1 GLP-1R Agonists and Muscle Health: Potential Role in Sarcopenia Prevention and

- 2 Treatment.
- 3 Ainhoa González-Luis^{1,2,†}, Vicente Llinares-Arvelo^{2,3†}, Carlos E. Martínez-Alberto³,
- 4 Carolina Hernández-Carballo^{1,4}, Carmen Mora-Fernández^{1,4,5}, Juan F. Navarro-
- 5 González^{1,5,6,7,8,9}, Javier Donate-Correa^{1,5,6,7*}

6

- 7 Research Unit, University Hospital Nuestra Señora de Candelaria (UHNSC), 38010 Santa
- 8 Cruz de Tenerife, Spain
- 9 ² Doctoral and Graduate School, University of La Laguna, 38200 San Cristóbal de La Laguna,
- 10 Spain
- 11 ³ Escuela de Enfermería Nuestra Señora de Candelaria, Carretera General del Rosario, 145,
- 12 38010 Santa Cruz de Tenerife, Spain
- ⁴ Internal Medicine Service, University Hospital Nuestra Señora de Candelaria (UHNSC),
- 14 38010 Santa Cruz de Tenerife, Spain
- 15 ⁵ GEENDIAB (Grupo Español Para el Estudio de la Nefropatía Diabética), Sociedad
- 16 Española de Nefrología, 39000 Santander, Spain
- 17 ⁶ RICORS2040 (RD24/004/0022), Instituto de Salud Carlos III, 28000 Madrid, Spain
- ⁷ Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38000 Santa Cruz de
- 19 Tenerife, Spain
- 20 8 Nephrology Service, University Hospital Nuestra Señora de Candelaria (UHNSC), 38010
- 21 Santa Cruz de Tenerife, Spain
- ⁹ Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas
- 23 de Gran Canaria, Spain.
- *Correspondence: jdoncor@gobiernodecanarias.org; jdonatecorrea@gmail.com
- 25 Tel.: +34-922-602-921; Fax: +34-922-600-562
- 26 † These authors contributed equally to this work.

27

© The Author(s) 2025. Published by Oxford University Press on behalf of European Society of Endocrinology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

- Abstract: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as a 1 2 cornerstone therapy for weight loss and glycemic control in type 2 diabetes mellitus (T2DM) 3 and obesity. Moreover, robust cardiometabolic benefits and favorable safety profiles have 4 positioned GLP-1RAs at the forefront of modern obesity pharmacotherapy. However, findings from large-scale trials (e.g., SUSTAIN, STEP, SURPASS) have raised concerns that 5 6 a significant proportion of the weight loss achieved with GLP-1RA treatment may derive 7 from lean body mass-particularly skeletal muscle-which could be detrimental in populations already at risk for sarcopenia. 8 However, emerging preclinical evidence suggests that GLP-1RAs may directly and indirectly 9 influence skeletal muscle through anti-inflammatory, antioxidant, and mitochondrial-10 supportive mechanisms. These include modulation of key signaling pathways such as 11 12 PI3K/Akt/mTOR and AMPK–PGC-1α, suppression of proteolytic activity, and promotion of myogenic differentiation. In experimental models of aging, sarcopenic obesity, and chronic 13 disease, GLP-1RAs have shown muscle-preserving properties. Nevertheless, the balance 14 between adipose tissue reduction and lean mass preservation remains incompletely 15 16 understood in clinical settings. This review examines the existing experimental and clinical evidence and identify critical 17 18 research directions to determine whether GLP-1RAs confer overall benefit or carry 19 unintended risks for skeletal muscle integrity in the context of weight loss. 20 Keywords: Sarcopenia, muscle homeostasis, GLP-1RAs, diabetes, obesity 21 22 Significance: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are now widely used
- 23 for obesity and type 2 diabetes because they lower weight and improve cardiometabolic risk. 24
- Their rapid uptake has raised concern that they may accelerate skeletal muscle loss and

1 worsen sarcopenia. This review integrates mechanistic, imaging and clinical evidence linking

2 GLP-1RAs to muscle mass, quality and function. Current data suggest that, although some

lean tissue is lost during treatment, GLP-1RAs predominantly reduce fat mass, may improve

muscle composition and metabolism, and do not consistently impair physical performance.

We outline biological pathways through which GLP-1RAs could protect muscle, identify key

gaps, and define research priorities for safely managing weight loss in people at risk of

sarcopenia.

3

4

5

6

7

8

13

14

15

16

19

20

21

22

23

24

1. Introduction

10 Sarcopenia is defined as a progressive and generalized skeletal muscle disorder involving

11 accelerated loss of muscle mass and function that has become a public health concern linked

12 to disability, hospitalization, and mortality [1-3]. Traditionally associated with older age,

sarcopenia is now increasingly recognized in younger cohorts affected by metabolic disorders

such as type 2 diabetes mellitus (T2DM) and obesity, particularly in the form of sarcopenic

obesity [4-6]. Importantly, sarcopenia is not an inevitable consequence of aging, but a

preventable condition that justifies specific diagnostic criteria and therapeutic interventions

17 [7].

18 Current pharmacological options for sarcopenia are limited, with exercise and nutritional

interventions remaining the primary strategies. The multifactorial nature of sarcopenia,

involving chronic inflammation, insulin resistance, mitochondrial dysfunction, and hormonal

imbalances, continues to present significant challenges to the development of effective

therapies [7]. Multiple candidate therapies (e.g., myostatin inhibitors, selective androgen

receptor modulators, and mitochondria-targeting compounds such as urolithin A) have been

explored with mixed functional results [7–11].

1 In this therapeutic landscape, glucagon-like peptide-1 receptor agonists (GLP-1RAs) have 2 become central to diabetes and obesity care. These drugs improve glycemia by enhancing 3 insulin secretion and suppressing glucagon while reducing body weight via effects on gastric 4 emptying and appetite [12–16]. Owing to their potent weight-reducing effects, GLP-1RAs 5 such as liraglutide (Saxenda®) and semaglutide (Wegovy®) have been approved for the 6 treatment of obesity. More recently, tirzepatide, a dual glucose-dependent insulinotropic 7 polypeptide (GIP) and GLP-1 receptor agonist—marketed as Mounjaro® and Zepbound® has been approved for chronic weight management with greater weight-loss efficacy than 8 GLP-1RA monotherapy. However, the success of GLP-1RAs has prompted debate about 9 10 their effect on muscle. While weight loss therapies aim to reduce excess adiposity and alleviate obesity-related 11 12 complications—including cardiovascular disease—they are often accompanied by 13 unfavorable changes in body composition, particularly reductions in lean mass (LM). 14 Notably, losses of LM have been reported to account for up to 40% of total weight reduction with semaglutide and approximately 25% with tirzepatide [17-20], raising concerns in 15 populations already in risk of sarcopenia, such as individuals with obesity and T2DM, who 16 17 constitute the primary candidates for these treatments [21]. Importantly, LM is a composite encompassing all non-fat tissues, including skeletal muscle, organs, and extracellular fluid 18 (excluding bone), and is commonly used in clinical research as a surrogate for skeletal muscle 19 20 mass due to the predominance of muscle within lean soft tissue. However, LM does not 21 equate to skeletal muscle and LM loss during weight reduction may reflect non-muscle compartments, so careful interpretation is required to gauge clinical relevance. 22

1 Conversely, emerging clinical and especially preclinical data suggests that GLP-1RAs may 2 preserve or even support muscle despite overall weight loss. These potential benefits are attributed to the pleiotropic effects of GLP-1RAs, including anti-inflammatory, metabolic, 3 4 microvascular, and mitochondrial effects, and any direct effects on skeletal muscle tissue still 5 under investigation [22,23]. Clinical trials such as STEP 1 and SUSTAIN 8 have 6 demonstrated that semaglutide-associated weight loss is primarily driven by fat mass 7 reduction, with relative LM preservation in people with obesity or T2DM [24,25]. Additionally, preclinical studies suggest that GLP-1RAs may exert anabolic or anti-catabolic 8 effects on skeletal muscle [26-28]. In this review, we synthesize evidence to address whether 9 GLP-1RAs harm, spare, or benefit skeletal muscle in the context of weight loss. We first 10 outline how weight loss per se affects skeletal muscle, then synthesize clinical observations 11 with GLP-1RAs relevant to sarcopenia, integrate mechanisms by mapping core sarcopenia 12 13 pathways and their potential modulation by GLP-1RAs, and finally review experimental 14 evidence linking GLP-1RAs to muscle mass.

2. Skeletal Muscle in weight loss interventions

15

16

17

18

19

20

21

22

Skeletal muscle is the most abundant tissue, accounting for approximately 25–30% of resting energy expenditure (REE) [29]. Beyond locomotion, it is central to metabolic regulation and glucose homeostasis. People with obesity typically have higher absolute skeletal muscle mass than normal-weight individuals due to increased mechanical loading, yet muscle quality is typically lower, marked by increased intramuscular fat infiltration (myosteatosis), impaired mitochondrial function, altered muscle fiber composition (fiber-type shift from oxidative type I fibers to glycolytic type II fibers), and chronic low-grade inflammation [19,30].

- 1 Collectively, these alterations compromise muscle contractility and endurance and promote
- 2 functional limitation.
- 3 Muscle homeostasis is tightly governed by hormonal and metabolic signals. Insulin, a key
- 4 anabolic hormone, suppresses muscle proteolysis and promotes protein synthesis, thus
- 5 favoring net muscle accretion [31,32]. In states of insulin resistance this anabolic signaling
- 6 is blunted, predisposing to sarcopenic obesity, which is characterized by the coexistence of
- 7 excess adiposity with reduced muscle strength and function despite normal or high body
- 8 weight.
- 9 Weight loss interventions (lifestyle modification, pharmacotherapy, bariatric surgery)
- typically reduce both fat and LM. Approximately, 20%–25% of total weight lost is LM, with
- skeletal muscle comprising a significant portion [33]. This reduction in energy expenditure
- 12 contributes to adaptive thermogenesis, a physiological response in which metabolic rate
- declines disproportionately to the amount of weight lost. This phenomenon plays a key role
- in the weight-loss plateau and is a major contributor to long-term weight regain, which occurs
- in over 80% of individuals within five years [34].
- 16 Preserving muscle during weight loss is therefore essential not only to maintain REE and
- 17 reduce metabolic adaptation, but also to support musculoskeletal integrity, glucose
- metabolism, and long-term weight maintenance. This is particularly critical in older adults,
- 19 people with T2DM, and postmenopausal women due to anabolic resistance, hormonal shifts,
- and lower baseline muscle mass [35,36]. Evidence from the LOOK AHEAD trial, which
- 21 included individuals with T2DM, participants with \geq 6% weight loss experienced a higher
- 22 incidence of frailty fractures than controls [37]. Similarly, very-low-calorie diets can expedite

- 1 short-term weight loss in severe obesity but may accelerate LM decline and reduce bone
- 2 mineral density [38,39]. Accordingly, guidelines discourage overly restrictive diets in high-
- 3 risk groups and emphasize LM preserving strategies through the incorporation of resistance
- 4 training, adequate protein intake, and targeted reduction of metabolically harmful fat
- 5 depots—such as visceral adipose tissue and hepatic fat [40,41].

3. Clinical Observations and Potential Applications in Sarcopenia Management

- 7 Several large-scale randomized controlled trials (RCTs) have evaluated GLP-1RAs across
- 8 diverse populations, primarily focusing on glycemic control, cardiovascular protection, and
- 9 renal outcomes, but only a few included accurate measurements of muscle mass usually
- 10 inferred from dual-energy X-ray absorptiometry (DXA) determinations or imaging sub-
- 11 studies. Across these primary and ancillary studies, the consistent pattern is preferential fat
- loss with relative LM preservation, with no signal of impaired physical performance (**Table**
- 13 1).

- 14 Thus, in people with advanced heart failure or T2DM, liraglutide did not worsen physical
- endurance determinations, including maximal oxygen uptake (VO₂ max), cycle-ergometry
- duration, or 6-minute walk distance [42]. Similarly, in obesity cohorts, liraglutide was
- associated with improvements in self-reported physical function, [43].
- 18 Regarding the effects on body composition, the SUSTAIN trials (1–6) semaglutide
- 19 consistently led to significant body weight reductions in people with T2DM; although most
- 20 of these studies did not include comprehensive assessments of body composition, available
- data suggest that weight loss was primarily driven mainly by fat rather than LM. In SUSTAIN
- 8— which compared semaglutide to the sodium-glucose co-transporter 2 inhibitor (SGLT2i)
- canagliflozin— semaglutide demonstrated greater total weight loss [44], and a DXA-based

substudy revealed that despite the absolute decline, both groups experienced an increase in 1 2 the relative proportion of LM to total body weight (semaglutide: +1.2%; canagliflozin: +1.1%), suggesting a favorable effect on body composition and potential mitigation of 3 4 sarcopenic risk [25]. The SURPASS program, which evaluated the efficacy and safety of tirzepatide, similarly 5 6 demonstrated large reductions in visceral and subcutaneous adipose tissue with a preservation of a greater proportion of LM based on DCA assessments [45,46]. A recent post-hoc analysis 7 of the SURPASS-3 trial (T2DM cohort) utilized magnetic resonance imaging (MRI)-based 8 9 assessments to evaluate changes in muscle and fat within the thigh; highlighted findings included thigh muscle volume reductions in proportion to overall weight loss, while 10 intramuscular fat infiltration declined more than expected, indicating improved muscle 11 quality despite weight reduction. [47,48]. 12 13 Complementary MRI studies with liraglutide reported reductions in ectopic fat (visceral 14 adipose tissue (VAT) by 12.5%, hepatic fat content by 31.5%, and epicardial fat by 13.4%); these reductions were disproportionately greater than expected from weight loss, suggesting 15 16 direct pharmacologic effects on ectopic fat depots [49]. A subsequent post hoc analysis of 17 this cohort revealed a significant 2.87% absolute reduction in thigh intramuscular fat with 18 size-adjusted muscle volume largely unchanged; moreover, the proportion of participants 19 with adverse muscle composition—defined as high fat infiltration with low muscle mass— 20 declined from 11.0% to 8.2% in the liraglutide group, with no such improvement observed 21 in the placebo arm [50]. Collectively, these studies provide robust, imaging-based evidence 22 that liraglutide preferentially reduces ectopic and visceral fat while concurrently enhances

23

skeletal muscle quality.

- Further support comes from the STEP 1 trial, which included adults with obesity or overweight without diabetes treated with semaglutide [24]; a post hoc analysis, which included data from DEXA scans at baseline and week 68, showed that although absolute LM decreased 9.7% along with fat mass, the relative proportion of LM relative to total body mass increased by ~3.0%, highlighting preferential adipose tissue targeting by semaglutide [52]. SUSTAIN FORTE confirmed dose-dependent metabolic benefits, although muscle-specific endpoints were not collected [51]. Although not designed to assess skeletal muscle outcomes, several cardiovascular and renal outcome trials, together with and real-world cohorts, suggest potential indirect benefits to muscle via systemic improvements. In the LEADER trial, liraglutide reduced major adverse cardiovascular events (MACE) in subjects with T2DM [53]; while muscle-specific endpoints
 - outcome trials, together with and real-world cohorts, suggest potential indirect benefits to muscle via systemic improvements. In the LEADER trial, liraglutide reduced major adverse cardiovascular events (MACE) in subjects with T2DM [53]; while muscle-specific endpoints were not assessed, improvements in systemic inflammation, metabolic efficiency, and functional capacity—especially in frail subgroups—suggest potential indirect benefits for muscle health [53]. The SUSTAIN 6 and LEADER trials both demonstrated significant reductions in MACE after semaglutide or liraglutide treatment, respectively, in people with T2DM and high eardiovascular risk; again, again, muscle parameters were not directly evaluated, but the systemic anti-inflammatory and metabolic improvements observed may contribute to the preservation of muscle mass and function in this population [53,54]. Similarly, in the AWARD-11 trial, higher-dose dulaglutide produced significant weight loss with no excessive loss of LM in subjects with T2DM [55]. Efpeglenatide, a long-acting GLP-1RA, showed improved cardiovascular and renal outcomes in high-risk diabetic populations in the AMPLITUDE-O trial; despite lacking muscle assessments, the potent anti-

- 1 inflammatory, anti-catabolic, and endothelial effects could indirectly benefit skeletal muscle,
- 2 especially in comorbid states predisposing to sarcopenia [56].
- 3 Real-world and exploratory analyses in populations with T2DM further support the
- 4 preferential fat-loss effects of GLP-1RAs by assessing body composition through
- 5 bioelectrical impedance analysis (BIA). Thus, an observational study in adults initiating oral
- 6 semaglutide reported a total weight loss of 4.0 kg, including an average reduction of 3.2 kg
- 7 in fat mass, with no significant change in skeletal muscle mass after 16 weeks [57]. Similarly,
- 8 in older adults with obesity, semaglutide combined with caloric restriction and exercise
- 9 interventions for 3 months preserved appendicular LM and improved physical function
- scores [58]. Likewise, a recent real-world quasi-experimental study reported 9.5% of weight
- 11 loss primarily driven by fat mass reduction, while skeletal muscle mass and fat-free mass
- were preserved, after 24 weeks of semaglutide [59]; notably, the phase angle remained
- unchanged, suggesting that semaglutide-induced weight loss did not compromise muscle
- 14 quality or cellular health [59]. Finally, some cohorts also show improvements in health-
- related quality of life (HRQoL) and functional performance tests (such as the six-minute walk
- 16 test) in populations receiving GLP-1RA therapy, although data remain limited and largely
- 17 observational [60].
- Taken together, while landmark GLP-1RA trials were not specifically designed to assess
- 19 sarcopenia, their consistent demonstration of fat mass reduction with relative LM
- 20 preservation, combined with improvements in systemic metabolic and inflammatory profiles,
- supports the hypothesis that GLP-1RAs may help prevent or slow muscle wasting.

1 4. Pathophysiological Pathways in Sarcopenia and Their Modulation by GLP-1RAs 2 Sarcopenia results from a complex interplay of mechanisms, including impaired protein 3 homeostasis, chronic inflammation, mitochondrial dysfunction, and oxidative stress, among 4 other contributing factors (Figure 1). These interconnected processes drive progressive losses in muscle mass, strength, and function observed with aging and chronic disease. 5 6 Notably, many of these same pathways are modulated by GLP-1RAs, which exert pleiotropic 7 actions beyond glycemic control. By attenuating inflammation, improving metabolic regulation, and supporting mitochondrial integrity, GLP-1RAs may counteract key drivers of 8 muscle wasting, positioning them as plausible candidates for the prevention and treatment of 9 sarcopenia. 10 The GLP-1R, a member of the class B G-protein-coupled receptor family, was first identified 11 12 in rat insulinoma-derived cells and human pancreatic islets. GLP-1R mRNA has since been detected in several human tissues, including lung, pancreatic islets, stomach, kidney, 13 hypothalamus, and heart—but not in adipose tissue or liver [61]. The presence and functional 14 relevance of GLP-1R in human skeletal muscle remains uncertain: while experimental 15 studies in animal models and cell studies suggest receptor expression in myofibers, evidence 16 17 in humans is limited and inconsistent [61–63]. Accordingly, putative muscle benefits of GLP-18 1RAs in people are likely mediated indirectly—via improved glycemia/insulin action, reduced systemic inflammation, enhanced microvascular perfusion, and reduced ectopic 19 lipid—rather than robust, receptor-driven actions within myocytes. 20 21 Nevertheless, preclinical studies show that GLP-1RAs engage pathways relevant to muscle 22 anabolism and cytoprotection, including PI3K/Akt/mTOR, AMPK, and MAPK cascades, 23 while limiting catabolic processes such as FoxO-mediated upregulation of E3 ligases

- 1 Atrogin-1 and MuRF1 [64], alongside reductions in oxidative stress and improved
- 2 mitochondrial function in rodent and cell models [26,28]. These findings support biological
- 3 plausibility form muscle preservation, but wether—and through which tissues- these effects
- 4 translate to humans remains to be clarified.
- 5 In the following subsections, we integrate the pathophysiological drivers of sarcopenia with
- 6 their potential modulation by GLP-1RAs, providing a framework for their pleiotropic and
- 7 translational relevance to muscle health.

4.1 Impaired Protein Homeostasis: Insulin Resistance and Proteolysis

- 9 A central hallmark of sarcopenia is the dysregulation of muscle protein turnover,
- 10 characterized by a shift toward net catabolism. In healthy muscle, a dynamic equilibrium
- between protein synthesis and degradation preserves mass. Aging and disease disrupt this
- balance, reducing the synthesis of myofibrillar, mitochondrial, and sarcoplasmic proteins and
- 13 accelerating atrophy and loss of function. Protein synthesis is primarily driven by
- insulin/insulin-like growth factor-1 (IGF-1) signaling through the PI3K/Akt/mTOR pathway.
- Activation of insulin or IGF-1 receptors triggers phosphorylation of the insulin receptor
- substrate 1 (IRS-1) and downstream activation of mTORC1, promoting anabolic processes
- 17 [60,64,65]. In insulin-resistant states (e.g., T2DM and obesity), this pathway is blunted,
- 18 contributing to muscle loss and sarcopenic obesity [66]. Interventions that improve insulin
- 19 sensitivity—such as weight loss or insulinotropic therapies—can help to restore anabolic
- 20 signaling [32].

- 21 Conversely, protein degradation is mediated by two key proteolytic systems: the ubiquitin—
- proteasome system (UPS) and the autophagy–lysosome pathway [41,67]. The Forkhead box
- 23 O (FoxO) transcription factors driev both processes by inducing muscle E3 ubiquitin ligases

- 1 (Atrogin-1, MuRF-1) and atrophy genes (e.g., Bnip3, Beclin1) under catabolic stress [68-71].
- 2 Normally, Akt signaling downstream of IRS-1 restrains FoxO and thereby suppresses both
- 3 the UPS and autophagy. Myostatin, a TGF-β family member antagonized by follistatin,
- 4 further promotes catabolism by activating ActRIIB/Smad2/3 signaling, which suppresses
- 5 Akt/mTOR and facilitates FoxO-dependent atrogene expression [72,73]. Age- and disease-
- 6 related hormonal changes (declines in insulin, IGF-1, GH, testosterone, and estrogen with
- 7 higher cortisol) amplify anabolic resistance and proteolysis [74–78].
- 8 GLP-1RAs can mitigate this anabolic—catabolic imbalance through both systemic metabolic
- 9 effects and pathway crosstalk. In pancreatic β-cells, GLP-1R activation raises cAMP and
- 10 activates PKA/Epac, augmenting insulin secretion and suppressing glucagon release from α-
- 11 cells [79] (Figure 2). Beyond pancreatic islets, GLP-1RA treatment in muscle models is
- 12 associated with increased Akt phosphorylation—facilitating GLUT4 translocation and
- 13 glucose uptake—and with inhibition of FoxO, reducing Atrogin-1/MuRF-1 induction while
- down-modulating myostatin signaling and supporting myogenic regulators (MyoD, MyoG)
- 15 [83,84]. Conceptually, restoring Akt/mTOR activity would be expected to shift the
- myostatin–follistatin balance toward anabolism, favoring protein synthesis and myogenesis.
- 17 Direct evidence that GLP-1RAs modify this axis in humans is limited; we therefore present
- 18 it as a mechanistic rationale consistent with preclinical data. Akt activation further stimulates
- mTORC1, reinforcing protein synthesis and cellular growth [64]. Studies with exendin-4,
- 20 liraglutide, and semaglutide report reduced E3-ligase expression and proteolysis in
- 21 diabetic/cachectic models—even when glycemia is not fully normalized [26,28].
- 22 Adult muscle repair depends on satellite cells (SCs), whose activation, proliferation, and
- 23 differentiation are blunted by aging, insulin resistance, chronic inflammation, and niche

- 1 dysfunction [85,86]. By restoring insulin/IGF-1-Akt-mTOR signaling, reducing 2 inflammatory tone, and improving microvascular perfusion, GLP-1RAs may indirectly favor 3 preserve regenerative capacity. In preclinical models myogenesis and under 4 hyperglycemic/lipotoxic stress, GLP-1RAs increase MyoD/MyoG expression and myotube formation while lowering FoxO-linked atrogenes—implicating AMPK, YAP/TAZ, and PGC-5 6 1α pathways [135–137]. Direct, SC-specific effects in humans remain to be established [121]. Importantly, insulin's role in human muscle is permissive: basal insulin is required to 7 maintain synthesis and restrain breakdown, but supraphysiologic elevations do not 8 9 proportionally increase synthesis in the fed state, where amino acid availability is the dominant driver [85]. Thus, GLP-1RA contributions to protein balance likely reflect restored 10 insulin sensitivity, improved nutrient delivery, and reduced catabolic stress rather than 11 12 sustained hyperinsulinemia.
- In summary, impaired protein homeostasis is a core defect in sarcopenia. By improving insulin action and glycemic control, engaging Akt/FoxO pathways, and potentially tilting the myostatin–follistatin axis toward anabolism, GLP-1RAs may help counter sarcopenic muscle loss.

17 4.2 Chronic Inflammation and Immune-Mediated Catabolism

Systemic low-grade inflammation is a major driver of sarcopenia, closely linked to insulin resistance, impaired regeneration, and accelerated muscle catabolism. Elevated concentrations of pro-inflammatory cytokines—particularly tumor necrosis factor-α (TNF-21 α) and interleukin-6 (IL-6)—and higher C-reactive protein (CRP; an inflammatory marker) are common in individuals with sarcopenia and correlate with muscle loss [88,89]. In

- 1 experimental models, TNF-α blockade improves muscle function and attenuates atrophy
- 2 [90]. A central effector of inflammation-induced wasting is the nuclear factor-κB (NF-κB)
- 3 pathway: cytokine stimulation (e.g., TNF-α) leads to IκB degradation, NF-κB nuclear
- 4 translocation, and transcription of catabolic programs, including upregulation of the E3 ligase
- 5 MuRF-1; in parallel, FoxO transcription factors prominently drive Atrogin-1 expression
- 6 [91,92].
- 7 Mitochondrial dysfunction amplifies inflammation-driven catabolism. Impaired biogenesis
- 8 and respiratory function reduce oxidative capacity and ATP availability while increasing
- 9 reactive oxygen species (ROS), which further activate pro-apoptotic signaling and myofiber
- 10 loss. Age-related declines in regulators of mitochondrial homeostasis—including including
- 11 peroxisome proliferator-activated receptor gamma coactivator-1 alpha PGC-1α and
- sirtuins—exacerbate these deficits and contribute to fatigue, fiber degeneration, and loss of
- 13 contractile capacity [93–96].
- 14 GLP-1RAs have demonstrated anti-inflammatory and cytoprotective effects that may
- 15 counteract these processes. Initially characterized in pancreatic islets and adipose tissue,
- where they reduce pro-inflammatory cytokine output and improve insulin sensitivity [97,98],
- 17 similar actions have been reported across liver, vasculature, brain, and kidney. Importantly,
- 18 emerging evidence suggests direct benefits in skeletal muscle, where GLP-1RAs reduce
- 19 immune cell infiltration and downregulate the secretion of TNF-α and IL-6 [98,99].
- 20 Mechanistically, macrophages express functional GLP-1R, enabling GLP-1RAs to modulate
- 21 inflammatory signaling. Activation of GLP-1R in macrophages stimulates the cAMP/PKA
- 22 pathway, which in turn inhibits NF-κB activation and nuclear translocation, thereby reducing

- 1 the transcription of pro-inflammatory mediators such as TNF- α , IL-1 β , and IL-6 [100–106].
- 2 GLP-1RAs also suppress the NLRP3 inflammasome, further dampening chronic
- 3 inflammatory responses and preventing tissue injury [107]. Beyond cytokine suppression,
- 4 GLP-1RAs promote immunomodulation by shifting macrophage polarization from pro-
- 5 inflammatory (M1) toward anti-inflammatory (M2) phenotypes and by supporting regulatory
- 6 T-cells activity, collectively fostering a more favorable immunometabolic milieu [99].
- 7 These effects have been functionally validated in preclinical models of muscle wasting. In
- 8 aged mice, dulaglutide administration reduced Toll-like receptor 9 (TLR9)- and NF-κB-
- 9 dependent signaling, downregulated Atrogin-1 and MuRF-1, and protected against muscle
- atrophy [108]. Similarly, PF1801, a long-acting GLP-1RA, improved muscle inflammation,
- reduced necroptosis, and preserved fiber integrity in a mouse model of chronic inflammatory
- myopathy [109]. Together, these findings highlight the ability of GLP-1RAs to mitigate
- inflammation-driven muscle decline in age- and disease-related sarcopenia.

14 4.3 Oxidative Stress and Mitochondrial Dysfunction

- Aging muscle fibers often exhibit profound mitochondrial abnormalities, including reduced
- organelle density and enzymatic activity, impaired electron transport chain function, and
- 17 altered fusion-fission dynamics that compromise oxidative phosphorylation [93-96]. The
- 18 result is diminished ATP production and excess ROS generation. Elevated ROS and reactive
- 19 \(\) nitrogen species inflict cumulative damage on proteins, lipids, and DNA, accelerating muscle
- 20 fiber degeneration. Beyond structural damage, oxidative stress activates redox-sensitive
- 21 signaling cascades, such as NF-κB and FoxO, which trigger catabolic programs and

- 1 upregulate muscle-specific atrogenes, thereby linking mitochondrial dysfunction directly to
- 2 muscle proteolysis [93-96].
- 3 These deficits are compounded by blunted mitochondrial biogenesis with aging and chronic
- 4 disease, driven by downregulation of PGC-1α and sirtuins—key governors of mitochondrial
- 5 renewal and energy homeostasis. The consequence is a vicious cycle: damaged mitochondria
- 6 generate more ROS, further injuring organelles, amplifying catabolic signaling, and
- 7 triggering apoptosis via mitochondrial outer-membrane permeabilization and cytochrome c
- 8 release, culminating in myocyte loss. This oxidized, energy-depleted milieu is a fundamental
- 9 driver of sarcopenia, promoting fatigue, atrophy, and reduced regenerative capacity [93–96].
- 10 GLP-1RAs exert anti-oxidative effects in multiple tissues, with mechanistic implications for
- 11 skeletal muscle. They attenuate ROS generation by limiting nicotinamide adenine
- 12 dinucleotide phosphate (NADPH) oxidase activity—a major enzymatic source of
- 13 superoxide—while enhancing endogenous defenses. Reported adaptations include increased
- superoxide dismutase (SOD) and glutathione peroxidase (GPx) expression/activity, restoring
- redox balance and limiting oxidative injury [110,111]. Mechanistically, GLP-1R signaling
- 16 can inhibit protein kinase C (PKC)—dependent activation of NADPH oxidase, particularly
- 17 under hyperglycemic conditions [112], and may activate AMP-activated protein kinase
- 18 (AMPK), which suppresses ROS production and supports mitochondrial quality control
- 19 [113].
- 20 Beyond anti-oxidant actions, GLP-1RAs promote mitochondrial biogenesis and function.
- 21 Preclinical studies show upregulation of PGC-1α—via AMPK and sirtuin-1 (SIRT1)—with
- 22 downstream transcriptional programs for oxidative phosphorylation, mitochondrial DNA

replication, and organelle dynamics [114-116]. Coordinated AMPK-SIRT1-PGC-1a activation enhances respiration, ATP generation, and efficiency while reducing ROS output [117]. In diabetic rodent muscle, GLP-1RA treatment increased mitochondrial DNA content, boosted OXPHOS complex expression, and raised citrate synthase and cytochrome c oxidase activities, changes accompanied by improved endurance, reduced fatigue, and better insulin sensitivity [118]. Preservation of mitochondrial function also limits apoptosis by stabilizing mitochondrial membranes and preventing cytochrome c release. Notably, PGC-1α-driven improvements in mitochondrial quality also support the SCs program, linking redox control to regenerative capacity [119-121]. Collectively, by reducing oxidative stress and enhancing mitochondrial health, GLP-1RAs may protect skeletal muscle against two core drivers of sarcopenia: bioenergetic decline and redox imbalance.

4.4 Vascular Perfusion and Muscle Energy Supply

In sarcopenia—particularly when compounded by cardiovascular disease, T2DM, or sedentary behavior—skeletal-muscle perfusion is frequently impaired. Endothelial dysfunction in resistance arterioles and capillaries blunts vasodilatory responses to insulin and exercise, limiting delivery of oxygen, glucose, and amino acids while allowing metabolic by-products to accumulate. Chronic under-perfusion preferentially atrophies oxidative (type I) fibers and diminishes adaptive capacity to physical activity. In T2DM, skeletal-muscle microvascular dysfunction and capillary rarefaction are well described and closely linked to reduced insulin-mediated glucose uptake and anabolic resistance, underscoring vascular health as a critical—often underappreciated—determinant of sarcopenia progression [122].

- 1 Evidence from endothelial and in-vivo studies indicates that GLP-1RAs exert
- 2 vasculoprotective actions. In endothelial models, GLP-1/GLP-1R signaling enhances nitric-
- 3 oxide (NO) bioavailability and microvascular recruitment via eNOS, PKA, and PI3K/Akt
- 4 pathways; for example, exendin-4 stimulates endothelial proliferation through eNOS- and
- 5 PKA/Akt-dependent mechanisms [123]. In humans, GLP-1RA treatment improves skeletal-
- 6 muscle microvascular perfusion in both healthy and insulin-resistant states—largely through
- 7 NO-dependent mechanisms—thereby enhancing insulin delivery to muscle and facilitating
- 8 glucose uptake [124,125].
- 9 Clinical data in T2DM and coronary artery disease show improved flow-mediated dilation
- with GLP-1RA therapy, suggesting partial restoration of endothelial responsiveness even in
- 11 advanced vascular dysfunction [126]. Mechanistically, GLP-1RAs increase eNOS
- 12 phosphorylation and NO production, attenuate oxidative stress, and improve vascular insulin
- 13 sensitivity. Over longer durations, they may also support pro-angiogenic signaling (e.g.,
- 14 VEGF) and capillary remodeling, though definitive reversal of capillary rarefaction in human
- skeletal muscle remains to be established. Collectively, these actions help preserve perfusion,
- nutrient supply, and energy homeostasis—counteracting vascular limitations that contribute
- 17 to sarcopenia.

4.5 Neuromuscular Junction Integrity and Motor Neuron Support

- 19 \ An often-underappreciated contributor to age-related muscle loss is the deterioration of the
- 20 neuromuscular system. Aging and chronic disease lead to motor-neuron attrition and
- 21 progressive degeneration of neuromuscular junctions (NMJs)—the synapses connecting
- 22 motor nerves to muscle fibers [34,35,127]. As motor neurons lose function or undergo

1 apoptosis, affected fibers become denervated and atrophy rapidly. Surviving neurons may 2 initially sprout and reinnervate orphaned fibers, but this compensatory remodeling is limited; over time, entire motor units are lost. Clinically, the result is reduced strength, impaired fine 3 4 motor control, and increasing disability in older adults. Denervation also heightens local oxidative stress and inflammation, further accelerating myofiber apoptosis and compounding 5 6 sarcopenia progression. Preserving NMJ integrity and motor-neuron viability is therefore 7 essential to maintaining muscle mass and function with aging. Direct evidence linking GLP-1RAs to NMJ preservation in humans is limited, but converging 8 9 data from neurological models suggest GLP-1R activation can support neuromuscular connectivity [128,129]. GLP-1 and the analog exendin-4 enhance axonal regeneration, 10 improve synaptic transmission, and protect neurons from excitotoxic injury via 11 cAMP/PKA/CREB and PI3K/Akt signaling—core regulators of neuronal survival, plasticity, 12 and neurotransmitter release [130]. In neurodegenerative models, GLP-1RAs also reduce 13 14 neuroinflammation and strengthen synaptic connections, effects that could plausibly benefit motor neurons innervating skeletal muscle [129]. 15 16 Moreo compelling evidence come from Li et al. (2012) who showed that exendin-4 improved 17 motor performance and preserved choline acetyltransferase (ChAT) expression—a marker of 18 motor-neuron viability—in a murine amyotrophic lateral sclerosis (ALS) model [131]. GLP-19 1R activation conferred resistance to oxidative and apoptotic stress in neuronal cells, 20 implying dual protection of motor neurons and their synaptic interfaces with muscle fibers. 21 Together, these findings raise the possibility that GLP-1RAs may help maintain NMJ 22 integrity by supporting motor-neuron health and synaptic stability. While sarcopenia-specific

- 1 and human NMJ data are still lacking, the neuroprotective and anti-inflammatory properties
- 2 of GLP-1RAs provide a mechanistic rationale for exploring their role in preserving motor-
- 3 unit connectivity during aging.

4.6 Modulation of Autophagy and Apoptosis

- 5 Autophagy and apoptosis are tightly regulated processes that maintain myocyte quality
- 6 control. Basal autophagic flux is protective—clearing damaged proteins and organelles—
- 7 whereas chronic suppression or excessive activation contributes to proteolysis and fiber loss
- 8 in aging and disease. Although direct evidence in human skeletal muscle is limited, growing
- 9 data from other tissues indicate that GLP-1RAs can favorably modulate these pathways.
- 10 In cardiomyocytes exposed to high glucose, exendin-4 attenuates apoptosis by alleviating
- endoplasmic reticulum (ER) stress and enhancing sarco/endoplasmic reticulum Ca²⁺-ATPase
- 12 2a (SERCA2a) activity. These effects coincide with reduced CHOP and cleaved caspase-3,
- 13 consistent with suppression of ER stress-mediated apoptotic signaling [132]. Likewise,
- 14 liraglutide confers neuroprotection in diabetic rat models of ischemic injury by limiting
- oxidative and ER-stress pathways and preventing neuronal apoptosis [133].
- 16 Beyond apoptosis, GLP-1RAs can restore autophagic flux via AMPK-mTOR cross-talk. In
- 17 cardiac and renal models, GLP-1RA treatment activates AMPK and constrains aberrant
- 18 mTOR signaling, normalizing autophagy, promoting clearance of dysfunctional
- 19 mitochondria, and reducing downstream proteolytic stress [112,134,135]. Given the
- 20 conservation of these signaling nodes in skeletal muscle, similar modulation of AMPK-
- 21 mTOR-autophagy could support proteostasis and limit activation of catabolic programs that
- 22 otherwise drive sarcopenic atrophy.

- 1 While most evidence derives from non-muscle tissues and preclinical models, the same ER-
- 2 stress, AMPK-mTOR, and mitochondrial-quality pathways operate in myofibers. Thus, by
- 3 mitigating ER-stress-induced apoptosis and promoting balanced autophagy, GLP-1RAs may
- 4 help preserve myocyte viability, reduce proteolytic burden, and maintain
- 5 structural/functional integrity, particularly in the context of aging, metabolic dysfunction, or
- 6 chronic inflammatory disease.

7 5. Experimental Evidence Linking GLP-1RAs to Muscle Mass

- 8 Studies spanning in vitro and animal model experiments have collectively highlighted the
- 9 multifaceted actions of GLP-1RAs on skeletal muscle biology. Moreover, experimental
- 10 research has demonstrated that GLP-1RAs may exert direct beneficial effects on muscle
- 11 remodeling and function.
- Many in-vitro reports use rodent myoblast/myotube lines (e.g., C2C12) or early human
- myotubes have demonstrated that GLP-1RAs exert cytoprotective, metabolic, and anabolic
- effects that may help counteract muscle wasting. In these cells, low-level GLP-1R signals
- 15 can appear under culture/differentiation conditions that do not mirror mature human
- myofibers [61–63]. In intact human muscle, GLP-1R is more consistently localized to non-
- 17 myocyte populations (endothelium, perivascular and immune cells), enabling paracrine
- effects on perfusion and inflammation that secondarily benefit myofibers [61–63,123–
- 19 126,97–107]. Accordingly, we interpret preclinical signals as biological plausibility, while
- 20 direct myocytic actions in adult humans remain unproven [61–63].
- 21 Under hyperglycemic/lipotoxic stress, liraglutide reduces cellular senescence and promotes
- 22 myogenic differentiation in C2C12 myoblasts primarily via the modulation of the

mechanosensitive YAP/TAZ signaling pathway [135]. Also in C2C12, exendin-4 improves 1 2 mitochondrial respiration, promotes oxidative fiber-type gene expression, and enhances 3 glucose uptake via AMPK activation—effects that are abolished upon AMPK knockdown, 4 underscoring the importance of the GLP-1R/AMPK signaling axis [136,137].; these benefits 5 are further supported by the PKA-dependent induction of thermogenic genes (UCP1, PPARa, 6 and β3-adrenergic receptor) [136]. In inflammatory settings, the GLP-1RA PF1801 limits 7 FasL-induced necroptosis in myotubes by AMPK-mediated PGAM5 degradation, boosting antioxidant defenses and lowering ROS [112]. Also in vitro, GLP-1RAs have shown to 8 attenuate catabolic-atrophy. Thus, exendin-4 activates PI3K/Akt/mTOR and downregulates 9 MuRF-1/Atrogin-1 [26,28,111], restores GLUT4 and protein synthesis under palmitate or 10 dexamethasone [26,28], and enhances insulin-independent glucose uptake via AMPK in L6 11 and C2C12 cells [138,139]. GLP-1RAs have also been shown to improve autophagic flux 12 13 through SESN2- and LC3B-mediated mechanisms in L6 cells, contributing to protein 14 homeostasis and stress resilience [140]. 15 Beyond direct effects on muscle cells, GLP-1RAs may confer additional benefits through vascular mechanisms that improve perfusion and metabolic support. Exendin-4 promotes 16 17 smooth-muscle cells redifferentiation via AMPK/SIRT1/FOXO3a and vasodilatation through 18 cAMP/PKA activation and RhoA/ROCK inhibition [141–143]. These actions may indirectly support skeletal muscle maintenance by enhancing oxygen and nutrient delivery. 19 20 However, some findings suggest potential drawbacks of prolonged GLP-1 exposure. A recent 21 study by Huang et al. (2024) reported that sustained treatment with GLP-1 in C2C12 22 myoblasts led to impaired differentiation capacity, GLUT4 translocation, and diminished 23 mitochondrial ATP production [144]. These results raise concerns about the long-term impact

- 1 of chronic GLP-1 signaling on muscle regeneration, particularly in aging populations with
- 2 sarcopenia.
- 3 In vivo models further support and extend some of the findings derived from in vitro studies.
- 4 In aged mice, exendin-4 activates the AMPK–SIRT1–PGC-1α axis, improves mitochondrial
- 5 biogenesis, reduces oxidative stress, preserves fiber integrity, and enhances grip
- 6 strehght/endurance [137]. In diet-induced sarcopenic obesity models, semaglutide not only
- 7 reduces adiposity and systemic inflammation but also enhances relative skeletal muscle mass
- 8 and fiber structure (including increased fiber area, density, sarcomere length, and
- 9 mitochondrial content) with favorable shifts in amino acid, lipid, and organic acid pathways,
- suggesting improved anabolic signaling and metabolic efficiency [145]. Similarly, in a model
- of liver disease-related sarcopenia (diabetic KK-Ay mice fed a DDC diet), semaglutide
- 12 prevents muscle atrophy and improves function while downregulating catabolic genes,
- inflammation and oxidative stress, thereby improving grip strength and function [28]. In
- 14 db/db mice, liraglutide increases fiber cross-sectional area, improves grip strength, and
- suppresses *Atrogin-1* and *MuRF-1* expression independently of glycemia [146]. Also in *db/db*
- mice, dulaglutide protects against skeletal muscle injury by inhibiting inflammation and
- 17 regulating the differentiation of myoblasts [147]. In a related model of spontaneously diabetic
- 18 torii (SDT) fatty rats, liraglutide preserved mitochondrial function in skeletal muscle by
- 19 maintaining citrate synthase activity and cytochrome c oxidase levels, emphasizing its
- 20 beneficial role in sustaining oxidative metabolism [120].
- 21 GLP-1 overexpression via adeno-associated viral (AAV) vectors has been shown to improve
- 22 muscle endurance, enhance type I fiber proportion, and increase glycogen storage and
- 23 glucose uptake in mice, effects that were phenocopied by exendin-4 and associated with

- 1 increased AMPK activity and metabolic remodeling [137]. Exendin-4 also enhances muscle
- 2 glucose uptake in type 2 diabetic rats and attenuates atrophy in dexamethasone and Duchenne
- 3 models [148,26]. Additionally, dulaglutide has shown improvements in fiber size, mass, and
- 4 strength in aged and disuse-induced muscle atrophy models [28,111]. In diabetic sarcopenia,
- 5 dulaglutide further reduces necroptosis and promotes myoblast differentiation, while its anti-
- 6 inflammatory effects appear mediated through the OPA-1–TLR9 signaling pathway in tibialis
- 7 anterior and quadriceps muscles [111].
- 8 Furthermore, GLP-1RA administration in a hindlimb unloading model—a surrogate for
- 9 disuse-related sarcopenia—attenuates muscle mass loss, preserves mitochondrial content,
- and reduces oxidative stress markers [149]. These effects are especially significant given the
- 11 shared mechanisms between disuse atrophy and sarcopenia related to aging and chronic
- 12 disease.

6. Limitations and Future Directions

- 14 The dramatic adoption of incretin-based therapies for obesity has generated an urgent need
- 15 to reassess their broader physiological effects beyond weight reduction. Landmark clinical
- trials have demonstrated their robust efficacy in weight loss, with semaglutide and tirzepatide
- showing profound benefits in patients with obesity, even in the absence of T2DM. However,
- as the use of these agents expands, their impact on skeletal muscle, a key determinant of
- 19 metabolic health and independence, remains a central concern.
- 20 Although most clinical trials of GLP-1RAs were not specifically designed to assess
- 21 sarcopenia outcomes, post-hoc analyses and body composition substudies suggest a
- 22 favorable impact on LM preservation. These findings, while exploratory, highlights a

potential for GLP-1RAs to enhance muscle quality—an emerging priority in sarcopenia assessment. However, LM is a composite that includes water, connective tissue, organs, and other non-contractile tissues. As a result, changes in LM do not necessarily equal changes in contractile muscle. Short-term shifts in hydration and glycogen (common during energy restriction, gastrointestinal side effects, diuresis, or sodium/carbohydrate changes) can artifactually lower LM without true myofiber loss. Conversely, LM may remain unchanged even as muscle quality improves with reductions in intramuscular fat, a change that standard DXA cannot capture. Moreover, because most trials were not designed for sarcopenia, they rarely pair LM with validated functional outcomes or diagnostic criteria for sarcopenia, such as those recommended by EWGSOP2 or the Sarcopenia Definition and Outcomes Consortium [1]. Also, the oldest and frailest adults are under-represented, and important confounders (weight-loss magnitude, protein intake, resistance training, and co-medications such as SGLT2 inhibitors) are inconsistently controlled, while fluid shifts may bias LM estimates. Future research should prioritize large, dedicated trials that assess both quantity and quality of muscle. Endpoints should pair appendicular LM or MRI muscle volume with strength, power, and performance (e.g., gait speed/ Short Physical Performance Battery), plus MRI studies of intramuscular fat. Studies should use harmonized sarcopenia frameworks, prospectively capture falls and fractures, include weight-loss-matched comparators, and prespecify mechanistic substudies (microvascular perfusion; muscle-biopsy signaling such as Akt/FoxO, atrogenes, autophagy; mitochondrial respiration; inflammatory/immunologic profiles). Given the central role of lifestyle, factorial or add-on designs testing GLP-1RA with progressive resistance training and adequate protein are warranted. Comparative work

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

- across GLP-1RA classes/doses, dual/triple incretin agonists, and rational combinations (e.g., myostatin/activin-pathway modulators) should test whether fat-loss efficacy can be paired
- 3 with preservation—or improvement—of muscle mass, quality, and function, including in
- 4 multimorbid and post-bariatric populations. In this sense, activin type II receptor blockade
- 5 with bimagrumab has reduced fat mass with concurrent lean-mass gain in adults with T2DM
- and obesity [150], but showed no functional benefit in inclusion body myositis [151] and
- 7 mixed results in sarcopenia [152]. These data motivate ongoing combination trials with
- 8 semaglutide or tirzepatide (NCT05616013 and NCT06901349, respectively).

7. Conclusions

- 10 GLP-1RAs are transforming obesity and diabetes care, but their role in sarcopenia prevention
- or management remains uncertain. Preliminary findings derived from ancillary substudies
- 12 not designed for sarcopenia suggest preferential adiposity reduction, potential improvements
- in muscle quality, and no consistent detriment in physical performance. The overall pattern
- 14 is compatible with indirect support of muscle via improved metabolic and inflammatory
- profiles, yet direct myocytic effects in humans remain unclear. Accordingly, in individuals at
- risk of sarcopenia, GLP-1RAs should be used with caution and paired with progressive
- 17 resistance exercise, adequate protein intake, and routine monitoring of strength and function.
- 18 Robust, sarcopenia-focused randomized trials with standardized quantity-and-quality
- 19 endpoints are still required to draw firm conclusions. Closing this gap is essential given the
- 20 substantial contribution to disability resulting from sarcopenia, the health-care burden, and
- 21 the reduction in quality of life.

1 Funding sources

- 2 This work was supported by Instituto de Salud Carlos III (ISCIII) under Grant numbers
- 3 PI24/00218, PI21/01037, CP20/00122, and FI22/00213; Fundación Canaria Instituto de
- 4 Investigación Sanitaria de Canarias (FIISC) under Grant numbers PIFIISC24/12 and
- 5 PIFIISC21/08.

6 Authors Contributions

- 7 J.D.C., A.G.L., and V.L.A. contributed in the conception and design. A.G.L., V.L.A.,
- 8 C.E.M.A., C.H.C., C.M.F. and J.F.N.G. contributed to collection, analysis and interpretation
- 9 of the data; J.D.C., A.G.L., V.L.A. and C.E.M.A. contributed to the drafting of the paper;
- 10 J.D.C. supervised the manuscript development and was responsible for final review and
- 11 editing of the manuscript. All authors approved the final version of the manuscript.

12 Disclosure Statement

No conflicts of interest.

14 Ethical approval

- 15 This study was conducted according to the Declaration of Helsinki. As this is a review of
- previously published literature and does not involve human participants, identifiable personal
- data, or animal subjects, ethical approval was not required in accordance with institutional
- 18 and international guidelines.

1 References

- 2 1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia:
- revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–4 31.
- 5 2. Landi F, Liperoti R, Fusco D, Mastropaolo S, Quattrociocchi D, Proia A, et al.
- Sarcopenia as a risk factor for hospitalization in older adults. J Gerontol A Biol Sci Med Sci. 2012;67(5):548–54.
- Beaudart C, Zaaria M, Pasleau F, Reginster JY, Bruyère O. Sarcopenia in daily practice:
 assessment and management. BMC Geriatr. 2016;16(1):170.
- 4. Ai Y, Xu R, Liu L. The prevalence and risk factors of sarcopenia in patients with type 2
 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr. 2021
 Sep 3;13(1):93
- Gao Q, Mei F, Shang Y, Hu K, Chen F, Zhao L, Ma B. Global prevalence of sarcopenic obesity in older adults: A systematic review and meta-analysis. Clin Nutr. 2021
 Jul;40(7):4633-4641
- Duarte MP, Almeida LS, Neri SGR, Oliveira JS, Wilkinson TJ, Ribeiro HS, Lima RM.
 Prevalence of sarcopenia in patients with chronic kidney disease: a global systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2024 Apr;15(2):501-512.
- Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms
 and promising therapies. Nat Rev Drug Discov 2015;14:58–74
- Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F, Vrbóva G, Partridge T, Zammit P, Bunger L, Patel K. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1835-40.
- Rooks D, Swan T, Goswami B, Filosa LA, Bunte O, Panchaud N, Coleman LA, Miller
 RR, Garcia Garayoa E, Praestgaard J, Perry RG, Recknor C, Fogarty CM, Arai H, Chen
 LK, Hashimoto J, Chung YS, Vissing J, Laurent D, Petricoul O, Hemsley S, Lach-
- Trifilieff E, Papanicolaou DA, Roubenoff R. Bimagrumab vs Optimized Standard of Care for Treatment of Sarcopenia in Community-Dwelling Older Adults: A Randomized
- 30 Clinical Trial. JAMA Netw Open. 2020 Oct 1;3(10):e2020836.
- 10. Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, Morton RA,
 Steiner MS. The selective androgen receptor modulator GTx-024 (enobosarm) improves
 lean body mass and physical function in healthy elderly men and postmenopausal
 women: results of a double-blind, placebo-controlled phase II trial. J Cachexia
- 35 Sarcopenia Muscle. 2011 Sep;2(3):153-161.
- 36 11. Andreux PA, Blanco-Bose W, Ryu D, Burdet F, Ibberson M, Aebischer P, Auwerx J,
- 37 Singh A, Rinsch C. The mitophagy activator urolithin A is safe and induces a
- molecular signature of improved mitochondrial and cellular health in humans. Nat
- 39 Metab. 2019 Jun;1(6):595-603.

- 1 12. Hedrington MS, Tsiskarishvili A, Davis SN. Subcutaneous semaglutide (NN9535) for the treatment of type 2 diabetes. Expert Opin Biol Ther. 2018;18(3):343-351
- 3 13. Vilsbøll T, Brock B, Perrild H, et al. Liraglutide, a once-daily human GLP-1 analogue,
- 4 improves pancreatic B-cell function and argininestimulated insulin secretion during
- 5 hyperglycaemia in patients with type 2 diabetes mellitus. Diabet Med. 2008;25:152
- 6 156
- 7 14. Kapitza C, Dahl K, Jacobsen JB, Axelsen MB, Flint A. Effects of semaglutide on beta
- 8 cell function and glycaemic control in participants with type 2 diabetes: a randomised,
- 9 double-blind, placebocontrolled trial. Diabetologia. 2017;60(8):1390-1399
- 15. Sfairopoulos D, Liatis S, Tigas S, Liberopoulos E. Clinical pharmacology of glucagonlike peptide-1 receptor agonists. Hormones. 2018;17(3):333-350
- 12 16. Blundell J, Finlayson G, Axelsen M, et al. Effects of once-weekly semaglutide on
- appetite, energy intake, control of eating, food preference and body weight in subjects
- with obesity. Diabetes Obes Metab. 2017;19(9):1242-1251
- 15 17. Ida S, Kaneko R, Imataka K, et al. Effects of antidiabetic drugs on muscle mass in type 2 diabetes mellitus. Curr Diabetes Rev. 2020;17(3):293-303.
- 18. Mechanick JI, Farkouh ME, Newman JD, Garvey WT. Cardiometabolic-based chronic
- disease, adiposity and dysglycemia drivers: JACC state-of-the-art review. J Am Coll
- 19 Cardiol. 2020;75(5):525-538
- 19. Conte C, Hall KD, Klein S. Is weight loss-induced muscle mass loss clinically
 relevant? JAMA. 2024;332(1):9-10
- 22 20. Sargeant JA, Henson J, King JA, Yates T, Khunti K, Davies MJ. A Review of the
- Effects of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose
- 24 Cotransporter 2 Inhibitors on Lean Body Mass in Humans. Endocrinol Metab (Seoul).
- 25 2019 Sep;34(3):247-262
- 26 21. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in
- older persons is associated with functional impairment and physical disability. J Am
- 28 Geriatr Soc. 2002 May;50(5):889-96.
- 29 22. Witham MD, Granic A, Pearson E, Robinson SM, Sayer AA. Repurposing Drugs for
- 30 Diabetes Mellitus as Potential Pharmacological Treatments for Sarcopenia A
- 31 Narrative Review. Drugs Aging. 2023 Aug;40(8):703-719.
- 32 23. Locatelli JC, Costa JG, Haynes A, Naylor LH, Fegan PG, Yeap BB, Green DJ.
- Incretin-Based Weight Loss Pharmacotherapy: Can Resistance Exercise Optimize
- Changes in Body Composition? Diabetes Care. 2024 Oct 1;47(10):1718-1730.
- 35 24. Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I,
- McGowan BM, Rosenstock J, Tran MTD, Wadden TA, Wharton S, Yokote K, Zeuthen
- N, Kushner RF; STEP 1 Study Group. Once-Weekly Semaglutide in Adults with
- 38 Overweight or Obesity. N Engl J Med. 2021 Mar 18;384(11):989-1002.
- 39 25. McCrimmon RJ, Catarig AM, Frias JP, Lausvig NL, le Roux CW, Thielke D, Lingvay
- I. Effects of once-weekly semaglutide vs once-daily canagliflozin on body composition

- 1 in type 2 diabetes: a substudy of the SUSTAIN 8 randomised controlled clinical trial.
- 2 Diabetologia. 2020 Mar;63(3):473-485.
- 3 26. Hong Y, Lee JH, Jeong KW, Choi CS, Jun HS. Amelioration of muscle wasting by
- 4 glucagon-like peptide-1 receptor agonist in muscle atrophy. J Cachexia Sarcopenia
- 5 Muscle. 2019 Aug;10(4):903-918.
- 6 27. Nguyen TTN, Choi H, Jun HS. Preventive Effects of Dulaglutide on Disuse Muscle
- 7 Atrophy Through Inhibition of Inflammation and Apoptosis by Induction of Hsp72
- 8 Expression. Front Pharmacol. 2020 Feb 21;11:90
- 9 28. Iwai S, Kaji K, Nishimura N, Kubo T, Tomooka F, Shibamoto A, Suzuki J, Tsuji Y,
- Fujinaga Y, Kitagawa K, Namisaki T, Akahane T, Yoshiji H. Glucagon-like peptide-1
- receptor agonist, semaglutide attenuates chronic liver disease-induced skeletal muscle
- atrophy in diabetic mice. Biochim Biophys Acta Mol Basis Dis. 2023
- 13 Oct;1869(7):166770.
- 14 29. Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major
- determinant of resting energy expenditure. J Clin Invest. 1990;86(5):1423–1427
- 16 30. Mechanick JI, Butsch WS, Christensen SM, Hamdy O, Li Z, Prado CM, Heymsfield
- SB. Strategies for minimizing muscle loss during use of incretin-mimetic drugs for
- treatment of obesity. Obes Rev. 2025 Jan;26(1):e13841.
- 19 31. Magkos F, Wang X, Mittendorfer B. Metabolic actions of insulin in men and women.
- Nutrition. 2010;26:686-693; Damluji AA, Alfaraidhy M, AlHajri N, et al. Sarcopenia
- and cardiovascular diseases. Circulation. 2023;147:1534-1553
- 22 32. Rasmussen BB, Fujita S, Wolfe RR, et al. Insulin resistance of muscle protein
- 23 metabolism in aging. FASEB J. 2006;20:768-769
- 24 33. Christoffersen BO, Sanchez-Delgado G, John LM, Ryan DH, Raun K, Ravussin E.
- Beyond appetite regulation: targeting energy expenditure, fat oxidation, and lean mass
- preservation for sustainable weight loss. Obesity (Silver Spring). 2022;30:841-857
- 27 34. Weiss EC, Galuska DA, Kettel Khan L, Gillespie C, Serdula MK. Weight regain in
- U.S. adults who experienced substantial weight loss, 1999-2002. Am J Prev Med.
- 29 2007;33:34-40.
- 30 35. Dai S, Shu D, Meng F, et al. Higher risk of sarcopenia in older adults with type 2
- 31 diabetes: NHANES 1999-2018. Obes Facts. 2023;16(3):237-248
- 36. Seimon RV, Wild-Taylor AL, Keating SE, et al. Effect of weight loss via severe vs
- moderate energy restriction on lean mass and body composition among
- postmenopausal women with obesity: the TEMPO diet randomized clinical trial.
- 35 JAMA Netw Open. 2019;2(10):e1913733
- 36 37. Johnson KC, Bray GA, Cheskin LJ, et al. The effect of intentional weight loss on
- 37 fracture risk in persons with diabetes: results from the Look AHEAD randomized
- 38 clinical trial. J Bone Miner Res. 2017; 32(11):2278-2287
- 39 38. Moreland JD, Richardson JA, Goldsmith CH, Clase CM. Muscle weakness and falls in
- older adults: a systematic review and metaanalysis. J Am Geriatr Soc.
- 41 2004;52(7):1121-1129

- 1 39. Janssen TAH, Van Every DW, Phillips SM. The impact and utility of very low-calorie
- diets: the role of exercise and protein in preserving skeletal muscle mass. Curr Opin
- 3 Clin Nutr Metab Care. 2023;26(6): 521-527
- 4 40. Villareal DT, Apovian CM, Kushner RF, Klein S, American Society for Nutrition,
- 5 NAASO, The Obesity Society. Obesity in older adults: technical review and position
- 6 statement of the American Society for Nutrition and NAASO, The Obesity Society.
- 7 Obes Res. 2005;13(11): 1849-1863
- 41. Cava E, Yeat NC, Mittendorfer B. Preserving healthy muscle during weight loss. Adv
 Nutr. 2017;8(3):511-519
- 42. Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, et al.
- 11 Effects of liraglutide on clinical stability among patients with advanced heart failure
- and reduced ejection fraction. JAMA. 2016;216:500–8
- 43. Pi-Sunyer X, Astrup A, Fujioka K, et al. A randomized, controlled trial of 30 mg of
 liraglutide in weight management. N Engl J Med. 2015;373:11–22
- 15 44. Pratley RE, Amod A, Hoff ST, Kadowaki T, Lingvay I, Nauck MA, et al. Semaglutide
- versus sitagliptin as add-on to metformin in type 2 diabetes (SUSTAIN 8): a double-
- blind, phase 3b, randomised controlled trial. Lancet Diabetes Endocrinol.
- 18 2020;8(11):887–97
- 19 45. Ludvik B, Giorgino F, Jódar E, Frias JP, Fernández Landó L, Brown K, Bray R,
- Rodríguez Á. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to
- 21 metformin with or without SGLT2 inhibitors in patients with type 2 diabetes
- 22 (SURPASS-3): a randomised, open-label, parallel-group, phase 3 trial. Lancet. 2021
- 23 Aug 14;398(10300):583-598
- 24 46. Dahl D, Onishi Y, Norwood P, Huh R, Bray R, Patel H, Rodríguez Á. Effect of
- 25 Subcutaneous Tirzepatide vs Placebo Added to Titrated Insulin Glargine on Glycemic
- 26 Control in Patients With Type 2 Diabetes: The SURPASS-5 Randomized Clinical
- 27 Trial. JAMA. 2022 Feb 8;327(6):534-545
- 47. Gastaldelli A, Cusi K, Fernández Landó L, Bray R, Brouwers B, Rodríguez Á. Effect
- of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue
- in people with type 2 diabetes (SURPASS-3 MRI): a substudy of the randomised,
- open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol.
- 32 2022 Jun;10(6):393-406
- 48. Sattar N, Neeland IJ, Dahlqvist Leinhard O, Fernández Landó L, Bray R, Linge J,
- Rodriguez A. Tirzepatide and muscle composition changes in people with type 2
- diabetes (SURPASS-3 MRI): a post-hoc analysis of a randomised, open-label, parallel-
- group, phase 3 trial. Lancet Diabetes Endocrinol. 2025 Jun;13(6):482-493
- 49. Neeland IJ, Marso SP, Ayers CR, Lewis B, Oslica R, Francis W, Rodder S, Pandey A,
- Joshi PH. Effects of liraglutide on visceral and ectopic fat in adults with overweight
- and obesity at high cardiovascular risk: a randomised, double-blind, placebo-
- 40 controlled, clinical trial. Lancet Diabetes Endocrinol. 2021 Sep;9(9):595-605,33 70,71
- 41 50. Pandey A, Patel KV, Segar MW, Ayers C, Linge J, Leinhard OD, Anker SD, Butler J,
- Verma S, Joshi PH, Neeland IJ. Effect of liraglutide on thigh muscle fat and muscle

- 1 composition in adults with overweight or obesity: Results from a randomized clinical 2 trial. J Cachexia Sarcopenia Muscle. 2024 Jun;15(3):1072-1083
- 51. Frías JP, Auerbach P, Bajaj HS, Fukushima Y, Lingvay I, Macura S, Søndergaard AL,
 Tankova TI, Tentolouris N, Buse JB. Efficacy and safety of once-weekly semaglutide
 2.0 mg versus 1.0 mg in patients with type 2 diabetes (SUSTAIN FORTE): a double-blind, randomised, phase 3B trial. Lancet Diabetes Endocrinol. 2021 Sep;9(9):563-574
- 52. Wilding JPH, Batterham RL, Calanna S, Van Gaal LF, McGowan BM, Rosenstock J,
 Tran MTD, Wharton S, Yokote K, Zeuthen N, Kushner RF. Impact of Semaglutide on
 Body Composition in Adults With Overweight or Obesity: Exploratory Analysis of the
 STEP 1 Study. J Endocr Soc. 2021 May 3;5(Suppl 1):A16–7
- 53. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al.
 Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med.
 2016;375(4):311–22
- 54. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–1844. doi: 10.1056/NEJMoa1607141
- 55. Frias JP, Nauck MA, Van J, Kutner ME, Cui X, Benson C, et al. Efficacy and safety of dulaglutide 3.0 mg and 4.5 mg vs 1.5 mg in type 2 diabetes in a randomized controlled trial (AWARD-11). Diabetes Care. 2021;44(3):765-73
- 56. Gerstein HC, Sattar N, Rosenstock J, Ramasundarahettige C, Pratley R, Lopes RD,
 Lam CSP, Khurmi NS, Heenan L, Del Prato S, Dyal L, Branch K; AMPLITUDE-O
 Trial Investigators. Cardiovascular and Renal Outcomes with Efpeglenatide in Type 2
- 23 Diabetes. N Engl J Med. 2021 Sep 2;385(10):896-907
- 57. Uchiyama S, Sada Y, Mihara S, Sasaki Y, Sone M, Tanaka Y. Oral Semaglutide
 Induces Loss of Body Fat Mass Without Affecting Muscle Mass in Patients With Type
 Diabetes. J Clin Med Res. 2023 Jul;15(7):377-383
- 58. Ozeki Y, Masaki T, Kamata A, Miyamoto S, Yoshida Y, Okamoto M, Gotoh K,
 Shibata H. The Effectiveness of GLP-1 Receptor Agonist Semaglutide on Body
 Composition in Elderly Obese Diabetic Patients: A Pilot Study. Medicines (Basel).
 2022 Sep 16;9(9):47
- 59. Rodríguez Jiménez B, Rodríguez de Vera Gómez P, Belmonte Lomas S, Mesa Díaz
 ÁM, Caballero Mateos I, Galán I, Morales Portillo C, Martínez-Brocca MA.
 Transforming body composition with semaglutide in adults with obesity and type 2
 diabetes mellitus. Front Endocrinol (Lausanne). 2024 Jun 4;15:1386542
- 60. Billings LK, Handelsman Y, Heile M, Schneider D, Wyne K. Health-Related Quality
 of Life Assessments with Once-Weekly Glucagon-Like Peptide-1 Receptor Agonists in
 Type 2 Diabetes Mellitus. J Manag Care Spec Pharm. 2018 Sep;24(9-a Suppl):S30-S41
- 38 61. Schiaffino, S.; Mammucari, C. Regulation of skeletal muscle growth by the IGF1 39 Akt/PKB pathway: Insights from genetic models. Skelet. Muscle 2011, 1, 4

- 62. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, et al. 1
- 2 Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can
- prevent muscle atrophy. Nat Cell Biol. 2001;3(11):1014-9. 3
- 4 63. Glass, D.J. Skeletal muscle hypertrophy and atrophy signaling pathways. Int. J. 5 Biochem. Cell Biol. 2005, 37, 1974–1984
- 6 64. Cid-Díaz T, Santos-Zas I, González-Sánchez J, Gurriarán-Rodríguez U, Mosteiro CS,
- 7 Casabiell X, García-Caballero T, Mouly V, Pazos Y, Camiña JP. Obestatin controls the
- ubiquitin-proteasome and autophagy-lysosome systems in glucocorticoid-induced 8
- muscle cell atrophy. J Cachexia Sarcopenia Muscle. 2017 Dec;8(6):974-990. 9
- 65. Xia, Q.; Huang, X.; Huang, J.; Zheng, Y.; March, M.E.; Li, J.; Wei, Y. The Role of 10 Autophagy in Skeletal Muscle Diseases. Front. Physiol. 2021, 12, 638983 11
- 66. Bodine, S.C.; Baehr, L.M. Skeletal muscle atrophy and the E3 ubiquitin ligases 12
- MuRF1 and MAFbx/atrogin-1. Am. J. Physiol. Endocrinol. Metab. 2014, 307, E469-13
- 14 E484
- 67. Voges, D.; Zwickl, P.; Baumeister, W. The 26S proteasome: A molecular machine 15 designed for controlled proteolysis. Annu. Rev. Biochem. 1999, 68, 1015-1068 16
- 17 68. Jackson, M.P.; Hewitt, E.W. Cellular proteostasis: Degradation of misfolded proteins by lysosomes. Essays Biochem. 2016, 60, 173–180 18
- 19 69. Mammucari, C.; Milan, G.; Romanello, V.; Masiero, E.; Rudolf, R.; Del Piccolo, P.;
- Burden, S.J.; Di Lisi, R.; Sandri, C.; Zhao, J.; et al. FoxO3 controls autophagy in 20
- skeletal muscle in vivo. Cell Metab. 2007, 6, 458-471 21
- 70. Trendelenburg, A.U.; Meyer, A.; Rohner, D.; Boyle, J.; Hatakeyama, S.; Glass, D.J. 22
- 23 Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation
- and myotube size. Am. J. Physiol. Cell Physiol. 2009, 296, C1258-C1270 24
- 71. White, T.A.; LeBrasseur, N.K. Myostatin and sarcopenia: Opportunities and 25 26 challenges—A mini-review. Gerontology 2014, 60, 289–293
- 72. Sattler, F.R. Growth hormone in the aging male. Best Pract. Res. Clin. Endocrinol. 27
- Metab. 2013, 27, 541-555 28
- 73. Wiedmer, P.; Jung, T.; Castro, J.P.; Pomatto, L.C.D.; Sun, P.Y.; Davies, K.J.A.; Grune, 29
- 30 T. Sarcopenia—Molecular mechanisms and open questions. Ageing Res. Rev. 2021,
- 65, 101200 31
- 32 74. Brack, A.S.; Conboy, M.J.; Roy, S.; Lee, M.; Kuo, C.J.; Keller, C.; Rando, T.A.
- Increased Wnt signaling during aging alters muscle stem cell fate and increases 33
- fibrosis. Science 2007, 317, 807-810 34
- 35 75. Chakkalakal, J.V.; Jones, K.M.; Basson, M.A.; Brack, A.S. The aged niche disrupts
- muscle stem cell quiescence. Nature 2012, 490, 355–360 36
- 37 76. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al.
- Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity 38
- 39 emerged from studies in humans. Mech Ageing Dev. 2007;128(1):92-105.

- 1 77. Ferrucci L, Harris TB, Guralnik JM, Tracy RP, Corti MC, Cohen HJ, et al.
- 2 Inflammatory markers and physical performance in older persons: the InCHIANTI
- 3 study. J Gerontol A Biol Sci Med Sci. 2002;57(11):M706–13.
- 4 78. Sciorati, C.; Gamberale, R.; Monno, A.; Citterio, L.; Lanzani, C.; De Lorenzo, R.;
- Ramirez, G.A.; Esposito, A.; Manunta, P.; Manfredi, A.A.; et al. Pharmacological
- 6 blockade of TNFalpha prevents sarcopenia and prolongs survival in aging mice. Aging
- 7 2020, 12, 23497–23508
- 8 79. Bakkar, N.; Wang, J.; Ladner, K.J.; Wang, H.; Dahlman, J.M.; Carathers, M.;
- 9 Acharyya, S.; Rudnicki, M.A.; Hollenbach, A.D.; Guttridge, D.C. IKK/NF-kappaB
- regulates skeletal myogenesis via a signaling switch to inhibit differentiation and
- promote mitochondrial biogenesis. J. Cell Biol. 2008, 180, 787–802
- 80. Thoma, A.; Lightfoot, A.P. NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. Adv. Exp. Med. Biol. 2018, 1088, 267–279.
- 14 81. Liu S, Yu C, Xie L, Niu Y, Fu L. Aerobic Exercise Improves Mitochondrial Function
- in Sarcopenia Mice Through Sestrin2 in an AMPKα2-Dependent Manner. J Gerontol
- 16 A Biol Sci Med Sci. 2021 Jun 14;76(7):1161-1168.
- 17 82. Leduc-Gaudet JP, Hussain SNA, Barreiro E, Gouspillou G. Mitochondrial Dynamics
- and Mitophagy in Skeletal Muscle Health and Aging. Int J Mol Sci. 2021 Jul
- 19 30;22(15):8179.
- 20 83. Joseph, A.M.; Adhihetty, P.J.; Buford, T.W.; Wohlgemuth, S.E.; Lees, H.A.; Nguyen,
- L.M.; Aranda, J.M.; Sandesara, B.D.; Pahor, M.; Manini, T.M.; et al. The impact of
- aging on mitochondrial function and biogenesis pathways in skeletal muscle of
- sedentary highand low-functioning elderly individuals. Aging Cell 2012, 11, 801–809
- 84. Migliavacca, E.; Tay, S.K.H.; Patel, H.P.; Sonntag, T.; Civiletto, G.; McFarlane, C.;
- Forrester, T.; Barton, S.J.; Leow, M.K.; Antoun, E.; et al. Mitochondrial oxidative
- capacity and NAD(+) biosynthesis are reduced in human sarcopenia across ethnicities.
- 27 Nat. Commun. 2019, 10, 5808
- 85. Chen W, Datzkiw D, Rudnicki MA. Satellite cells in ageing: use it or lose it. Open
- 29 Biol. 2020 May;10(5):200048. doi: 10.1098/rsob.200048. Epub 2020 May 20. PMID:
- 30 32428419; PMCID: PMC7276531.
- 86. Bernet, J.D.; Doles, J.D.; Hall, J.K.; Kelly Tanaka, K.; Carter, T.A.; Olwin, B.B. p38
- MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal
- 33 muscle of aged mice. Nat. Med. 2014, 20, 265-271
- 34 87. Deschenes MR. Motor unit and neuromuscular junction remodeling with aging. Curr
- 35 Aging Sci. 2011;4(3):209–20
- 36 88. Chang J, Liang Y, Sun P, Fang X, Sun Q. Molecular and Cellular Mechanisms Linking
- 37 Chronic Kidney Disease and Sarcopenia in Aging: An Integrated Perspective. Clin
- 38 Interv Aging. 2025 Apr 8;20:449-458.
- 39 89. Pyke C, Heller RS, Kirk RK, √òrskov C, Reedtz-Runge S, Kaastrup P, et al GLP-1
- 40 receptor localization in monkey and human tissue: novel distribution revealed with
- 41 extensively validated monoclonal antibody. Endocrinology. 2014;155(4):1280-90.

- 90. Luque, M.A. et al. (2002) Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes. J. Endocrinol. 173, 465–473
- 91. Pabreja K, Mohd MA, Koole C, Wootten D, Furness SG. Molecular mechanisms
 underlying physiological and receptor pleiotropic effects mediated by GLP-1R
 activation. Br J Pharmacol. 2014 Mar;171(5):1114-28.
- 92. Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, Bos JL, Schwede F,
 Genieser HG, Holz GG. Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP as a
 stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells. J Biol
 Chem. 2003 Mar 7:278(10):8279-85.
- 93. van Dam, E. M., Govers, R. & James, D. E. Akt activation is required at a late stage of insulin-induced GLUT4 translocation to the plasma membrane. Mol. Endocrinol. 19, 1067–1077 (2005)
- 94. Chai, W. et al. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes 61, 888–896 (2012)
- 95. Andreozzi, F. et al. The GLP-1 receptor agonists exenatide and liraglutide activate
 Glucose transport by an AMPK-dependent mechanism. J. Transl. Med. 14, 229 (2016)
- 96. Oku A, Nawano M, Ueta K, Fujita T, Umebayashi I, Arakawa K, Kano-Ishihara T,
 Saito A, Anai M, Funaki M, Kikuchi M, Oka Y, Asano T. Inhibitory effect of
 hyperglycemia on insulin-induced Akt/protein kinase B activation in skeletal muscle.
 Am J Physiol Endocrinol Metab. 2001 May;280(5):E816-24.
- 97. Wu TH, Tsai SC, Lin HW, Chen CN, Hwu CM. Increased serum levels of advanced
 glycation end products are negatively associated with relative muscle strength in
 patients with type 2 diabetes mellitus. BMC Endocr Disord. 2022 May 4;22(1):118.
- 98. Du H, Ma Y, Wang X, Zhang Y, Zhu L, Shi S, Pan S, Liu Z. Advanced glycation end
 products induce skeletal muscle atrophy and insulin resistance via activating ROS mediated ER stress PERK/FOXO1 signaling. Am J Physiol Endocrinol Metab. 2023
 Mar 1;324(3):E279-E287.
- 99. Ferrucci L, Corsi A, Lauretani F, Bandinelli S, Bartali B, Taub DD, Guralnik JM, Longo
 DL. The origins of age-related proinflammatory state. Blood. 2005 Mar 15;105(6):2294 9.
- 100. Dobrian AD, Ma Q, Lindsay JW, Leone KA, Ma K, Coben J, Galkina EV, Nadler
 JL. Dipeptidyl peptidase IV inhibitor sitagliptin reduces local inflammation in adipose tissue and in pancreatic islets of obese mice. Am J Physiol Endocrinol Metab. 2011
 Feb;300(2):E410-21
- 101. Lee YS, Park MS, Choung JS, Kim SS, Oh HH, Choi CS, Ha SY, Kang Y, Kim Y,
 36 Jun HS. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and
 37 inflammation in an obese mouse model of diabetes. Diabetologia. 2012
 38 Sep;55(9):2456-68
- 102. Alharbi SH. Anti-inflammatory role of glucagon-like peptide 1 receptor agonists
 and its clinical implications. Ther Adv Endocrinol Metab. 2024 Jan
 27;15:20420188231222367.

- 1 103. Tang ST, Zhang Q, Tang HQ, et al. Effects of glucagon-like peptide-1 on advanced
 2 glycation endproduct-induced aortic endotelial dysfunction in streptozotocin-induced
 3 diabetic rats: possible roles of rho kinase- and AMP kinase-mediated nuclear factor κB
 4 signaling pathways. Endocrine 2016; 53: 107–116.
- 5 104. Kodera R, Shikata K, Kataoka HU, et al. Glucagon-like peptide-1 receptor agonist 6 ameliorates renal injury through its anti-inflammatory action without lowering blood 7 glucose level in a rat model of type 1 diabetes. Diabetologia 2011; 54: 965–978.
- 8 105. Chang, S. Y. et al. Exendin-4 inhibits iNOS expression at the protein level in LPS-9 stimulated Raw264.7 macrophage by the activation of cAMP/PKA pathway. J. Cell 10 Biochem 114, 844–853 (2013)
- 106. Kang, J. H. et al. Exendin-4 inhibits interleukin-1beta-induced iNOS expression at the protein level, but not at the transcriptional and posttranscriptional levels, in RINm5F beta-cells. J. Endocrinol. 202, 65–75 (2009)
- 14 107. Guo, C. et al. Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Braz. J. Med. Biol. Res. 49, e5826 (2016)
- 108. Abdalqadir, N. & Adeli, K. GLP-1 and GLP-2 Orchestrate integrity, gut
 microbiota, and immune system crosstalk. Microorganisms. 10, 2061 (2022)
- 18 109. Lam, N. T. & Kieffer, T. J. The multifaceted potential of glucagon-like peptide-1 as
 a therapeutic agent. Minerva Endocrinol. 27, 79–93 (2002)
- Li X, Jiang X, Jiang M, Wang ZF, Zhao T, Cao SM, Li QM. GLP-1RAs inhibit the
 activation of the NLRP3 inflammasome signaling pathway to regulate mouse renal
 podocyte pyroptosis. Acta Diabetol. 2024 Feb;61(2):225-234.
- 111. Khin PP, Hong Y, Yeon MH, Lee DH, Lee JH, Jun HS. Dulaglutide improves
 muscle function by attenuating inflammation through OPA-1-TLR-9 signaling in aged
 mice. Aging (Albany NY). 2021;13:21962-74.
- 112. Kamiya M, Mizoguchi F, Yasuda S. Amelioration of inflammatory myopathies by
 glucagon-like peptide-1 receptor agonist via suppressing muscle fibre necroptosis. J
 Cachexia Sarcopenia Muscle. 2022 Aug;13(4):2118-2131.
- Shiraki A, Oyama JI, Komoda H, Asaka M, Komatsu A, Sakuma M, et al. The
 glucagon-like peptide 1 analog liraglutide reduces TNFα-induced oxidative stress and
 inflammation in endothelial cells. Atherosclerosis. 2012 Dec;221(2):375–82
- 114. Liu J, Liu Y, Chen X, Wang D, Zhang X, Huang C, et al. Liraglutide inhibits high glucose-induced oxidative stress and apoptosis in human aortic endothelial cells through a PKC/NADPH oxidase pathway. Clin Exp Pharmacol Physiol. 2014 Feb;41(2):140–6.
- Balteau M, Van Steenbergen A, Timmermans AD, Dessy C, Beauloye C, Horman
 S, et al. AMPK activation by GLP-1 inhibits NADPH oxidase activation and prevents
 ROS production in adult cardiomyocytes. Am J Physiol Heart Circ Physiol. 2014 Dec
 15;307(12):H1792–804
- Liang H, Ward WF. PGC-1α: A key regulator of energy metabolism. Am J Physiol
 Adv Physiol Educ. 2006 Jun;30(3):145-51

- 1 117. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al.
- 2 AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1
- 3 activity. Nature. 2009 Apr 23;458(7241):1056–60
- Liu L, Liu J, Liu Y, Xu D, Wang D, Chen X, et al. GLP-1 receptor agonists
 promote mitochondrial biogenesis and reduce oxidative stress in skeletal muscle of diabetic rats. Diabetes Res Clin Pract. 2015 Jan;108(1):96–104.
- Thou J, Poudel A, Chandramani-Shivalingappa P, Xu B, Welchko R, Li L.
 Liraglutide induces beige fat development and promotes mitochondrial function in diet induced obesity mice partially through AMPK-SIRT-1-PGC1-α cell signaling pathway.
 Endocrine. 2019 May;64(2):271-283
- 120. Yamada S, Ogura Y, Inoue K, Tanabe J, Sugaya T, Ohata K, Nagai Y, Natsuki Y,
 Hoshino S, Watanabe S, Ichikawa D, Kimura K, Shibagaki Y, Kamijo-Ikemori A. Effect
 of GLP-1 receptor agonist, liraglutide, on muscle in spontaneously diabetic torii fatty
 rats. Mol Cell Endocrinol. 2022 Jan 1;539:111472
- 121. Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature. 2008 Jul 24;454(7203):463-9.
- 17 122. Younce CW, Burmeister MA, Ayala JE. Exendin-4 attenuates high glucose-induced 18 cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation 19 of SERCA2a. Am J Physiol Cell Physiol. 2013 Mar;304(6):C508-18
- 123. Sato K, Kameda M, Yasuhara T, Agari T, Baba T, Wang F, Shinko A, Wakamori T,
 Toyoshima A, Takeuchi H, Sasaki T, Sasada S, Kondo A, Borlongan CV, Matsumae
 M, Date I. Neuroprotective effects of liraglutide for stroke model of rats. Int J Mol Sci.
 23 2013 Oct 30;14(11):21513-24
- 124. Zhang Y, Ling Y, Yang L, Cheng Y, Yang P, Song X, Tang H, Zhong Y, Tang L,
 He S, Yang S, Chen A, Wang X. Liraglutide relieves myocardial damage by promoting
 autophagy via AMPK-mTOR signaling pathway in zucker diabetic fatty rat. Mol Cell
 Endocrinol. 2017 Jun 15;448:98-107.
- 125. Xue L, Pan Z, Yin Q, Zhang P, Zhang J, Qi W. Liraglutide promotes autophagy by
 regulating the AMPK/mTOR pathway in a rat remnant kidney model of chronic renal
 failure. Int Urol Nephrol. 2019 Dec;51(12):2305-2313.
- 31 126. Zheng RH, Zhang WW, Ji YN, Bai XJ, Yan CP, Wang J, Bai F, Zhao ZQ.
 32 Exogenous supplement of glucagon like peptide-1 protects the heart against aortic

banding induced myocardial fibrosis and dysfunction through inhibiting

- mTOR/p70S6K signaling and promoting autophagy. Eur J Pharmacol. 2020 Sep 15;883:173318.
- 127. De Giorgi R, Ghenciulescu A, Yotter C, Taquet M, Koychev I. Glucagon-like
 peptide-1 receptor agonists for major neurocognitive disorders. J Neurol Neurosurg
 Psychiatry. 2025 Apr 10:jnnp-2024-335593.
- 128. Hölscher C. Central effects of GLP-1: New opportunities for treatments of neurodegenerative diseases. Nat Rev Neurosci. 2014 Oct;15(10):701–17

- 1 129. Perry T, Haughey NJ, Mattson MP, Egan JM, Greig NH. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. Trends
- 3 Pharmacol Sci. 2003 Feb;24(2):73–8
- 4 130. Li Y, Chigurupati S, Holloway HW, Mughal M, Tweedie D, Bruestle DA, Mattson
- 5 MP, Wang Y, Harvey BK, Ray B, Lahiri DK, Greig NH. Exendin-4 ameliorates motor
- 6 neuron degeneration in cellular and animal models of amyotrophic lateral sclerosis.
- 7 PLoS One. 2012;7(2):e32008.
- 8 131. Erdogdu O, Nathanson D, Sjoholm A, Nystrom T, Zhang Q. Exendin-4 stimulates
- 9 proliferation of human coronary artery endothelial cells through eNOS-, PKA- and
- 10 PI3K/Akt-dependent pathways and requires GLP-1 receptor. Mol Cell Endocrinol.
- 11 2010;325:26-35
- 12 132. Sjoberg KA, Holst JJ, Rattigan S, Richter EA, Kiens B. GLP-1 increases
- microvascular recruitment but not glucose uptake in human and rat skeletal muscle.
- Am J Physiol Endocrinol Metab. 2014;306:E355-62
- 15 133. Wang N, Tan AWK, Jahn LA, et al. Vasodilatory actions of glucagon-like peptide 1
- are preserved in skeletal and cardiac muscle micro-vasculature but not in conduit artery
- in obese humans with vascular insulin resistance. Diabetes Care. 2019;43:634-42
- 18 134. Nystrom T, Gutniak MK, Zhang Q, et al. Effects of glu-cagonlike peptide-1 on
- endothelial function in type 2 diabetes patients with stable coronary artery disease. Am
- 20 J Physiol Endocrinol Metab. 2004;287:E1209-15
- 21 135. Xu Q, Qiu X, Di H, Li Z, Liu Z, Liu K. Liraglutide improves senescence and
- ameliorating diabetic sarcopenia via the YAP-TAZ pathway. J Diabetes
- 23 Complications. 2025 Mar;39(3):108975
- 24 136. Choung JS, Lee YS, Jun HS. Exendin-4 increases oxygen consumption and
- 25 thermogenic gene expression in muscle cells. J Mol Endocrinol. 2017 Feb;58(2):79-90
- 26 137. Wu L, Zhou M, Li T, Dong N, Yi L, Zhang Q, Mi M. GLP-1 regulates exercise
- endurance and skeletal muscle remodeling via GLP-1R/AMPK pathway. Biochim
- 28 Biophys Acta Mol Cell Res. 2022 Sep;1869(9):119300
- 29 138. Andreozzi F, Raciti GA, Nigro C, Mannino GC, Procopio T, Davalli AM, Beguinot
- F, Sesti G, Miele C, Folli F. The GLP-1 receptor agonists exenatide and liraglutide
- activate Glucose transport by an AMPK-dependent mechanism. J Transl Med. 2016 Jul
- 32 30;14(1):229
- 33 139. Li Z, Ni CL, Yao Z, Chen LM, Niu WY. Liraglutide enhances glucose transporter 4
- translocation via regulation of AMP-activated protein kinase signaling pathways in
- mouse skeletal muscle cells. Metabolism. 2014 Aug;63(8):1022-30.
- 36 140. Tian X, Gao Y, Kong M, Zhao L, Xing E, Sun Q, He J, Lu Y, Feng Z. GLP-1
- 37 receptor agonist protects palmitate-induced insulin resistance in skeletal muscle cells
- by up-regulating sestrin2 to promote autophagy. Sci Rep. 2023 Jun 9;13(1):9446
- 39 141. Liu Z, Zhang M, Zhou T, Shen Q, Qin X. Exendin-4 promotes the vascular smooth
- 40 muscle cell re-differentiation through AMPK/SIRT1/FOXO3a signaling pathways.
- 41 Atherosclerosis. 2018 Sep;276:58-66.

- 1 142. Chen Y, Wang L, Zhou Y, Wang Y, Qin W, Wang M, Liu B, Tian Q, Xu H, Shen
- 2 H, Zheng C. Exendin-4 improves cerebral ischemia by relaxing microvessels, rapidly
- 3 increasing cerebral blood flow after reperfusion. Basic Res Cardiol. 2025
- 4 Apr;120(2):423-441
- 5 143. Gurjar AA, Kushwaha S, Chattopadhyay S, Das N, Pal S, China SP, Kumar H,
- 6 Trivedi AK, Guha R, Chattopadhyay N, Sanyal S. Long acting GLP-1 analog
- 7 liraglutide ameliorates skeletal muscle atrophy in rodents. Metabolism. 2020
- 8 Feb;103:154044.
- 9 144. Huang HH, Wang YJ, Jiang HY, Yu HW, Chen YQ, Chiou A, Kuo JC. Sarcopenia-
- related changes in serum GLP-1 level affect myogenic differentiation. J Cachexia
- 11 Sarcopenia Muscle. 2024 Oct;15(5):1708-1721.
- 12 145. Ren Q, Chen S, Chen X, Niu S, Yue L, Pan X, Li Z, Chen X. An Effective
- Glucagon-Like Peptide-1 Receptor Agonists, Semaglutide, Improves Sarcopenic
- Obesity in Obese Mice by Modulating Skeletal Muscle Metabolism. Drug Des Devel
- 15 Ther. 2022 Oct 25;16:3723-3735
- 16 146. Zhang W, Zhang Q, Jiang Y, et al. Liraglutide ameliorates muscle atrophy in db/db
- mice by enhancing muscle insulin signaling and reducing inflammation. Endocr J.
- 18 2020;67(5):515-523
- 19 147. Deng F, Wu W, Fan X, Zhong X, Wang N, Wang Y, Pan T, Du Y. Dulaglutide
- 20 Protects Mice against Diabetic Sarcopenia-Mediated Muscle Injury by Inhibiting
- 21 Inflammation and Regulating the Differentiation of Myoblasts. Int J Endocrinol. 2023
- 22 Aug 7;2023:9926462
- 23 148. Arnés L, Moreno P, Nuche-Berenguer B, Valverde I, Villanueva-Peñacarrillo ML.
- Effect of exendin-4 treatment upon glucose uptake parameters in rat liver and muscle,
- 25 in normal and type 2 diabetic state. Regul Pept. 2009 Feb 25;153(1-3):88-92.
- 26 149. Lee SJ, Kim SH, Lee SH, et al. Liraglutide prevents muscle loss in hindlimb-
- 27 unloaded mice by regulating mitochondrial homeostasis. J Cachexia Sarcopenia
- 28 Muscle. 2021;12(6):1614–1625
- 29 150. Heymsfield SB, Coleman LA, Miller R, et al. Effect of Bimagrumab vs Placebo on
- Body Fat Mass Among Adults With Type 2 Diabetes and Obesity: A Phase 2
- Randomized Clinical Trial. JAMA Netw Open. 2021 Jan 4;4(1):e2033457. doi:
- 32 10.1001/jamanetworkopen.2020.33457. Erratum in: JAMA Netw Open. 2021 Feb
- 33 1;4(2):e211376

- 34 151. Hanna MG, Badrising UA, Benveniste O, et al. Safety and efficacy of intravenous
- bimagrumab in inclusion body myositis (RESILIENT): a randomised, double-blind,
- placebo-controlled phase 2b trial. Lancet Neurol. 2019 Sep;18(9):834-844.
- 37 152. Rooks D, Swan T, Goswami B, et al. Bimagrumab vs Optimized Standard of Care
- for Treatment of Sarcopenia in Community-Dwelling Older Adults: A Randomized
- 39 Clinical Trial. JAMA Netw Open. 2020 Oct 1;3(10):e2020836.

1 Figure legends:

2 Figure 1. Contributing mechanisms of sarcopenia and potential therapeutic effects of GLP-3 1RAs therapy. Abbreviations: AGE, advanced glycation end-products; AKT, protein kinase B; AMPK, AMP-activated protein kinase, ChAT, choline acetyltransferase; CHOP, C/EBP 4 5 homologous protein; eNOS, endothelial nitric oxide synthase; ER, endoplasmic reticulum; 6 GLUT4, glucose transporter type 4; GPx, glutathione peroxidase; IR, insulin resistance; 7 mtDNA, mitochondrial DNA; mTOR, mechanistic target of rapamycin; NADPH, 8 nicotinamide adenine dinucleotide phosphate; NF-KB, nuclear factor kappa-light-chain 9 enhancer of activation B cells; NLRP3, NOD-like receptor family pyrin domain containing 10 3; NMJ, neuromuscular junction; NO, nitric oxide; OXPHOS, oxidative phosphorylation; PGC1-α, peroxisome proliferator-activated receptor gamma coactivator 1 alpha; PI3K, 11 12 phosphoinositide 3 kinase; RAGE, receptor for advanced glycation end products; ROS, reactive oxygen species; SERCA2a, sarcoplasmic-endoplasmic reticulum calcium ATPase 13 2A; SIRT1, sirtulina 1; SOD, superoxide dismutase; VEGF, vascular endothelial growth 14 15 factor.

16 17

18

19

20

21

22

23

Figure 2. Major signaling pathways activated by GLP-1RAs and potentially related with muscle homeostasis. Abbreviations: AKT, protein kinase B; AMPK, AMP-activated protein kinase; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; CREB, cAMP response element-binding protein; eNOS, endothelial nitric oxide synthase; Epac, exchange protein directly activated by cAMP; FoxO, forkhead box O; GLP-1RA, glucagon like peptide 1 receptor agonist; MAPK, mitogen activated protein kinase; mTORC, mechanistic target of rapamycin complex; NF-KB, nuclear factor kappa-light-chain enhancer of activation B cells; PI3K, phosphoinositide 3 kinase; SIRT1, sirtuin 1.

24 25

Table 1 Summary of Key GLP-1RA Trials with Secondary Outcomes on Muscle Health

Study	GLP-1RA	Populatio n	Main Outcomes	Impact on Body Composition	Re fer en ce
STEP 1	Semaglutide 2.4 mg QW	Obese/ overweig ht w/o T2DM	Weight loss (14.9%) and metabolic improvements	Preferential fat loss. Relative preservation of LM	24, 52
SUSTA IN 8	Semaglutide 1.0 mg QW vs Canagliflozin 300 mg QD	T2DM	Greater weight loss with semaglutide (5.3 kg vs. 4.2 kg)	Modest LM loss; increased LM% (1.2%); favorable fat/lean loss ratio	25, 44
SURP ASS-3 & 5	Tirzepatide 5.0– 15 mg QW	Obese/ overweig ht w/ T2DM	Weight loss; improved steatosis and metabolic parameters	Modest relative LM loss; reductions in muscle fat infiltration (MRI study)	45 - 48
AWAR D 11	Dulaglutide 1.5- 4.5 mg QW	T2DM	Improved glycemic control	FM reduction, LM preservation	55

LEAD ER / SUSTA IN 6	Liraglutide up to 1.8 mg QD / Semaglutide 0.5 / 1.0 mg QW	T2DM, high CV risk	Reduced risk of MACE and mortality. Improved inflammation/metabolis m	Body weight reductions. Indirect muscle benefit via systemic effects 53, 54
SUSTA IN FORT E	Semaglutide 1.0 / 2.0 mg QW	T2DM	Dose-dependent weight and glycemic control	Indirect muscle benefit via improvement of metabolic balance 51
AMPL ITUDE -O	Efpeglenatide 4.0 / 6.0 mg QW	T2DM with CVD and CKD	Reduced cardiovascular events and kidney outcomes	Weight loss with potential LM benefit via anti-inflammatory & vascular effects

2

3 4

5

| Age | Indianamentor of Section | Improved | Improved

Figure 1 381x229 mm (x DPI)

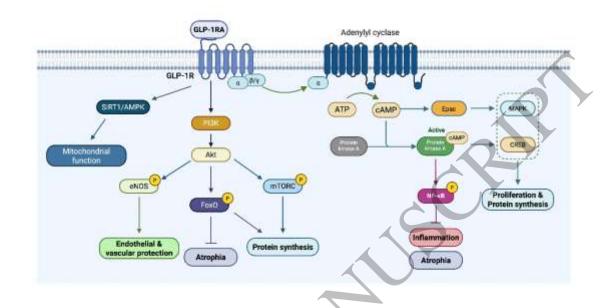


Figure 2 254x178 mm (x DPI)

1