024).
1081 1082 1083	96.	Van Wyngene, L., Vandewalle, J. & Libert, C. Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last? <i>EMBO Mol Med</i> 10 , e8712 (2018).
1084 1085	97.	Gomes, R. N. <i>et al.</i> Bacterial clearance in septic mice is modulated by MCP-1/CCL2 and nitric oxide. <i>Shock</i> 39 , 63–69 (2013).
1086 1087 1088	98.	McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O'Garra, A. Type I interferons in infectious disease. <i>Nature Reviews Immunology</i> vol. 15 87–103 Preprint at https://doi.org/10.1038/nri3787 (2015).
1089 1090 1091	99.	Kovarik, P., Castiglia, V., Ivin, M. & Ebner, F. Type I interferons in bacterial infections: A balancing act. <i>Frontiers in Immunology</i> vol. 7 Preprint at https://doi.org/10.3389/fimmu.2016.00652 (2016).
1092		
1093		

1095	Figure 1: E. coli infection induced LD biogenesis and proinflammatory
1096	reprogramming in murine macrophages. BMDMs were infected with E. coli (MOI
1097	100) for 1 hour, followed by gentamicin treatment to remove extracellular bacteria. (A)
1098	Confocal images showing Oil Red O-labeled LDs (red) in infected BMDMs. Nuclei were
1099	stained with DAPI (blue). Scale bar: 10 µm.(B) Quantification of LDs at 1 and 24 h post-
1100	infection (hpi). (C) Relative mRNA expression of lipid metabolism genes (plin2, plin3,
1101	fasn, dgat1, acat1, cd36, pnpla2/atgl, abca1) at 12 hpi via RT-qPCR. Data normalized to
1102	actb (D) Intracellular E. coli CFUs at 1 and 24 hpi. (E) mRNA expression of ptgs-2/cox-
1103	2, 5-lo, and 15-lo in noninfected (NI) and infected BMDMs at 6 hpi. (F)
1104	Immunofluorescence analyses of E. coli-infected BMDMs at 24 hpi. Confocal images
1105	were stained for COX-2 (red) and Bodipy 493/503 -labeled LDs (green). Nuclei were
1106	stained with DAPI (blue). Scale bar: 10 µm. (G) Levels of PGE2, LTB4, and RvD1 in
1107	supernatants at 24 hpi (EIA assay). (H) Lactate levels in supernatants at 24 hpi (enzymatic
1108	assay). (I) Nitrite (NO) levels in supernatants at 24 hpi (Griess method). (J) Expression
1109	of pro-inflammatory (il-1b, inos) and anti-inflammatory (il-10, ch3l3, arg1) genes at 6
1110	hpi via RT-qPCR. (K) Levels of cytokines (CCL2, CXCL1, IL-10, IL-1β, IL-6, IL-12p40,
1111	TNF) at 24 hpi (ELISA). (L) Levels of pan-IFN- α , IFN- β , and IFN- γ at 24 hpi (ELISA).
1112	Data represent mean \pm SEM from three independent experiments. Significant difference
1113	(p < 0.05) compared to NI group.
1114	

Figure 2: Lipid droplets contributed to antibacterial activity of macrophages. (A) 1115

Confocal images of Oil Red O-stained lipid droplets (LDs, red) in E. coli-infected 1116

DAPI 1117 BMDMs. Nuclei stained with (blue). Scale bar: 10 μm.

(B) Quantification of the distance between LD and bacteria was performed using 1118

1119	Fiji/ImageJ software from confocal images. (C) Confocal images of Bodipy-labeled LDs
1120	(green) in BMDMs stimulated with Texa-red E. coli bioparticles (red). Nuclei stained
1121	with DAPI (blue). Scale bar: 10 μm. (D) Experimental design of bacterial plate killing
1122	assays (BPKA). (E-G) Macrophages stimulated with LPS (500 ng/mL) and IFN-γ (10
1123	ng/mL) for 24 h. LDs purified by sucrose gradient were tested in BPKA. (F) BPKA results
1124	in using LDs from non-stimulated (NS) and LPS+IFN-γ-stimulated macrophages. (F)
1125	CFU quantification (n=9/group). (G) Relative bacterial viability compared to saline
1126	control (n=9/group). (H-J) Bacterial killing assay results using LDs from non-infected, E.
1127	coli-infected, and OA-stimulated macrophages. (I) CFU quantification (Buffer n = 6, NI
1128	n = 8, E. coli $n = 8$, OA $n = 3$). (J) Relative bacterial viability compared to saline control
1129	(n = 8/group). (K) Confocal images of BMDMs treated with oleic acid (OA, 40 μ M) for
1130	16 h after 1 hpi and 24 hpi. Scale bar: 10 μm. At least 100 cells across 10 fields analyzed
1131	per group. (L) LD quantification in infected BMDMs (≥100 cells per group across 10
1132	fields/experiment). (M) Relative intracellular bacterial CFUs in macrophages with or
1133	without OA pretreatment after 24 hpi. (N-P) BMDMs infected with E. coli (MOI 100)
1134	with or without DGAT1 (A922500, 1.5 or 10 μ M) or ACAT1 (CI976, 1 or 10 μ M)
1135	inhibitors. (M) Experimental design (BioRender). (N) LD enumeration in infected and
1136	uninfected macrophages at 24 hpi (≥100 cells/10 fields/group). (O) Relative intracellular
1137	bacterial CFUs at 24 hpi (A922500:10 μ M or CI976:10 μ M). Data represent mean \pm SEM
1138	from three experiments. *p<0.05 compared to non-infected controls.

Figure 3: DGAT1 inhibition disrupted proinflammatory reprogramming and interferon signaling induced by *E. coli* in macrophages. BMDMs were infected with *E. coli* (MOI 100) with or without 10 μM DGAT1 inhibitor (A922500) pretreatment. (A) PGE₂ and LTB₄ levels in cell-free supernatants at 24 hpi were measured by EIA. (B)

Lactate levels in supernatants at 24 hpi were assessed using an enzymatic assay. (C) 1144 1145 CCL2, IL-1\beta, and IL-6 levels in supernatants at 24 hpi were determined by ELISA. (D) LDH release in supernatants indicated cellular viability. (E) IFN-β levels in supernatants 1146 at 24 hpi were measured by ELISA. (F) Relative mRNA expression of camp, nox-2 and 1147 plin2 genes in noninfected (NI) and infected BMDMs at 12 hpi, normalized to actb (mean 1148 $2-\Delta\Delta Ct \pm SEM$; n = 3). (G) CAMP, iNOS, and Plin2 expression in cell lysates were 1149 analyzed by Western blotting, using β-tubulin as loading controls. (H) Graphs of band 1150 densitometry of CAMP, iNOS and Plin2 obtained after loading normalization and 1151 expressed as fold change over mock control. (I) Nitrite (NO) levels in supernatants at 24 1152 hpi were quantified by the Griess method. (J) Viperin and IRGM3/IGTP expression in 1153 BMDM lysates were analyzed by Western blotting, using β-actin as loading controls. (K) 1154 Graphs of band densitometry of Viperin and IRGM3/IGTP obtained after loading 1155 normalization and expressed as fold change over mock control. Data represents the mean 1156 SEM of three independent experiments. (*) indicates a value significantly 1157 different (p<0.05) from that of the respective noninfected group. 1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

Figure 4: RNAi-mediated DGAT1 knockdown impaired antibacterial activity, proinflammatory reprogramming, and interferon signaling in E. coli-infected macrophages. BMDMs were transfected with 5 μ M self-deliverable AUMsilence oligos for DGAT1 or scramble RNA (SCR). After 48 h, BMDMs were infected with *E. coli* (MOI 100). (A) *dgat1* mRNA levels were assessed 48 h post-transfection by RT-qPCR and normalized to *actb* (mean $2-\Delta\Delta$ Ct \pm SEM; n = 3). (B) Oil Red O-stained LDs (red) in infected BMDMs at 24 hpi, with nuclei stained by DAPI (blue). Scale bar: 10 μ m. (C) LD quantification in infected BMDMs (\geq 100 cells per group across 10 fields/experiment).

hpi by EIA. Levels of (F) IL-6, (G) CCL2, and (H) IFN-β in supernatants at 24 hpi by ELISA. (I-J) camp and nox2 mRNA levels were assessed 48 h post-transfection by RTqPCR and normalized to *actb* (mean $2-\Delta\Delta Ct \pm SEM$; n = 3). (K) Nitrite (NO) levels in supernatants at 24 hpi by the Griess method. (L) Relative mRNA expression of cox-2 gene in noninfected (NI) and infected BMDMs at 6 hpi, normalized to β -actin (mean $2-\Delta\Delta Ct \pm SEM$: n = 3). (M-N) Relative mRNA expression of dgat2 gene in noninfected (NI) and infected BMDMs at 6 hpi, normalized to β -actin (mean $2-\Delta\Delta Ct \pm SEM$; n = 3). (O) Lactate levels in supernatants at 24 hpi by enzymatic assay. (P) Cellular viability assessed by LDH release in supernatants. Data represent the mean ± SEM of three independent experiments. (*) indicates a significant difference (p < 0.05) compared to the respective noninfected group or SCR E. coli-infected group.

Figure 5: DGAT1 inhibition reduces proinflammatory responses in the peritoneum of septic mice. Sham or septic (CLP) mice were orally treated with A922500 (DGAT1 inhibitor, 3 mg/kg) or vehicle. At 6 h or 24 h post-surgery, peritoneal lavage was collected. (A) *In vivo* experimental design for DGAT1 inhibition. (B) Oil Red O-stained lipid droplets (red) in peritoneal leukocytes, counterstained with Mayer's hematoxylin. Scale bar: 20 μm. (C) Lipid droplet enumeration in peritoneal leukocytes (≥100 cells/group across 10 fields/experiment). (D) PGE₂, LTB₄, and RvD1 levels in peritoneal lavage at 24 h post-surgery by EIA. Levels of (E) IL-6, (F) CCL2) in peritoneal lavage at 6 h and 24 h post-surgery by ELISA. (G) IRGM3 and Plin2 expression in peritoneal leukocytes lysates were analyzed by Western blotting, using β-actin as loading controls. (H) pan-IFN-α, (I) IFN-β and (J) IFN-γ, (K) nitrite, and (L) cathelicidin (CAMP) in peritoneal lavage at 6 h and 24 h post-surgery by ELISA.. Data (4–6 mice/group) are presented as means ± SEM, analyzed by one-way ANOVA with Tukey's post hoc test. *p < 0.05

1194	compared to	sham;	#p < 0.)5	compared	to	untreated	CLP.	CLP:	cecal	ligation	and
1195	puncture.											

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

Figure 6: DGAT1 inhibition increases bacterial load and sepsis severity. Sham or septic (CLP) mice were orally treated with A922500 (DGAT1 inhibitor, 3 mg/kg) or vehicle. (A) Bacterial CFU quantification in peritoneal at 6 h and 24 h post-surgery. (C-D) Total and differential leukocyte counts in peritoneal lavage at (C) 6 h and (D) 24 h leukocytes, post-surgery, including total mononuclear cells (Mono), polymorphonuclear leukocytes (PMN). (D) Bacterial CFU quantification in serum at 6 h and 24 h post-surgery. (E-F) MPO activity in liver tissues obtained by an enzymatic assay at (E) 6 h and (F) 24 h post-surgery. (G) Experimental design for survival and clinical score analysis. Mice were monitored for 48 h to assess (H) clinical sepsis severity scores and (I) survival. Data (4-8mice/group for A-F; 10 mice/group for H-I) are presented as means \pm SEM, analyzed by one-way ANOVA with Tukey's post hoc test. *p < 0.05 compared to sham; #p < 0.05 compared to untreated CLP. CLP: cecal ligation and puncture.