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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 
respiratory pathogen that emerged in December 2019 and caused 
a global pandemic by March 2020, with >7 million deaths due to 
coronavirus disease 2019 (COVID-19) globally as of September 2025. 
The clinical syndrome of COVID-19 ranges from asymptomatic 
infection to severe disease with pneumonia and death. SARS-CoV-2 
variant type, inoculum, previous exposure and host factors influence 
the clinical trajectory. Identification of key structural proteins of 
SARS-CoV-2 and insights into the pathophysiology of the immune 
response to infection led to the development of effective preventive 
(vaccines and monoclonal antibodies) and therapeutic (antivirals 
and immunomodulatory agents) agents. Antiviral agents, such as 
remdesivir and nirmatrelvir-ritonavir, inhibit viral replication and 
immunomodulatory agents, such as tocilizumab and baricitinib, 
act to reduce a dysregulated immune response to SARS-CoV-2. The 
pandemic had economic and socio-cultural consequences that affected 
the quality of life and overall life expectancy of individuals. As the 
emergency phase of the pandemic concludes, robust monitoring 
and surveillance systems must be sustained and research to improve 
vaccines and therapeutics must continue to maintain control of 
SARS-CoV-2 in the population and be prepared for emerging pathogens 
with pandemic potential.
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COVID-19 case fatality rates of 38 countries demonstrated that the aver-
age male case fatality rate was 1.7 times greater than the average female 
case fatality rate14. The exact mechanisms for these sex-based differ-
ences are unclear and likely multifactorial given that many dimensions 
of biological sex (such as sex hormones and genomic and epigenetic 
differences) likely affect immune responses16–18.

Certain ethnicities are more at risk of severe disease, reflecting 
social determinants of health19. For example, in the USA, a cross-
sectional analysis of counties found that a disproportionate number 
of Latino and Black communities were affected by COVID-19, although 
other factors, such as average household size, educational level and 
use of public transportation, were independent predictors of higher 
COVID-19 cases and deaths20. Data from South Africa demonstrate 
the effect of ethnicity and socio-economic status on in-hospital 
COVID-19 mortality, showing an increased risk of mortality in Black 
compared with white patients and in those admitted to public-sector 
hospitals compared with private health care21.

Several comorbidities have been associated with more severe 
COVID-19 clinical outcomes (defined as the requirement for supple-
mental oxygenation, hospitalization and COVID-19-attributed death22). 
Throughout the early stages of the pandemic, individuals with histories 
of cardiac disease, chronic kidney disease, obesity, pulmonary disease, 
malignancy, diabetes mellitus, liver disease and chronic neurologi-
cal disorders were found to have an increased risk of hospitalization 
and mortality due to COVID-19 in large prospective studies in the UK, 
China and the USA23–27. Of note, pulmonary diseases, such as chronic 
obstructive pulmonary disease, asthma and interstitial lung diseases, 
are associated with more severe disease and COVID-19 outcomes likely 
due to baseline physiological and immune dysregulation28. In South 
Africa, individuals with HIV and immunosuppression had an increased 
risk of mortality29. Regarding other immunocompromising conditions, 
data from early in the pandemic suggested high mortality among those 
who had received solid-organ transplants or had a haematological 
malignancy, although results between studies differed depending on 
the type of immunocompromising condition30–33.

Many of these medical conditions tend to occur together in patients, 
termed multimorbidity (two or more long-term conditions)34, and may 
have important and distinct pathophysiological mechanisms that result 
in increased COVID-19 severity or complications35–37. However, it is diffi-
cult to discern causality given that several confounders are likely at play, 
which may either increase or decrease the effects measured by evaluat-
ing severe COVID-19 outcomes. For example, the threshold for hospital 
admission or intubation might be lower for an individual with underlying 
comorbidities, thus increasing the perceived risk of severe outcomes for 
these patients if outcomes in studies are measured by hospitalizations 
or need for mechanical ventilation. Additionally, pre-existing immunity 
(from vaccination and/or infection) and the type of circulating variant 
likely modulate risk in individuals with comorbidities, with most studies 
that evaluated comorbidities reporting on associations before vaccina-
tion or infection was widespread. Furthermore, individuals who perceive 
that their risk is increased due to an underlying medical condition may 
be more likely to practice social mitigation practices, such as masking, 
and reduce exposure risks38. Thus, further studies are warranted to 
clarify which specific populations with comorbidities may be at most 
risk for severe outcomes in the current era.

SARS-CoV-2 mutations and variants
The distribution of variants continues to rapidly evolve. Organiza-
tions such as the Centers for Disease Control and Prevention and 

Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
causes a respiratory infection that can result in coronavirus disease 
2019 (COVID-19). Clinically, the severity of symptoms exists on a spec-
trum, ranging from asymptomatic to severely symptomatic, and varies 
according to virus variant type, previous antigenic exposures (through 
vaccination and/or infections) and host characteristics.

The first cases of SARS-CoV-2 infection were reported in December 
2019, describing a cluster of patients in Wuhan, Hubei Province, China, 
who experienced an atypical pneumonia that did not respond to stand-
ard treatments1–3. The genetic sequence of SARS-CoV-2 was determined 
in early January 2020 and disseminated shortly thereafter via online 
platforms. Over the next few weeks, the virus was identified in several 
countries with an increasing number of severe pneumonias attributed 
to SARS-CoV-2. However, it was not until 11 March 2020, when >118,000 
infections and >4,200 deaths due to COVID-19 had been described 
in 114 countries, that the WHO declared the outbreak of COVID-19 a 
pandemic4,5.

SARS-CoV-2 is classified as a species of the Severe acute respiratory 
syndrome-related coronavirus, family Coronaviridae, subfamily Coro-
navirinae, of the genus Betacoronavirus6. Other Betacoronavirus mem-
bers that infect humans include HCoV-OC43, HCoV-HKU1, SARS-CoV-1 
and Middle East respiratory syndrome coronavirus (MERS-CoV), with 
SARS-CoV-1 and SARS-CoV-2 sharing ~79% genetic similarity at the 
nucleotide level7. SARS-CoV-2 is a positive-sense, single-stranded RNA 
virus with a genome of approximately 30 kb (ref. 8).

In this Primer, we discuss the epidemiology, pathophysiology and 
virology of SARS-CoV-2 as well as the clinical diagnosis, screening, pre-
vention and management of SARS-CoV-2 infection, with a primary focus 
on adult populations. We also highlight the social burden and effects on 
quality of life. Finally, we address the current gaps in our understand-
ing of SARS-CoV-2 and COVID-19 and the necessary short-term and 
long-term priorities for research and public health.

Epidemiology
Incidence, mortality and risk factors
According to the WHO, as of September 2025, around 779 million cases 
of COVID-19 and around 7 million deaths have been confirmed globally9. 
The countries with the highest cumulative number of COVID-19 cases 
include the USA, China and India, and the USA, Brazil and India have 
the highest cumulative number of deaths due to COVID-19 (ref. 9). 
Owing to difficulties with disease diagnosis and death certification 
attribution, it is highly likely that the reported incidence and mortal-
ity of COVID-19 are an underestimate, especially in many low-income 
and middle-income countries10. Global excess mortality for COVID-19 
in the first 2 years of the pandemic was estimated to be 14.83 million, 
2.74 times higher than the 5.42 million deaths reported to be due to 
COVID-19 for the same period11.

Since the beginning of the pandemic, age has remained the strong-
est risk factor associated with severe COVID-19 outcomes, with individ-
uals >65 years of age at the highest risk12,13. Of note, most available data 
relate to risk from the beginning of the pandemic before vaccination 
was widely implemented and do not encompass the effects of vaccina-
tion and different variant strains. Biological sex as a variable has also 
been explored for COVID-19 outcomes, with evidence of increased 
COVID-19 severity and mortality in men14. Data from countries where 
SARS-CoV-2 testing was widespread regardless of symptomatology, 
such as South Korea, show that women acquire infection at similar rates 
to men but have a lower case fatality rate15. A comparative analysis of 
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WHO use a combination of strategies for surveillance, including 
variant and genomic surveillance by national and regional variant 
proportions, traveller-based genomic surveillance, and wastewa-
ter surveillance39. Several other forms of surveillance arose during 
the pandemic, including digital surveillance technologies, artificial 
intelligence-driven modelling, zoonotic monitoring systems and 
symptom surveys40. Of note, genomic surveillance is the most accu-
rate method to confirm SARS-CoV-2 infection but can be costly and 
low-income and middle-income countries may lack resources and 
training to sustain it. Surveillance based on clinical reporting may 
be limited because patients with mild disease may not be counted if 
treatment is not sought, and testing capacity at various centres may 
prioritize those with more severe disease41.

SARS-CoV-2 variants of concern (VOCs) are categorized by the 
WHO using Greek letters, with parent lineages including Alpha, Beta, 
Gamma, Delta and Omicron42. Most publicly available sequences since 
February 2022 report circulating Omicron viruses (98%), with various 
sub-lineages of Omicron emerging due to antigenic drift. Through 
surveillance, in addition to VOCs, the WHO also reports variants under 
monitoring and variants of interest as defined by the WHO Technical 
Advisory Group on Virus Evolution43.

The mutational rate and profile of SARS-CoV-2 genome sequences 
have undergone dynamic changes. The mutation rate of a virus is 
defined as changes in base pairs or larger genomic regions per repli-
cation cycle. RNA viruses can have wide variations in mutation rates, 
ranging between 10–6 and 10–4 substitutions per nucleotide per cell 
infection44. For example, influenza viruses have a mutation rate of 
0.6–2.0 × 10–6 (ref. 45). The mutation rate for SARS-CoV-2 is similar and 
estimated to be between 1 × 10–6 and 2 × 10–6 substitutions per nucleo-
tide per cell infection46. Replication errors that occur can result in inser-
tions and deletions in the sequence that generate diversity, thereby 
leading to the development of new variants that can be associated with 
increased infectivity47.

Three distinct evolutionary phases of SARS-CoV-2 evolution have 
been described: the first 8 months of relative evolutionary stasis (ances-
tral strain), followed by the emergence of three distinct and diver-
gent lineages (Alpha, Beta and Gamma), followed by a more gradual 
evolution of the virus within lineages46 (Fig. 1). Interestingly, the sec-
ond phase was characterized by the Alpha, Beta and Gamma lineages 
expanding from different geographic locations: the UK, South Africa 

and Brazil, respectively48–50. These variants soon spread worldwide. 
The Delta variant was first identified in India late in 2020 and rapidly 
replaced the other variants due to antibody evasion in individuals who 
had previously been infected with other variants or vaccinated51,52. 
In the third evolutionary phase, the Omicron variant (first identified 
in Botswana and South Africa) became the dominant strain since its 
emergence in late 2021 (ref. 53). This phase has been marked by more 
gradual and successive Omicron sub-lineages, with shared mutations 
among these sub-lineages in the SARS-CoV-2 spike gene54.

Mechanisms/pathophysiology
Virus structure, infection and replication cycle
SARS-CoV-2 is a positive-sense single-stranded RNA virus, ~30 kb in size, 
classified in the genus Betacoronavirus of the family Coronaviridae55. 
The subfamily Orthocoronavirinae further divides into four genera: 
Alphacoronavirus, Betacoronavirus, Deltacoronavirus and Gammac-
oronavirus. SARS-CoV-2 belongs to the Betacoronavirus genus; other 
coronaviruses in this genus include SARS-CoV-1 and MERS-CoV56. The 
origin of SARS-CoV-2 is not known, although given the high genetic 
similarity between SARS-CoV-1 and SARS-related bat coronavirus, it is 
likely that SARS-CoV-2 originated in bats7,57,58. Additional evidence sug-
gests that Malayan pangolins are likely an intermediate host, given 
the genetic similarity between coronaviruses isolated from pango-
lins and SARS-CoV-2, with nearly identical amino acid identity of the 
receptor-binding domain of the spike protein58,59.

The structural proteins of SARS-CoV-2 include the spike protein, 
envelope protein, membrane protein and nucleocapsid protein56,60. 
The open reading frames (ORFs) that encode these proteins are located 
in the 3′ part of the genome, with additional ORFs that encode for 
accessory proteins located between them.

SARS-CoV-2 entry into the host cell involves the use of several key 
host attachment and entry factors (Fig. 2). SARS-CoV-2 entry depends 
on both angiotensin-converting enzyme 2 (ACE2) and TMPRSS2: the 
spike glycoprotein binds to the ACE2 receptor, and the host cell sur-
face serine protease TMPRSS2 primes the spike protein for entry61–63. 
The spike protein itself consists of subunit S1, which mediates attach-
ment to the cell membrane, and subunit S2, which has a role in fusion 
with the cell membrane64. The receptor-binding domain of the spike 
protein (within the S1 subunit) is important in the host-cell receptor 
interaction, as the receptor-binding domain binds to ACE2 (ref. 65). 
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Fig. 1 | Evolution of SARS-CoV-2. The frequencies (prevalence) of different severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages fluctuated 
during the coronavirus disease 2019 (COVID-19) pandemic globally. Initially, the 
ancestral strain dominated with relative evolutionary stasis over the first year.  
A second phase started in 2020 with the emergence of the Alpha, Beta and Gamma 

strains. The Delta lineage then replaced these variants and dominated for the 
second half of 2021. From late 2021 until now, the Omicron lineage has been 
the dominant, with emergence of different Omicron sub-lineages (denoted by 
different colour shades). Adapted from https://nextstrain.org/ncov/gisaid/global/
all-time, CC BY 4.0.
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Upon cell entry, the spike protein is cleaved via cellular proteases, 
enabling release of the spike fusion peptide and viral entry with sub-
sequent uncoating of the genomic RNA66. Translation of the genomic 
RNA occurs next to two ORFs (ORF1a and ORF1b). The resulting poly-
proteins include non-structural proteins and replicase polyproteins 
that form an RNA-dependent RNA polymerase complex. New negative-
strand guide RNA and subgenomic RNAs for viral replication and tran-
scription are formed within the RNA-dependent RNA polymerase 
complex. The subgenomic RNAs are then translated into structural 

spike, envelope, membrane and nucleocapsid proteins. The proteins 
are assembled in the rough endoplasmic reticulum and the endoplas-
mic reticulum–Golgi intermediate compartment and new virions are 
formed. Finally, the virions are exocytosed from the cell.

The anatomical distribution of the host receptors has impor-
tant implications for clinical infection and manifestation. ACE2 is 
expressed in both the upper respiratory epithelia as well as the 
lower respiratory tract, enabling SARS-CoV-2 to target these areas 
and replicate abundantly61,67. Physiologically, ACE2 regulates the 
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Fig. 2 | Life cycle of SARS-CoV-2. Severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) particles first bind to the host cell’s angiotensin-
converting enzyme 2 (ACE2) receptor using the receptor-binding domain of the 
spike protein, with the host cell surface serine protease TMPRSS2 assisting in 
priming and entry. If the virus–ACE2 complex does not encounter TMPRSS2, then 
the virus–ACE2 complex can be internalized via clathrin-mediated endocytosis. 
After entry, fusion and uncoating of the viral particle occur, and the genomic RNA 
is released. Primary translation of the RNA occurs via the open reading frames 
ORF1a and ORF1b. The structural nucleocapsid (N) protein is released into the 
cytoplasm. From the primary translational process, individual non-structural 

proteins (nsps) are formed that create the viral replication and transcription 
complex. New negative-strand guide RNA (not shown), which serves as a 
template for viral replication and creation of positive-sense single-strand (+ss) 
RNA, as well as subgenomic (sg) mRNAs are synthesized. The sg mRNAs are then 
translated into structural proteins. The structural proteins are then assembled 
in the rough endoplasmic reticulum (ER) and transit through the ER–Golgi 
intermediate compartment (ERGIC) and new virions are formed. The last step 
involves exocytosis of the newly formed virions from the host cell via the Golgi 
apparatus. Adapted from ref. 61, Springer Nature Limited.
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renin–angiotensin–aldosterone system and therefore has an important 
role in haemodynamic regulation. As SARS-CoV-2 competes for ACE2 
receptor binding, the renin–angiotensin–aldosterone system pathways 
are disrupted, which has been linked to COVID-19 progression68.

Pathophysiology
Stage 1: viral-mediated cell damage. SARS-CoV-2 primarily targets 
alveolar epithelial cells via ACE2 receptors, where it replicates exten-
sively. Cell damage starts immediately after virus entry (Fig. 2). The 
amount of cell damage correlates with the severity of illness, which is 
why COVID-19 was initially classified as a viral pneumonia. The virus can 
also infect endothelial cells69, via the ACE2 receptor or other potential 
receptors, resulting in either productive or non-productive infec-
tions. COVID-19 is now recognized as a multisystem disease affecting 
multiple organs, including the cardiovascular system, coagulation 
system, brain, liver and kidney70. Additionally, viral components 
directly engage innate pattern recognition receptors. For instance, 
SARS-CoV-2 infection can induce Z-RNA formation in the cytoplasm 
of infected cells, which activates the ZBP1–RIPK3–MLKL necroptosis 
pathway and drives the secretion of inflammatory cytokines71. Subse-
quently, damage-associated molecular patterns and cytokines released 
from infected cells may further damage bystander cells.

Damage to both the respiratory epithelium and endothelium dis-
rupts the alveolar–capillary barrier, which can enable the virus to enter 
the bloodstream and spread to extrapulmonary organs. Although overt 
evidence of viraemia is lacking, the detection of virions in extrapulmo-
nary organs suggests that viraemia may occur very early, for example, 
during the first week of infection72. The presence of viraemia correlates 
with the degree of viral replication in the lungs73. Of note, RNAae-
mia (detectable levels of viral RNA in the blood) has been reported in 
11% (95% CI 0.5–18%) of patients with mild-to-moderate disease, in 36% 
(95% CI 26–46%) of those with severe disease, and in 65% (95% CI 56–75%) 
of those with critical disease74; however, the techniques and, therefore, 
threshold of viraemia differed among studies. The presence of viable 
viruses in the blood, along with the conditions and patterns of viral 
entry into the bloodstream, requires further investigation.

At this stage, dysfunction of antiviral immunity may be the key fac-
tor driving subsequent immune dysregulation, a hyperinflammatory 
state with excessive production of cytokines, and progression to severe 
disease. SARS-CoV-2 proteins, particularly non-structural proteins, 
interact with molecules in the interferon-producing pathway to evade 
immune surveillance, reducing or delaying the production and activity 
of type I interferons (with absent IFNβ and diminished IFNα) and type III 
interferons75–77. This sets the stage for immune cell dysfunction in stage 2,  
marked by the concomitant rather than consecutive occurrence of both 
pro-inflammatory and anti-inflammatory responses.

Stage 2: immunopathology. This stage of COVID-19 pathogenesis is 
characterized by severe immune dysregulation with subsequent immu-
nosuppression (Fig. 3). A reduction in plasmacytoid dendritic cells 
impairs viral control, contributing to pathological inflammation78. 
Reduced levels of lymphocytes with functional exhaustion, particularly 
a marked decrease in CD8+ T cells and natural killer cells79,80, further 
exacerbate the condition. Additionally, emergency myelopoiesis 
(the production of non-lymphoid leukocytes), along with dysfunc-
tional mature neutrophils and HLA-DRlo monocytes, is associated with 
the immunosuppressive state81.

Furthermore, the massive recruitment and activation of immune 
cells, including neutrophils, monocyte-derived macrophages and 

T cells, lead to substantial cytokine release. Early clinical reports have 
observed substantially elevated levels of cytokines, such as IL-6, IL-8 
and TNF, in critically ill patients3, suggesting that cytokine dysregula-
tion is a key driver of tissue damage. This provides a theoretical basis 
for the development of various immune-modulatory drugs. Of note, 
although the term ‘cytokine storm’ is often used to describe this state, 
it may not be entirely appropriate in this scenario, as cytokine levels are 
only moderately elevated in severe COVID-19 compared with bacterial 
sepsis. Notably, in patients with COVID-19 and secondary bacterial 
infections, IL-6 levels can increase 10-fold to 200-fold, substantially 
elevating mortality82–84.

In addition to cytokine dysregulation, systemic complement 
activation85 and inflammation of the endothelium86 lead to microvas-
cular immunothrombosis87, which is a key feature of severe COVID-19. 
These processes, in turn, may lead to widespread damage in the lungs 
and extrapulmonary organs. The virions disseminating through the 
bloodstream also affect extrapulmonary organs. Although data are 
limited, it has been hypothesized that trace amounts of virus detect-
able in peripheral organs may trigger local immune cell infiltration88. 
Coupled with systemic cytokine dysregulation and thrombosis, this 
dual assault ultimately leads to viral sepsis and, in some cases, death.

The escape of the virus from immune surveillance, leading to 
efficient replication and dissemination via viraemia, is the cause of 
severe progression. Direct viral damage, combined with immunopa-
thology from cytokines and immune cells, results in functional cell 
injury or death, which directly leads to organ dysfunction and eventu-
ally death. Secondary bacterial infection is another crucial event that 
triggers high-level production of cytokines and substantially increases 
mortality89 (Fig. 3). The mechanisms by which the virus enters the 
bloodstream, the factors driving progression from mild to severe 
disease in different individuals, and the most effective interventions 
still require further investigation.

Stage 3: chronic active infections. The acute infection of SARS-CoV-2 
typically resolves within 2–3 weeks, often with a faster recovery in those 
individuals who have been previously infected and/or vaccinated. 
However, emerging evidence shows that SARS-CoV-2 clearance may 
be delayed in the respiratory tract and various other tissues90. Sam-
ples from the lower respiratory tract can remain consistently positive 
on viral culture for SARS-CoV-2 despite negative pharyngeal swab 
tests, with positivity reported up to 4 weeks after symptom onset91. 
In immunocompromised patients, SARS-CoV-2 may persist longer and 
may be associated with prolonged symptoms, radiological changes, 
and inflammation and may require an extended course of antiviral 
therapy92. These patients can also experience persistent and recur-
rent fever, cough and hypoxia93, indicating a chronic infection rather 
than infection relapse. Chronic active SARS-CoV-2 infection has been 
proposed to describe this clinical phenomenon94. Clinical research and 
therapeutic interventions tailored to this demographic are still lacking.

Diagnosis, screening and prevention
Clinical diagnosis and symptoms
The clinical spectrum of SARS-CoV-2 infection ranges from asymp-
tomatic infection to fatal illness from pneumonia (with fever, cough 
and dyspnoea) and respiratory failure (from acute respiratory distress 
syndrome). Other complications related to COVID-19 can also occur. 
Asymptomatic infections are estimated to occur in ~40% of infected 
individuals, but this rate varies depending on SARS-CoV-2 variant and 
pre-existing immunity95. Severe disease most commonly affects people 
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of advanced age and those with comorbidities. The incubation period 
varies between 2 and 14 days and is 3–5 days on average24. Typically, 
patients present with cough, myalgia and headache. Upper respiratory 
symptoms are common with Omicron variants. In addition, diarrhoea 
as well as alterations in smell and taste have been observed96. During 
the course of the COVID-19 pandemic, the clinical spectrum and sever-
ity of the disease in the general population have evolved. Mild disease 
became more common owing to widespread vaccination, previous 
infections and the emergence of virus variants, such as Omicron, that 
tend to cause less severe illness, particularly in vaccinated individuals97. 
However, vulnerable populations, such as those of advanced age and 
immunocompromised individuals, remain at an increased risk of severe 
disease and complications.

Diagnostic tests
An accurate diagnosis of SARS-CoV-2 infection is crucial in guiding 
patient treatment, infection control practices in hospitals, and pub-
lic health actions. Virological confirmation through laboratory or 
point-of-care tests remains essential because symptoms and signs alone 
cannot reliably differentiate COVID-19 from other respiratory tract 
infections. The nucleic acid amplification test (NAAT) and rapid antigen 
test (RAT; also known as the lateral flow assay) are the mainstays of 
diagnosis98,99. NAAT, usually by reverse transcription–polymerase chain 
reaction (RT-PCR), is the preferred laboratory diagnostic test for hospi-
talized patients as it is highly sensitive and specific with a short turna-
round time. Furthermore, NAAT is a suitable test for pooled specimens 
and was used widely for community screening100. SARS-CoV-2 RT-PCR 

Cell
damage

Virus

Immune-inflammatory 
response

Le
ve

ls

Latency Days

Cytokines from NEUs and MoMs

Cytotoxity of CD8+ CTLs

Complement and coagulation

Pulmonary cell damage

Extrapulmonary cell damage

+/+++

+/++

–/+

+/++

+/++

–/+

–/++

++/+++

+/++

++/+++

++/+++

+/++

+/++

+/++

+/++

+/++

–/++

Viral load and viraemia

Type I interferons from pDCs
and NK cells +++/+ +/+++ –/++

–/+

0 7 14 21

Elevated if secondary infection 
happens
Survivable disease
Fatal disease

Survival in mild cases
Survival in severe cases

Fig. 3 | Immune dysregulation and cell damage during severe SARS-CoV-2 
infection. In patients who survive severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) infection, SARS-CoV-2 viraemia (red solid line) 
peaks within the first 7 days of infection, followed by an immune-inflammatory 
response (brown solid line) that peaks between 7 and 14 days. Cell damage (blue 
solid line) is biphasic, occurring first in the context of direct viral cytotoxicity 
followed by further cell damage due to the immune-inflammatory response. 
In patients with secondary bacterial or fungal infection, both the immune-
inflammatory response (brown arrow) and cell damage (blue arrow) are 
exacerbated, which increases the likelihood of fatal outcomes. In patients who 

do not survive coronavirus disease 2019 (COVID-19), with or without a secondary 
infection, the immune-inflammatory response (brown dashed line) and cell 
damage (blue dashed line) progressively worsen, and viraemia may be prolonged 
(red dashed line). The table presents the dynamic levels of viral load and 
viraemia, type I interferons from plasmacytoid dendritic cells (pDCs) and natural 
killer (NK) cells, cytokines from neutrophils (NEUs) and monocyte-derived 
macrophages (MoMs), cytotoxicity of CD8+ cytotoxic T lymphocytes (CTLs), 
complement and coagulation, and pulmonary and extrapulmonary cell damage 
across different disease stages in mild (purple) and severe (green) survival cases. 
(–) absent or negligible levels; (+) mild; (++) moderate; (+++) severe.
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has been incorporated into most commercially available multiplex PCR 
respiratory panels. However, there are several caveats associated with 
NAAT. First, prolonged shedding of SARS-CoV-2 RNA can occur, and 
sporadic shedding can be detected even among immunocompetent 
patients for a few weeks after symptom onset100. Second, NAAT can only 
be performed in clinical laboratories equipped for molecular diagnos-
tic testing. However, fully automated NAAT assays are now available, 
making NAAT possible even at the point of care. Third, mutations at the 
target sites of the RT-PCR primers or probes can lead to false-negative 
results. For example, the Alpha variant contained a deletion at the 
spike protein amino acid residues 69 and 70, leading to the failure of 
some RT-PCR assays101.

RAT is a suitable alternative when molecular testing is not avail-
able, for example, for home testing. RAT is highly specific, technically 
simple and cheap, with results usually available within 15–20 min. 
Although RAT overall has a lower sensitivity than NAAT (60–70% versus 
80–90%)102,103, RAT sensitivity can be >80% within the first 5 days of ill-
ness for symptomatic individuals when the viral load is highest102,104. 
Furthermore, the sensitivity of RAT can be enhanced through serial 
testing105. Despite mutations at the target site (usually the nucleocapsid 
protein), the sensitivity of RAT remains similar for most variants106. 
However, some mutations in the nucleocapsid protein have been 
associated with RAT failure107.

Serological assays for SARS-CoV-2 usually identify antibodies 
against the N or spike protein. However, serological assays should not 
be used for diagnosing acute infection because antibodies are typically 
not detectable within 10 days of symptom onset108, and the majority of 
the population has now been infected and/or vaccinated. Thus, sero-
logical assessment would show high positivity in a population that is 
not necessarily associated with acute infection. During the early stages 
of the COVID-19 pandemic, serological tests were useful for retrospec-
tive diagnosis, which was especially important for contact tracing and 
for patients with immune-mediated complications of COVID-19, such 
as multisystem inflammatory syndrome in children, in whom the initial 
SARS-CoV-2 infection had not been diagnosed109. Furthermore, serolog-
ical assays were previously used to measure seroprevalence and assess 
the level of humoral immunity in a population110. However, serological 
assays should be used cautiously. For example, some patients who had 
a previous SARS-CoV-2 infection may not have detectable levels of 
antibody due to the waning of antibody levels over time or the absence 
of an antibody response in some immunocompromised patients111.

Next-generation sequencing has also been used for diagnostic 
testing112. One potential advantage of this technique is that it can pro-
vide information on novel variants in addition to detecting SARS-CoV-2 
infection in general113. However, next-generation sequencing is not 
widely used because of the relatively high cost and required technical 
expertise.

Specimen type
The type of specimen is an often-overlooked aspect of diagnostic 
testing. Nasopharyngeal swab is the specimen of choice for diagnos-
tic testing of respiratory viruses114. Nasal swab is less sensitive than 
nasopharyngeal swab115 but is clinically useful, as nasal swabs can 
be collected by patients themselves, which is particularly useful for 
home testing with RAT116. A high concordance has been reported in 
the results of self-collected nasal swabs and those collected by health- 
care workers117. For patients who are intubated, bronchoalveolar lavage  
(collection of samples from the lower respiratory tract) may also be 
used as a specimen type for testing118.

Saliva was not recommended as a specimen type for diagnostic 
testing of respiratory viruses before the COVID-19 pandemic114. How-
ever, saliva has been used widely during the COVID-19 pandemic. The 
advantages of saliva as a specimen are that it can be self-collected 
without any invasive procedures, which facilitates testing in the com-
munity, and its capacity to be used in pooled testing, which can aid in 
community surveillance119,120. The test sensitivity of saliva is comparable 
to that of nasopharyngeal swab121.

Indications for testing
Testing for SARS-CoV-2 should be performed when the result can 
affect decisions on patient management, infection control or public 
health. The Centers for Disease Control and Prevention recommends 
SARS-CoV-2 testing for people who have symptoms of COVID-19 and for 
asymptomatic individuals who have had known exposure to someone 
with COVID-19 (ref. 122). This is especially important for individuals with 
increased risk of severe disease, who therefore require early antiviral 
treatment, such as older adults and those who have comorbidities or 
are immunocompromised. Screening tests can be considered when 
early identification can result in actions that mitigate the risk of infec-
tion in individuals at high risk. Testing strategies should be tailored to 
individual settings, taking into account resource limitations and the 
benefits associated with the testing.

Vaccination
More than 13 billion doses of vaccines against SARS-CoV-2 have been 
administered to date, making it the largest immunization effort in 
history and the most ambitious public health endeavour, owing to its 
urgency, scale and collaborative efforts123. It is estimated that >14 mil-
lion lives have been saved by vaccines against SARS-CoV-2 (ref. 124). 
Several COVID-19 vaccines have been approved for use by the WHO 
through Emergency Use Listing since December 2020 from differ-
ent manufacturers and platforms, including inactivated or weakened 
virus vaccines, protein-based vaccines, viral vector vaccines and mRNA 
vaccines125,126.

The recommendations on who should get vaccinated vary between 
countries. The WHO Strategic Advisory Group of Expert’s on Immu-
nization (SAGE) outlined three priority-use groups for COVID-19 vac-
cination: high (which includes oldest and older adults with multiple 
significant comorbidities, younger adults with significant comor-
bidities, children aged 6 months and older with immunocompromis-
ing conditions, health-care workers, and pregnant persons), medium 
(healthy adults and children and adolescents with comorbidities) and 
low (healthy children and adolescents, aged 6 months to 17 years)127. 
Recommendations differ for each high, medium and low group for 
primary series and booster vaccinations. Disease burden in specific 
age groups, cost effectiveness and opportunity costs must also be 
evaluated for each country.

Although efficacy trials provided evidence that different vaccines 
against SARS-CoV-2 protect against COVID-19 (refs. 128–133), the 
immunity against disease wanes over time and with the emergence 
of VOCs. However, it is important to note that all vaccines provide 
strong protection against serious outcomes such as severe illness, 
hospitalization and death. Pooled analyses from the vaccine efficacy 
trials demonstrate that levels of binding and neutralizing antibod-
ies against the spike protein and its receptor-binding domain are 
the primary immune correlates of protection against symptomatic 
infection134. However, data regarding correlates of protection against 
severe COVID-19 are limited.
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To overcome waning immunity and emergence of VOCs, vacci-
nation recommendations include additional doses, which, until the 
autumn of 2022, included more doses of the vaccine that target the 
ancestral strain. Since then, updated vaccines have been available to 
better target the antigenic landscape of SARS-CoV-2 variants, includ-
ing bivalent (prototype/wild type and Omicron BA.4/5) vaccines and 
updated monovalent (Omicron XBB.1.5 and KP.2 for mRNA vaccines; 
JN.1 for protein-based product) vaccines135–137. The effectiveness of 
updated vaccines, although more pronounced for older and immu-
nocompetent adults, still fades over time, highlighting the constant 
need for revaccination138. These vaccine effectiveness findings should 
be interpreted as the incremental benefit provided by COVID-19 vac-
cination in a population with a high prevalence of infection-induced 
immunity, as hybrid immunity further provides protection against seri-
ous outcomes139. Boosters remain effective in decreasing the severity 
of COVID-19 (ref. 140).

The number of doses in a primary vaccination series varies depend-
ing on the vaccine type as well as on the host (for example, those who 
are immunocompromised) and their age (for example, those <5 years 
of age). Booster vaccinations are recommended annually, although 
moderate to severely immunocompromised individuals may receive 
booster vaccinations more frequently141. Additional doses can be given 
from the same manufacturer or a different one (mixing-and-matching 
approach), offering greater effectiveness than homologous boost-
ing according to some studies142,143. Contraindications are rare and 
typically include a severe allergic reaction, such as anaphylaxis, to a 
previous COVID-19 vaccine dose or to a component of the vaccine or 
due to a known (diagnosed) allergy to a component of the vaccine. 
Co-administration, if needed, particularly with other vaccines against 
other respiratory viruses, is safe and does not negatively affect vaccine 
immunogenicity144. With the availability of vaccines for respiratory 
syncytial virus, influenza and COVID-19, many manufacturers are devel-
oping combination respiratory disease virus vaccines to streamline 
protection against these infections and improve vaccination uptake, 
especially in populations at risk.

Vaccine recipients should be advised that adverse effects after 
COVID-19 vaccination are common and include local (for example, pain 
at the injection site, redness, swelling and ipsilateral axillary lymph 
node enlargement) and systemic reactions (for example, fever, fatigue 
and headache). These expected adverse effects are mild to moderate, 
limited to 2–3 days after vaccination and could be associated with 
slightly higher immunogenicity145. Serious adverse events are very rare 
and include myocarditis and pericarditis (mainly seen in male adoles-
cents and young adults), are generally self-limited and occur within 
1 week of vaccination146. The risk of developing myocarditis or pericar-
ditis also tends to be elevated after the second dose, especially when the 
time interval between doses is short147. Other very rare serious adverse 
effects include vaccine-associated immune thrombotic thrombocy-
topenia or thrombosis with thrombocytopenia syndrome following 
receipt of adenoviral vector vaccines, typically 3–30 days after vacci-
nation and affecting 0.5–0.8 per 100,000 vaccinated individuals148. In 
addition, Guillain–Barré syndrome can occur within 6 weeks following 
receipt of adenoviral vector vaccines (reporting odds ratio 14.88, 95% 
CI 14.26–15.53)149.

Monoclonal antibodies for prevention
Although SARS-CoV-2 vaccines have been effective for most indi-
viduals, the vaccines are less effective for individuals who can-
not mount an adequate response to vaccines, for example, those  

who are immunocompromised due to underlying disease or 
immunotherapies150–152. Several monoclonal antibodies against 
SARS-CoV-2 have been developed, which function by blocking cell 
entry, and have been evaluated in immunocompromised populations 
as an alternative or adjunct to vaccination to prevent severe COVID-19 
(ref. 153). However, although many of these products were effective 
against the circulating strains at the time of development, they have 
become less efficacious due to antibody evasion as SARS-CoV-2 vari-
ants have evolved, creating a risk of emergence of resistance during 
monoclonal antibody therapy154,155. Only one monoclonal antibody 
(pemivibart) is currently available under FDA Emergency Use Authoriza-
tion for moderately-to-severely immunocompromised individuals to 
prevent severe SARS-CoV-2 (ref. 156). Pemivibart was approved based 
on immunobridging data (use of an immunological correlate of pro-
tection to estimate the effectiveness of an intervention) from previous 
efficacy trials for a parent monoclonal antibody, adintrevimab. Hence, 
there are limited efficacy data to support the use of pemivibart against 
SARS-CoV-2 variants that were not circulating during the adintrevimab 
trials. The clinical use and effectiveness of pemivibart must therefore 
be closely monitored.

Management
Treatment in the community
The focus of treatment of early-stage COVID-19 in at-risk patients in the 
community is antiviral therapy to prevent progression to moderate or 
severe disease (Table 1).

Antivirals. Nirmatrelvir is an oral antiviral that inhibits coronavirus  
3C-like protease, an enzyme involved in SARS-CoV-2 replication. It is 
formulated with ritonavir, an antiviral that inhibits CYP3A-mediated 
metabolism of nirmatrelvir, thereby increasing the plasma concen-
tration of nirmatrelvir157. In the Evaluation of Protease Inhibition for 
COVID-19 in High-Risk Patients (EPIC-HR) trial in symptomatic adults 
with COVID-19 who were at high risk of progression to severe disease, 
treatment with nirmatrelvir plus ritonavir within 3 days of symptom 
onset reduced the number of hospital admissions or deaths compared 
with placebo (0.72% versus 6.45%; difference −5.81%, 95% CI –7.78% 
to –3.84%; P < 0.001). There were no deaths in the nirmatrelvir plus 
ritonavir group compared with nine deaths in the placebo group158. 
Of note, the EPIC-HR trial was conducted in previously SARS-CoV-2 
naive individuals, before vaccination was available. Importantly, 
CYP3A inhibition (by ritonavir) also alters the levels of other drugs 
that are dependent on the same enzyme for their metabolism, with 
the potential for multiple important, possibly life-threatening drug 
interactions that must be addressed by the prescriber. The subsequent 
EPIC trial in those at standard risk for severe COVID-19 or those at 
high risk but vaccinated (EPIC-SR) did not demonstrate therapeutic  
benefit159.

Molnupiravir is another oral antiviral that inhibits replication of 
SARS-CoV-2. In the MOVe-OUT trial in non-hospitalized symptomatic 
adults within 5 days of laboratory-confirmed SARS-CoV-2 infection and 
with a heightened risk of developing severe COVID-19, treatment with 
molnupiravir reduced hospital admissions compared with placebo 
(6.8% versus 9.7%; difference −3.0%, 95% CI –5.9% to –0.1%) with only one 
death in the molnupiravir group compared with nine deaths in the pla-
cebo group160. By contrast, in the PANORAMIC trial of non-hospitalized 
symptomatic adults within 7 days of laboratory-confirmed SARS-CoV-2 
infection, there was no difference in rates of hospitalization or death 
between the molnupiravir and control groups (1% in both), although 
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time to recovery was quicker in the molnupiravir group (estimated 
benefit ~4 days)161. It is important to note that the MOVe-OUT trial 
included unvaccinated patients, whereas 94% of the PANORAMIC trial 
population had three or more SARS-CoV-2 vaccine doses. As the effects 
of molnupiravir in children and in pregnancy are not known, and the 
effects on hospitalization and death seem smaller, nirmatrelvir plus 
ritonavir is recommended over molnupiravir162.

Monoclonal antibodies. Sotrovimab is a human monoclonal anti-
body that binds to the SARS-CoV-2 spike protein, preventing the virus 
from entering cells. In the COVID-19 Monoclonal antibody Efficacy 
Trial–Intent to Care Early (COMET-ICE) in non-hospitalized symp-
tomatic adults within 5 days of laboratory-confirmed SARS-CoV-2 
infection and with a risk factor for developing severe COVID-19, treat-
ment with a single intravenous infusion of sotrovimab led to a reduc-
tion in the number of hospital admissions or deaths compared with 
placebo (1% versus 6%; adjusted relative risk 0.21, 95% CI 0.09–0.50; 
P < 0.001)163. However, sotrovimab is likely to be less effective against 
newer variants of SARS-CoV-2 as it does not bind to these164.

Similarly, the combination of the human monoclonal antibodies 
tixagevimab and cilgavimab given intramuscularly to non-hospitalized, 
unvaccinated adults within 3 days of positive SARS-CoV-2 testing and 
7 days of symptom onset reduced severe COVID-19 or death com-
pared with placebo (4% versus 9%; absolute risk reduction 4.5%, 95% 
CI 1.1–8.0%; P < 0.0001)165. However, tixagevimab and cilgavimab are 
likely to be less effective against newer variants of SARS-CoV-2 as they 
do not bind to these owing to escape mutations166.

Treatment in hospital and intensive care
In moderate or severe disease that requires admission to hospital 
or intensive care, the focus of clinical management initially focuses 
on treating the patient’s response to the infection (in terms of symp-
tomatology such as fever, hypoxaemia and cough) rather than direct 
antiviral therapy. Supportive therapy for these patients may consist 
of antipyretics (for example, acetaminophen), analgesics for pain 
(for example, NSAIDs) and oxygen supplementation, ranging from nasal 
canula to mechanical ventilation, depending on the clinical severity. 
For patients with hypoxaemia due to COVID-19, the target SpO2 range 
is 92–96%167,168.

Remdesivir. Remdesivir is an intravenous nucleoside drug that inhibits 
viral replication. It was developed for hepatitis C infection and repur-
posed for SARS-CoV-2 infection. In the ACTT-1 trial in hospitalized 
patients with COVID-19, those treated with remdesivir had a shorter 
time to recovery (median 10 days) than those in the placebo group 
(median 15 days; rate ratio for recovery (incidence recovery rate of pla-
cebo group divided by that of remdesivir group) 1.29, 95% CI 1.12–1.49; 
P < 0.001)169. This effect was largely confined to those less severely ill 
patients who required no or simple facemask oxygen compared with 
those who required high-flow oxygen or higher levels of ventilatory 
support. There was no statistically significant difference in mortality 
over 29 days between the remdesivir and placebo groups.

In the subsequent Solidarity trial, which was organized by WHO 
and enrolled over 14,000 hospitalized adults ≥18 years of age with 
COVID-19 in 35 countries, there was no statistically significant dif-
ference in mortality in the overall population (rate ratio 0.91, 95% 
CI 0.82–1.02)170. In those patients not ventilated at inclusion, 12% of 
patients in the remdesivir group died compared with 14% in the control 
group (RR 0.86, 95% CI 0.76–0.98) but no benefit was seen in sicker 
patients already mechanically ventilated. Remdesivir is, therefore, 
not recommended for patients who receive mechanical ventilation 
according to the results of this trial; of note, however, the study was 
underpowered to fully assess this population. A systematic review 
and meta-analysis of nine randomized controlled trials that evaluated 
remdesivir in adult hospitalized populations remained underpowered 
to assess the effects of remdesivir on outcomes for patients who were 
ventilated171. However, in larger, real-world cohort studies, survival 
benefits have been demonstrated for patients on mechanical ventila-
tion who received remdesivir172. In addition, secondary analyses of the 
ACTT-1 trial demonstrated that higher baseline plasma SARS-CoV-2 
viral loads were associated with more severe clinical outcomes, and 
decreasing viral SARS-CoV-2 in the blood with remdesivir improved 
outcomes173,174.

Remdesivir has also been evaluated in non-hospitalized patients 
at risk of disease progression, with treatment leading to a reduction 
in hospitalization or death compared with placebo (0.7% versus 5.3%; 
HR 0.13, 95% CI 0.03–0.59; P = 0.008)175. However, the requirement for 
intravenous administration makes remdesivir a less practical option 
for community use than oral antivirals.

Table 1 | Antivirals for SARS-CoV-2

Antiviral Mechanism of action Target population Route of 
administration

Other features

Remdesivir Nucleoside analogue that inhibits 
RNA-dependent RNA polymerase 
of SARS-CoV-2

Adults and children 
(≥28 days old who weigh 
≥3 kg) and are at high risk 
of severe COVID-19

Intravenous 
infusion

Start as soon as possible and within 7 days 
of symptom onset. Benefit is seen in both 
hospitalized and non-hospitalized patients at risk 
of severe COVID-19 but intravenous administration 
is less practical for community use

Nirmatrelvir 
with ritonavir

SARS-CoV-2 main protease (Mpro) inhibitor; 
ritonavir co-administered to increase plasma 
concentrations of nirmatrelvir by inhibiting 
CYP3A

Adults and children 
(≥12 years old)

Oral Start as soon as possible and within 5 days 
of symptom onset. Must monitor drug–drug 
interactions owing to ritonavir

Molnupiravir Introduces errors in viral genome and 
subsequent inhibition of replication, following 
its metabolism to a cytidine nucleoside 
analogue that is phosphorylated to active 
ribonucleoside triphosphate and incorporated 
into SARS-CoV-2 RNA by viral RNA polymerase

Adults Oral Start as soon as possible and within 5 days 
of symptom onset. Potential toxic effects in 
children and pregnant women limit use in these 
populations

COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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Glucocorticoids. Low-dose dexamethasone (a glucocorticoid) in the 
RECOVERY trial of hospitalized patients led to a reduction in mortality 
compared with that in a control group (22.9% versus 25.7%; adjusted 
RR 0.83, 95% CI 0.75–0.93; P < 0.001), although no effect and pos-
sible harm were seen in those patients who did not require oxygen 
supplementation176. A subsequent meta-analysis of glucocorticoids for 
patients not receiving oxygen confirmed a higher mortality in patients 
who did not require oxygen and received glucocorticoids compared 
with placebo177. However, the general drug class effect of other gluco-
corticoids, including hydrocortisone178 and methylprednisolone, has 
been shown to reduce mortality in patients who are critically ill and 
was confirmed in a meta-analysis of seven trials (odds ratio 0.66, 95% 
CI 0.53–0.82)179. Corticosteroids are, therefore, recommended for all 
hospitalized patients with COVID-19 requiring oxygen therapy.

Immunomodulatory agents. Among immunomodulatory therapies, 
treatment with tocilizumab, an IL-6 receptor antagonist, in the REMAP-
CAP trial led to reduced mortality and duration of organ support in 
patients who were critically ill (hospital mortality 28% in the tocili-
zumab group compared with 36% in the control group; >99.6% prob-
ability of superiority)180. The RECOVERY trial subsequently confirmed 
the beneficial effect of tocilizumab in a wider hospitalized population 
with inflammation (C-reactive protein ≥75 mg/l and requiring oxy-
gen therapy), with mortality of 31% versus 35% in the tocilizumab and 
control groups, respectively (P = 0.0028). A meta-analysis of 27 trials 
including >10,000 patients was consistent with the beneficial effect 
of anti-IL-6 therapy but benefit was seen only in patients treated con-
comitantly with corticosteroids and tocilizumab (OR 0.77, 95% CI 
0.68–0.87), potentially explaining the lack of benefit seen in trials 
completed early in the pandemic. Further meta-analysis suggested 
that tocilizumab and sarilumab, another IL-6 receptor antagonist, 
both had similar beneficial effects181. However, given that benefits 
were only detected in open-label trials and not in placebo-controlled 
trials, the use and benefits of tocilizumab remain an open question. Of 
note, the combination of tocilizumab and remdesivir for hospitalized 
patients requiring supplemental oxygen did not shorten hospitaliza-
tion duration compared with those who received remdesivir only in a 
randomized controlled trial182.

Baricitinib, a Janus kinase ( JAK) inhibitor, was shown in multiple 
trials to improve some clinical outcomes183–185. In the COV-BARRIER trial 
of patients hospitalized with COVID-19 but not requiring mechanical 
ventilation, treatment with baricitinib did not alter the primary out-
come (prevention of disease progression) but did lead to a reduction 
in 28-day mortality compared with a control group (8% versus 13%)183. 
In an exploratory trial following the study design of COV-BARRIER, 
the efficacy of baricitinib plus standard of care was evaluated in criti-
cally ill patients requiring mechanical ventilation or extracorpor-
eal membrane oxygenation. Treatment with baricitinib significantly 
reduced the 28-day all-cause mortality (HR 0.54, 95% CI 0.31–0.96; 
P = 0.030; 46% relative reduction; absolute risk reduction 19%) but the 
overall sample size was relatively small184. The RECOVERY trial subse-
quently reported a mortality of 12% in the baricitinib group compared 
with 14% in the control group (adjusted RR 0.87, 95% CI 0.77–0.99; 
P = 0.028)186. In this trial, 23% of patients were treated concomitantly 
with tocilizumab and the beneficial effects of baricitinib were still seen 
(RR 0.79, 95% CI 0.63–1.00). A meta-analysis of individual participant 
data from randomized controlled trials demonstrated that JAK inhibi-
tors reduced mortality across all levels of respiratory support needs 
in hospitalized patients187.

Monoclonal antibodies. Although combination of the monoclonal 
antibodies casirivimab and imdevimab was shown to reduce mortality 
in seronegative patients hospitalized with COVID-19 (ref. 188), these 
specific monoclonal antibodies are not effective against new strains of 
SARS-CoV-2 and are therefore no longer recommended for treatment.

Antithrombotic agents. Thromboembolic disease is a key feature of 
severe COVID-19, and various anti-coagulation therapeutic strategies 
have been evaluated. A therapeutic dose of heparin when given to 
non-critically ill hospitalized patients in a large multi-platform trial 
led to reduced mortality and duration of organ support (adjusted 
hospital mortality reduction of 4%, 95% CI 0.5–7.2%)189. This beneficial 
effect was seen irrespective of D-dimer level, a test for blood clotting. 
A similar reduction in mortality was seen in the FREEDOM COVID trial 
of non-critically ill patients treated with therapeutic dose heparin 
(HR 0.70, 95% CI 0.52–0.93; P = 0.01)190. However, when therapeutic 
dose heparin was given to critically ill patients either initially189,191 or 
continued from when they were non-critically ill192, it was ineffective 
and may have led to harm (in terms of major bleeding events). Subse-
quent exploratory analyses demonstrated heterogeneity of treatment 
effects, in that heparin was more likely to be beneficial in those who 
were less severely ill or had lower BMI and more likely to be harmful in 
sicker patients and those with higher BMI193.

Antiplatelet strategies, whether aspirin194,195 or P2Y12 inhibitors 
(such as clopidogrel195 or ticagrelor196), were not effective at improv-
ing short-term outcomes. However, during long-term follow-up of 
patients in the REMAP-CAP trial, treatment with an antiplatelet agent 
had a high probability (95.0%) of reduced 180-day mortality compared 
with patients randomized to the control group, and a similarly high 
probability (97.4%) of improving quality of life at 6 months197.

Statins. Simvastatin has been shown to have anti-inflammatory and 
immunomodulatory effects and has been proposed as a possible treat-
ment for hyperinflammatory acute respiratory distress syndrome198. 
A meta-analysis of non-randomized trials suggested a possible benefit 
of statins for COVID-19 (ref. 199), and in the REMAP-CAP trial simvas-
tatin treatment had a high probability (96%) of reducing mortality 
and organ support compared with control, but this did not reach the 
pre-defined threshold of efficacy (99%)200.

Treatment in specific groups
Immunocompromised patients. Patients who are immunocompro-
mised, whether due to an underlying condition or immunosuppres-
sive treatment, are at a particularly high risk of severe COVID-19 even 
after the introduction of vaccines and often have extended periods 
of viral replication and shedding due to inability to clear the virus201. 
Treatment with antiviral therapies as early as possible is important in 
these patients. In general, treatment should follow the same guidelines 
as for the general population. Decisions about modifying existing 
immunosuppressive therapies should be made by appropriate special-
ists (for example, transplant physicians and oncologists) depending 
on the patient’s individual immunocompromising characteristics and 
risk factors for development of severe COVID-19.

Many immunocompromised patients may have delayed virus 
clearance and, therefore, prolonged treatment and/or dual therapy 
with antivirals should be considered202,203. Convalescent plasma 
has been shown to be ineffective in treating a broad population of 
hospitalized patients with COVID-19 (refs. 204–206), but there was 
potential benefit from convalescent plasma in the REMAP-CAP trial 
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in the subgroup of immunocompromised patients in intensive care 
(n = 126 patients; posterior probability of superiority 89.8%)206. The 
CONFIDENT trial of high-titre convalescent plasma in mechanically 
ventilated critically ill patients led to a reduction in mortality from 
45.0% in the control group to 35.4% in the treated group (P = 0.03), 
with a difference in restricted mean survival time (convalescent plasma 
minus standard care) at day 28 of 0.33 days (95% CI –1.27 to 1.92 days)207. 
A meta-analysis of randomized trials and observational studies sug-
gested that convalescent plasma may be associated with mortality 
benefit in the subgroup of immunocompromised patients, although 
the data should be interpreted cautiously given the inclusion of case 
reports and observational studies in the report208. Monoclonal anti-
bodies that block SARS-CoV-2 have also been evaluated as treatment 
for immunocompromised individuals, although with varying efficacy 
and overall high morbidity and mortality despite monoclonal anti-
body therapy209. Combination antiviral therapy has been proposed for 
this population; however, further research is warranted to determine 
the optimal duration of treatment and appropriate combination of 
antivirals and/or monoclonal antibodies.

Pregnancy. Pregnant and postpartum women with COVID-19 are more 
likely to be admitted to the intensive care unit or to need mechanical 
ventilation than non-pregnant women of the same age210. In general, 
treatment strategies should be similar to those in the general popula-
tion, although any effect of treatment on the fetus must be considered. 
Treatment decisions should be made using a shared decision-making 
process and considering individual risk–benefit balances.

Molnupiravir should not be used in pregnant women due to pos-
sible teratogenic effects. There is a lack of data that can guide the deci-
sion of whether to use nirmatrelvir-ritonavir or remdesivir, although 
no safety concerns have been identified211. Antibody therapies against 
SARS-CoV-2 are generally considered safe in pregnancy. It is recom-
mended to use low-dose prednisolone or hydrocortisone rather than 
dexamethasone, which crosses the placenta. Although information is 
limited, treatment with tocilizumab and sarilumab should be strongly 
considered in severe COVID-19 in pregnancy212–214.

Quality of life
The impact of COVID-19 is often measured in numbers of cases and 
deaths, but the social burden of the disease and its effects on quality 
of life have also been immense. Survey tools to evaluate quality of life 
have been adapted and used during the course of the pandemic to 
determine the effects of COVID-19 illness (acute infection and sequelae), 
fear of infection, responsiveness of the government, and the social and 
psychological effects of quarantine, shut-downs and masking215–217. The 
evaluation of health-related quality of life (HRQoL) includes multiple 
dimensions, including mental, social, physical and emotional functions, 
at either the individual or population level218.

The most widely used generic survey tools used to evaluate 
COVID-19-related HRQoL include the EQ-5D-5L (EuroQol, 5 Dimen-
sions, 5 Levels), SF-36 (36-item Short-Form Health Survey) and SF-6D 
(Short-Form 6 Dimensions)219,220, with translations available in many 
languages221. Disease-specific instruments relating to pulmonary 
disease include the Clinical COPD Questionnaire and the St. George 
Respiratory Questionnaire, both of which have been applied to study 
the effects of COVID-19 (refs. 222–224).

Surveys evaluating various domains of mobility, self-care, usual 
activities, pain or discomfort, and anxiety or depression in both 
high-income and low-income countries show that around one-third 

of people with confirmed or suspected COVID-19 reported perceived 
worsening of their health during the first year of the pandemic, with 
anxiety or depression being the domain most affected, especially 
among younger age groups (18–24 years old) and women222,225–229. 
In addition, worsening health has been associated with an increased 
number of long-term health conditions. Lower-income countries 
reported a greater degree of worsening health, although the negative 
effects on mental health were described in all countries across the 
economic spectrum230. Future studies are warranted to determine the 
long-term effects of COVID-19 on HRQoL.

The average lifespan of individuals across populations has also 
been greatly affected by COVID-19, probably owing to both direct 
mortality outcomes from COVID-19 and indirect effects on health and 
economics. Many studies have estimated the effect of COVID-19 on 
life expectancy from reports in 2020 compared with pre-pandemic 
data and have described decreased life expectancies due to COVID-19 
(refs. 231–233). Decreased life expectancy related to the COVID-19 
pandemic has disproportionally affected men and certain ethnic 
groups; notably, decreased life expectancy was found among Latino 
and Black populations compared with white populations in the 
USA234,235. As overall life expectancy was projected to increase in 2020 
if the pandemic had not occurred, the effect of COVID-19 on life expec-
tancy is probably even greater, as previous studies only compared 
2020 to pre-pandemic years236,237. Accounting for this factor and using 
the Lee–Carter model to estimate the loss of life expectancy due to 
COVID-19 across 27 countries, one study estimated that an average 
of 1.33 years (95% CI 1.29–1.37 years) were lost for individuals at age 
15 years, and an average of 0.91 years (95% CI 0.88–0.94 years) for 
individuals at age 65 years236. There was variability between different 
countries using this model. For context, the excess number of years of 
life lost due to COVID-19 in 2020 was more than five times greater than 
the overall years lost owing to the seasonal influenza pandemic in 2015, 
when evaluated across 37 countries238.

Outlook
Despite the major and rapid scientific advances that occurred imme-
diately after the discovery of SARS-CoV-2, gaps remain in SARS-CoV-2 
basic, translational and clinical research that affect management and 
public health considerations moving forward. Future research should 
focus on specific areas to advance our understanding, which may also 
have implications for other respiratory viruses and emerging pathogens.

Detection
The exact origin of SARS-CoV-2, as well as intermediate hosts and poten-
tial for new animal host species, has not been completely elucidated. 
The origin of SARS-CoV-2 has been a focus of intense scientific effort 
and debate, with zoonotic emergence239 versus ‘laboratory-escape’ 
as leading hypotheses. There is greater evidence for a zoonotic emer-
gence given the close genetic sequencing to animal reservoirs57,58. 
For example, the genetic sequence of SARS-CoV-2 closely resembles 
coronaviruses that circulate in horseshoe bats239. Although resolving 
the exact origin is unlikely to occur, we need to enhance biosecurity 
in both settings. Biosecurity in laboratory research with potential 
pathogens of outbreak potential must be re-enforced globally. Even 
more important is the need to detect and limit ‘zoonotic spill-over’ 
events that continue to happen for various pathogens such as influenza, 
SARS-CoV, Ebola, Marburg and mpox240,241. Understanding and defining 
the reservoir and transmission dynamics of potential pandemic patho-
gens using molecular tools, environmental sampling and animal-based 
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surveillance methods will be important to identifying potential out-
breaks early and then containing them quickly242. Animal trafficking, 
such as for sale, enables spread of potential pathogens beyond their 
natural reservoirs, and intermediate animal hosts in markets (such as 
pangolins, minks, civet cats and raccoon dogs) may lead to spill-over 
events to humans59,243. Regardless of the origin of a pathogen, once 
efficient pathogen adaptation to humans occurs, humans may become 
the dominant host who amplifies and transmits the pathogen, as is cur-
rently the case for SARS-CoV-2 and influenza annually. Nevertheless, a 
further understanding of potential animal reservoirs and intermediate 
hosts is essential to enact measures to prevent future zoonotic crosso-
ver events and have appropriate surveillance mechanisms in place to 
identify virus diversity in different animal hosts and potential emerging 
threats (formulated in the WHO One Health strategy)244.

Transmission dynamics
An important property of SARS-CoV-1 transmission dynamics is human-
to-human contagion occurring days after symptom onset and nearly all 
infected becoming symptomatic245,246. This enables a targeted public 
health response in which symptoms are an important guide to enable a 
proportionate health care-based and public health response. However, 
SARS-CoV-2 can be asymptomatic or have substantial viral shedding 
before symptom onset. This subtle change in biology dramatically 
affects transmission dynamics and how to design a rational, sustainable 
and broadly acceptable response to limit transmission.

Masking, early testing and non-pharmaceutical interventions had 
a mitigating effect on the spread of SARS-CoV-2, especially early in the 
pandemic. This is best shown by the pandemic policy response in some 
countries, such as New Zealand, and by models in which aggressive 
control policies on a population level resulted in a reduced increase of 
infected individuals in a given population247–250. Although it is clear that 
respiratory droplets are the primary mode of transmission, aerosolized 
spread, fomite contamination and faecal–oral transmission events have 
also been reported251. Our understanding of the underlying mecha-
nisms of SARS-CoV-2 transmission remains crude, as do the peak timing 
of infectiousness, distance from infected source, and environmental 
factors that affect transmission and specific host immune-mediated 
factors that lead to an increased likelihood of transmission. Further 
research is warranted to investigate these questions, especially now 
that populations have experienced widespread antigen exposure due 
to vaccination and infection, which may change early studies of trans-
mission dynamics. Insights are important to update current hospital 
control measures for SARS-CoV-2 and to be prepared for future vari-
ants or other respiratory viruses that may warrant broad-based public 
health measures.

Immunological correlate or surrogate of protection
Neutralizing antibodies have been shown to correlate with protec-
tion against severe disease both by vaccination and passive antibody 
treatment252. However, a specific antibody level for neutralization has 
not been described, and different variants may require varying neutral-
izing antibody levels depending on the activity of the specific antibody 
against the infecting strain, antibody concentration at the site of expo-
sure and viral inoculum252. A clear correlate or surrogate of protection 
is imperative as this can lead to more rapid and easier monitoring of 
vaccine and monoclonal antibody effectiveness and enable ‘bridging’ 
to populations, such as immunocompromised individuals, that may 
not be able to undergo large-scale clinical trials by using a clear cut-off 
of a correlate of protection253. Furthermore, other components of the 

immune system, such as T cells, Fc effector antibodies and mucosal 
immunity, likely have a role in creating durable protection254. The 
degree to which these analytes could be used as a correlate of protec-
tion (independently or in combination) against different end points 
of interest warrants further evaluation.

Long COVID
Another area that warrants further research is the prolonged health 
complications associated with COVID-19 after the initial acute phase, 
referred to as long COVID255. A myriad of symptoms that affect multiple 
organ systems have been linked to long COVID. However, there is still a 
large knowledge gap pertaining to the exact definition of long COVID, 
its pathophysiology and the host characteristics that may predispose 
an individual to developing the condition. Ultimately, a better under-
standing of the pathogenesis, which is likely multifactorial and varied, 
of long COVID is essential to develop appropriate therapeutics and 
identify individuals at risk.

New preventive strategies and therapeutics
Investment into monoclonal antibody and vaccine development 
technologies can enable more rapid development and manufacturing 
scale-up against novel SARS-CoV-2 variants of concern and novel patho-
gens. Although the currently approved COVID-19 vaccines had remark-
able efficacy in the phase III licensure trials128,130,131, there is a need to 
develop improved vaccines that have enhanced breadth across emerg-
ing variants, are durable, and reduce or block transmission. Several 
candidate vaccines are in preclinical studies or early phase I trials that 
seek to better target mucosal, cellular and humoral immune responses 
to achieve one or more of these goals. Research on next-generation 
COVID-19 vaccines also explores innovative delivery methods, such as 
intranasal sprays, aerosolization and microneedle patches, to enhance 
accessibility and immunogenicity. These advanced methods aim to 
improve ease of administration, promote mucosal immunity, and offer 
broad and durable protection against the virus, potentially reduc-
ing transmission and improving overall vaccine uptake256. However, 
in parallel, we must intensify our efforts for the implementation of vac-
cines to increase uptake, especially as new technologies and improved 
vaccines become available. The production of novel, more durable 
SARS-CoV-2 vaccines will only be effective if the population is willing 
to receive them; vaccine hesitancy must be understood and addressed 
with equal resources and efforts257,258.

New therapeutics for prophylaxis and treatment for SARS-CoV-2 
are needed, especially for populations that cannot mount appropriate 
protective immune responses to vaccines, for example, immunocom-
promised individuals and older adults, as well as for patients with 
severe COVID-19, which was a group for which study populations were 
largely underpowered in many of the primary randomized controlled 
trials that evaluated COVID-19 therapeutics. The knowledge from early 
randomized controlled trials to support current therapeutic strate-
gies may be limited due to changing variants, a population that is no 
longer immunologically naive to SARS-CoV-2, and dynamic changes 
in non-pharmaceutical intervention policies such as masking and 
quarantine. New agents should aim to have limited drug–drug interac-
tions, be well tolerated and be available in oral formulations. In addi-
tion, end points of therapeutic clinical trials for SARS-CoV-2 should be 
reconsidered given that the population has largely been exposed to 
SARS-CoV-2 through vaccination and infection. Clinical trials early in 
the pandemic evaluated how treatments affected rates of severe disease 
(such as hospitalization and intensive care unit admissions) and death.  
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However, given that COVID-19 tends to be more attenuated in a pop-
ulation that is no longer sero-naive to SARS-CoV-2 (ref. 259), there 
should be a shift in how treatment efficacy is assessed to focus more 
on a reduction of symptoms or missed days of school or work. Several 
small-molecule antivirals that inhibit coronavirus 3C-like protease 
(simnotrelvir, mindeudesivir, leritrelvir, ensitrelvir and atilotrelvir) 
have demonstrated efficacy in accelerating symptom resolution or 
alleviation for patients with mild-to-moderate COVID-19 in randomized 
controlled trials, and further evaluation to determine the best use of 
these agents is warranted260–264.

WHO strategy
Looking to the future, the WHO has outlined a strategic plan to transi-
tion the initial critical emergency response to COVID-19 towards a more 
sustained, long-term effort that focuses on disease prevention, control 
and management265. Continued global surveillance and collaboration 
are key features to maintaining an active monitoring system for pos-
sible surges or new variants. A key measure aligned with this goal is 
pandemic preparedness, which will require continued resources and 
support for all countries. As we have learned — but are quick to forget — 
infectious diseases do not recognize geographic borders and, there-
fore, a concerted global effort must be maintained to keep SARS-CoV-2 
(and other emerging pathogens) under control.

Published online: xx xx xxxx
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