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Abstract

Sections

Metabolic dysfunction-associated steatotic liver disease (MASLD;
previously known as non-alcoholic fatty liver disease) is the leading
cause of chronic liver disease worldwide and is closely linked to

the obesity epidemic. MASLD often coexists with sarcopenia, an
age-related loss of muscle mass and muscle function. These conditions
are closely connected, and metabolic syndrome and its associated
metabolicfactors have a crucial role in their relationship. Metabolic
syndrome considerably affects the risk and progression of MASLD
and sarcopenia and promotes their development through various
mechanisms. This Review explores the epidemiological link between
MASLD and sarcopenia and the effect of metabolic syndrome and its
components on both conditions, summarizing current treatment
strategies and emerging evidence. To effectively manage both MASLD
and sarcopenia, itis crucial toincorporate the five metabolic risk
factors of metabolic syndrome into risk assessment and treatment
strategies. Future research should continue to investigate the
mechanisms linking metabolic syndrome, MASLD and sarcopenia.
Establishing standardized definitions of sarcopenia for patients with
MASLD and developing personalized treatment strategies through
precision medicine willimprove diagnosis, interventions and overall
patient outcomes.
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Key points

o Effective management and risk stratification of metabolic
dysfunction-associated steatotic liver disease (MASLD) and
sarcopenia require integrating five key cardiometabolic risk factors
as they considerably affect disease progression and extrahepatic
complications.

o Growing evidence links MASLD and sarcopenia with metabolic
syndrome, and the components of metabolic syndrome strengthen
this relationship, leading to progressive disease and poor
prognosis.

o Standardized diagnostic criteria for sarcopenia are essential to better
understand its relationship with MASLD.

o Key factors linking MASLD and sarcopenia include visceral obesity,
insulin resistance, chronic inflammation, genetic predisposition and
dysbiosis of the gut microbiota.

e Approved pharmacological therapies for MASLD and emerging
digital health and precision medicine could offer personalized
treatment options for MASLD and sarcopenia.

Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD;
formerly known as non-alcoholic fatty liver disease (NAFLD)) is char-
acterized by excess hepatic lipid accumulation, often accompanied
by type 2 diabetes mellitus (T2DM) and other features of metabolic
syndrome. MASLD affects over 30% of adults worldwide, with a sub-
stantial increase expected in the next decade*. MASLD includes arange
of progressive liver conditions, from simple steatosis to metabolic
dysfunction-associated steatohepatitis (MASH; previously known as
non-alcoholic steatohepatitis), fibrosis, cirrhosis and hepatocellular
carcinoma. Astudy conductedin2024 has provided updated insights
into the natural history of MASLD, highlightingits reversible nature and
the potential for cirrhosis recompensation, which offers promising
treatment options®. Sarcopenia, which is defined as gradual muscle
loss and dysfunction, is strongly associated withincreased risks of dis-
ability, falls, fractures and death®. Studies have shown that sarcopenia
predicts cirrhosis prognosis, and also increases the risk of MASLD,
advanced liver fibrosis and liver-related adverse events>®. The strong
link between MASLD and sarcopenia is mainly due to shared patho-
genic factors, particularly metabolic syndrome components such as
visceral adiposity and insulin resistance. Understanding the specific
metabolic factors behind this link is crucial for assessing disease risk.
For example, although blood pressure and plasmalevels of high-density
lipoprotein cholesterol have weak associations with insulin resistance
(amajor risk factor for MASLD), their strong associations with age
(animportant factor for sarcopenia) emphasize the need to consider
the link between MASLD and sarcopenia within the broader context
of metabolic health.

This narrative Review summarizes the epidemiological relation-
shipbetween MASLD and sarcopenia, discusses the pathophysiological
mechanisms of MASLD from a metabolic dysfunction perspective, and
proposes systematic screening and timely interventions for patients
at highrisk.

From NAFLD to MASLD: understanding the
metabolic influence

Sincethe first description of hepatic steatosis in1836, substantial pro-
gress hasbeen made in understandingits pathophysiological relation-
ship with metabolic diseases such as obesity and T2DM’. This progress
hasledto ashiftinterminology away fromthe exclusionary term NAFLD
to better highlight the pathogenic role of metabolic dysfunction®™
(Supplementary Fig. 1). Two key nomenclature proposals have been
introduced: metabolic dysfunction-associated fatty liver disease and
MASLD. Metabolic dysfunction-associated fatty liver disease, proposed
in 2020, was first introduced with positive diagnostic criteria based
on metabolic dysfunction®?. Subsequently, MASLD was developed
through a global consensus process to standardize diagnostic crite-
riaworldwide and has been endorsed by leading international liver
societies’.

The diagnosis of MASLD requires the presence of hepatic steato-
sis in conjunction with at least one of five common cardiometabolic
risk factors associated with metabolic syndrome (Fig. 1): increased
body mass index (BMI) or increased waist circumference, impaired
glucoseregulation, increased blood pressure, hypertriglyceridaemia,
or low levels of high-density lipoprotein cholesterol’. These criteria
highlight the importance of metabolic risk factors in early diagnosis
and prognostic assessment of MASLD. Hepatic steatosis can be diag-
nosed through imaging, blood-based biomarkers or liver histology.
Blood-based biomarkers, such as y-glutamyl transferase, lipid profiles,
uric acid and Homeostasis Model Assessment of Insulin Resistance,
are commonly used to assess hepatocellular injury and metabolic
dysfunction®. Composite scoring models, including the Fatty Liver
Index, Hepatic Steatosis Index, SteatoTest, and NAFLD Liver Fat Score,
integrate multiple parameters to evaluate hepatic steatosis”. Among
imaging techniques, the Controlled Attenuation Parameter is widely
recommended for hepatic steatosis screening due toits reproducibility
and accessibility” . Magnetic resonance imaging-proton density fat
fraction provides more precise hepatic fat quantification”. Emerging
biomarkers, suchas cytokeratin 18 (CK-18; the most extensively inves-
tigated biomarker), C-X-C motif chemokine ligand 10 (CXCL10) and
fibroblast growth factor 21 (FGF21), have shown promise inidentifying
steatohepatitis''. For fibrosis assessment, composite scores, includ-
ingtheFibrosis-4 Indexand NAFLD Fibrosis Score, integrate clinical and
laboratory parameters to stratify patients at risk of advanced hepatic
fibrosis™>". Magnetic resonance elastography provides precise fibrosis
staging, further enhancing diagnostic accuracy”. Combining metabolic
risk factors, biomarkers and imaging techniques could furtherimprove
diagnostic accuracy, enabling the timely identification of MASLD.

Definition of sarcopenia: understanding loss of
skeletal muscle mass and function
Sarcopeniawasinitially described in the 1980s as age-related skeletal
muscle mass loss, particularly prevalentamong the older population,
nursing home residents and individuals with malnutrition’®2°, The
definition of sarcopenia has evolved, shifting from afocus primarily on
low muscle mass toincorporating muscle function, particularly muscle
strength, which is astronger predictor of mortality and disability. This
definition changeis reflected in the current clinical diagnostic criteria
fromboththe European Working Group on Sarcopeniain Older People 2
and the Asian Working Group for Sarcopenia, which now emphasize
assessing both muscle mass and strength?-*2. Diagnosing sarcope-
nia involves evaluating skeletal muscle strength, mass and quality,
and individuals with severe sarcopenia often exhibit poor physical
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performance®® (Supplementary Table 1). The global prevalence of
sarcopeniais estimated tobe 10-30%; severe cases account for2-10%
and thisstatisticis influenced by factors such as country, sex, nutrition,
comorbidities and diagnostic methods**®, Sarcopenia often coexists
with malnutrition and cachexia, increasing the risk of falls, fractures,
disabilities and death'®.

Therenaming of MASLD in 2023 highlights the clinicalimportance
of metabolicrisk factorsin the diagnosis and management of this com-
mon liver disease”. These metabolic risk factors not only influence liver
lipid accumulation but also contribute to the development of sarco-
peniaby impairing muscle protein synthesis and accelerating muscle
degradation. The strong association between myosteatosis (lipid
accumulation in skeletal muscles) and the MASLD disease spectrum
further emphasizes the need to address both metabolic dysfunction
and muscle health®®. Therefore, early identification of these metabolic
risk factors and intervention to address themare clinically important
for preventing and managing sarcopenia. For patients with sarcopenia
who are at high risk of worsening metabolic disease, especially those
with coexisting MASLD, a systematic screening approach (Fig. 1) is
essential to guide the development of targeted management strategies
toimprove prognosis.

Sarcopenic obesity

Sarcopenic obesity is characterized by the coexistence of decreased
skeletal muscle mass and function (sarcopenia) withincreased visceral
adiposity (obesity)®. The prevalence of sarcopenic obesity is rising
owing to global obesity trends and population ageing®. Variations in
the definitions of sarcopenia and methods for assessing obesity can
affect epidemiological studies on sarcopenic obesity*-**. With age,
changes in metabolism and body composition can lead to an imbal-
ance between muscle and adipose tissue, causing ectopic adipose tis-
sue deposition and low-grade chronic inflammation®-*2, This change
accelerates hepatic steatosis and muscle dysfunction, promoting dis-
ease progression®-*%, In older populations, the effect of sarcopenic
obesity remains controversial, particularly in light of the ‘obesity
paradox’, which refers to the observation that sarcopenic obesity is
associated with alower mortality than sarcopenic non-obesity, chal-
lenging the traditional view that obesity always leads to negative health
outcomes™**, This paradox might be partly explained by the limitations
of BMI, which overlooks the metabolic effects of visceral adiposity
and lean muscle mass, as well as the confounding effect of underlying
diseases such as cancer and cachexia®*°. Consequently, alternative
anthropometric parameters that better reflect visceral obesity, such
as waist-to-hip ratio, waist-to-height ratio or waist-to-calf ratio, are
gaining popularity”*°. Given the multifactorial pathophysiology of
sarcopenic obesity and the complexities of the obesity paradox, it could
be beneficial to complement conventional assessment methods with
advanced approaches for more accuraterisk stratification. Specifically,
integrating multi-omics data and advanced imaging techniques with
established cardiometabolic risk factors and precise visceral obesity
assessments could provide amore comprehensive risk assessment and
improved management strategies for sarcopenic obesity.

MASLD and sarcopenia: clinical evidence

and perspectives

Cross-sectional studies

Supplementary Table 2 shows the main cross-sectional studies exam-
ining the relationship between MASLD and sarcopenia, primarily
conducted in Asian countries, with sarcopenia mainly defined by low

Population at high risk for MASLD and sarcopenia

MASLD risk assessment

v

Hepatic steatosis in adult
(detected by imaging, blood biomarkers and/or
steatosis scoring, or by liver histology)

v

Presence of any of the following cardiometabolic risk factors:

o BMI 225 kg/m?2 (23 kg/mZ2 in people of Asian ethnicity) OR waist circumference
>94 cm in men or >80 cm in women OR BMI or waist circumference above
other ethnicity-adjusted threshold.

o Fasting serum levels of glucose >5.6 mmol/l (100 mg/dl) or 2-hour post-load
levels of glucose 27.8 mmol (140 mg/dl) OR HbA,_ 25.7% (39 mmol/l) OR
T2DM OR treatment for T2DM

» Blood pressure >130/85 mmHg OR specific antihypertensive drug treatment

» Plasma levels of triglycerides >1.70 mmol/l (150 mg/dl) OR lipid-lowering
treatment

o Plasma levels of HDL cholesterol <1.0 mmol/l (40 mg/dl) in men and <1.3
mmol/L (50 mg/dl) in women OR lipid-lowering treatment

'

No other causes of hepatic steatosis

'

Presence of MASLD

'

Risk of sarcopenia assessment

'

Low muscle strength as measured by hand-grip testing

'

Sarcopenia probable

'

Low muscle mass as measured by DXA, BIA, CT or MRI

'

Sarcopenia confirmed

v

Low physical performance as measured by gait speed
test, SPPB, timed-up-and-go test, 400-m walk

v

Severe sarcopenia

Fig.1| Operational algorithm for screening and diagnosis of sarcopenia
in patients with MASLD. The diagnosis of metabolic dysfunction-associated
steatotic liver disease (MASLD) is based on the 2023 modified Delphi consensus
from three leading liver associations’. Sarcopenia diagnosis follows the 2018
revised consensus by the European Working Group on Sarcopeniain Older
People?. BIA, bioimpedance analysis; BMI, body mass index; CT, computed
tomography; DXA, dual-energy X-ray absorptiometry; HDL, high-density
lipoprotein; MRI, magnetic resonance imaging; SPPB, Short Physical
Performance Battery; T2DM, type 2 diabetes mellitus. The algorithm for the
assessment of MASLD is adapted with permission fromref. 9, Elsevier. The
algorithm for the assessment of sarcopeniais adapted with permission from
ref. 21, Oxford University Press.

skeletal muscle index (SMI). Despite variations in SMIstandardization
methods, aconsistent positive association between MASLD and sarco-
peniawas observed***. Definitions using body weight and BMI showed
stronger associations with MASLD than height-based standardizations,
possibly due to the influence of lipid accumulation within muscle mass
(myosteatosis)*>*. This finding, along with evidence that sarcopenia
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Table 1| Prospective studies on the associations of sarcopenia with MASLD and associated liver fibrosis

Author, year  Follow-up Method of Method of Method of Key findings HR (95% CI) for MASLD progression
(years) diagnosing diagnosing diagnosing or resolution
sarcopenia MASLD fibrosis
Kim et al.%® 7.0 (mean) BIA; weight-adjusted  Hepatic steatosis NR Increases in relative With increasing relative skeletal
skeletal muscle index skeletal muscle mass muscle mass, MASLD incidence: 0.44
mass index associated with decreased  (0.38-0.51); MASLD resolution: 2.09
MASLD incidence (1.02-4.28)
and increased MASLD
resolution
Petermann- 10 (9.3-10.7) BIA; skeletal muscle International NR Low muscle mass and grip ~ With increasing grip strength: 0.84
Rocha et al.*® mass index; grip Classification strength are associated (0.80-0.88) for MASLD progression; with
strength of Diseases, with increased risk of increasing muscle mass: 0.70 (0.66-0.74)
10th revision, severe MASLD for MASLD progression
definition K76.0
Hsiehetal.®*® 29months CT Liver biopsy Transient Severe myosteatosis is With severe myosteatosis, 2.49
(mean) elastography  associated with increased  (1.15-5.40) for increased liver stiffness
liver fibrosis progression >2kPa; 2.09 (1.01-4.34) for liver stiffness
measurement >7kPa at follow-up
Choetal.” 3.7(2.0-4.8) BIA; ratio of skeletal  Ultrasound Fibrosis-4 Low ratio of skeletal With a low ratio of skeletal muscle mass
muscle mass to Index >2.67; muscle mass to visceral to visceral fat area: 1.92 (1.80-2.05)
visceral fat area NAFLD fibrosis fat area is associated with ~ for MASLD in men; 3.37 (2.99-3.8) for
score >0.676 increased incident MASLD  MASLD in women; 2.83 (2.19-3.64)
and advanced fibrosis risk  for advanced fibrosis in men; 7.96
(3.85-16.44) for advanced fibrosis
in women
Choeetal.”” 12 (4-14) BIA; BMI-adjusted Hepatic steatosis  Fibrosis-4 Low muscle mass is With low muscle mass: 1.18 (1.11-1.27)
skeletal muscle index >36 Index 22.67 associated with increased ~ for MASLD risk

mass index

MASLD risk

BIA, bioelectrical impedance analysis; BMI, body mass index; CT, computed tomography; MASLD,

disease; NR, not reported.

isindependently associated with MASLD regardless of obesity and
insulin resistance, supports the concept that sarcopenia can exist as
adistinct entity closely associated with MASLD*,

Notably, metabolic syndrome further complicates this relation-
ship, affecting the risk of both MASLD and sarcopenia. Adjusting for
Homeostasis Model Assessment of Insulin Resistance attenuates the
association between sarcopenia and MASLD, yet it remains strong,
indicating partial mediation by insulin resistance®. Visceral adipose
tissue is another key risk factor thatlinks sarcopeniaand MASLD. A low
ratio of skeletal muscle to visceral adiposity substantially increases the
risk of MASLD*¢. Additionally, individuals with sarcopenic obesity are at
anincreased risk of MASLD and adverse outcomes®. Eveninindividuals
without obesity, myosteatosis might contribute to the development
and progression of MASLD, highlighting the pathogenicrole of visceral
adipose tissue*®, Therefore, it is essential to explore the various com-
ponents of metabolic syndrome and their effect on the link between
MASLD and sarcopenia. Studies conducted in 2024 into multiple com-
binations of 5 metabolic abnormalities across 31 subgroups showed
notable differences in MASLD prevalence and advanced fibrosis risk,
emphasizing theimportance of investigating different metabolic factor
combinations to better stratify the risk of sarcopenia®. The question
remains, akinto the ‘chicken or the egg’ dilemma, of whether sarcopenia
promotes and propels MASH and/or fibrosis in MASLD or if sarcopenia
occursbecause of the presence of MASLD and advanced liver damage.
Further research onthe underlying mechanismsis crucial to unravelling
the complex links between sarcopenia and MASLD.

Prospective studies
Table 1 summarizes key prospective studies that examined the effect
of'sarcopeniaon MASLD risk and progression, with follow-up periods

metabolic dysfunction-associated steatotic liver disease; NAFLD, non-alcoholic fatty liver

ranging from2to 12 years. These prospective studies, which were pri-
marily conducted inKorean cohorts, show a considerable effect of sar-
copeniaonthe developmentand progression of MASLD. A study using
the UK Biobank also links reduced muscle mass and grip strength toan
increased risk of severe MASLD, but further validation across different
ethnicgroupsisneeded®. Metabolic syndrome components, particu-
larly visceral obesity, further complicate the association between sar-
copeniaand MASLD. A key findingis the identification of alow ratio of
skeletal muscle to visceral adiposity as a strong and independent predic-
tor of MASLD, suggesting that the combined effect of reduced muscle
mass and metabolic disturbances increases MASLD susceptibility®. Fur-
ther studies are needed to better understand the association between
sarcopenia and MASLD, considering the complexities introduced by
metabolic syndrome components and ethnic variations.

Effect on mortality and clinical outcomes

Sarcopenia and MASLD independently contribute to adverse clinical
outcomes, and their co-occurrence substantially exacerbates these
risks (Supplementary Table 3). Analyses of the National Health and
Nutrition Examination Survey database show that both sarcopeniaand
MASLD independently and synergistically increase the risk of all-cause
mortality, with strong associations with cardiovascular disease (CVD)
and diabetes mellitus-related outcomes*>*>, Sarcopenianearly doubles
the mortality risk in patients with MASLD, highlighting its critical effect
ondisease prognosis®**>. When sarcopeniaand MASLD are combined,
especially in sarcopenic obesity, the risks of liver fibrosis and adverse
cardiovascular events are considerably increased, resulting in higher
intensive care unit admissions and a greater decline in health-related
quality of life than in people with sarcopenia or MASLD alone*’*°. Fur-
thermore, metabolic abnormalities related to metabolic syndrome
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worsen these outcomes. Visceral obesity has a synergistic roleinampli-
fying the risks associated with sarcopeniaand MASLD, accelerating the
incidence of CVD and death®*%, Research published in 2023 has also
shown thatindividuals with concurrent sarcopenia, MASLD and T2DM
have an increased risk of carotid atherosclerotic plaques, emphasiz-
ing the complex pathophysiological interplay among these comor-
bid conditions®. Notably, interventions aimed at improving muscle
mass and muscle function have shown protective benefits. Increasing
relative muscle mass might reduce MASLD incidence but might also
facilitate disease resolution®. Additionally, dietary interventions that
reduce myosteatosis have shown potential in decreasing liver stiffness,
independent of muscle mass changes, and might serve as a marker
for MASLD severity assessment. These findings highlight the need
for further research into the complex interactions between sarcope-
nia, MASLD and metabolicrisk factors across different ethnic groups.
A comprehensive approach, including early screening, understanding
shared biological mechanisms and consistent monitoring of muscle
health and metabolic status, is essential for optimizing patient care.

Muscle-liver crosstalk: how metabolic syndrome
influences MASLD and sarcopenia

Metabolic syndrome and its components contribute to the develop-
ment and progression of MASLD and sarcopenia by driving meta-
bolicimbalances and low-grade inflammation®. These processes not
only actindependently but also interact with genetic factors and the
gut-muscle-liver axis, further accelerating disease progression and
forming a complex network of pathophysiological interactions. Fig.2
illustrates the complexinter-relationships between MASLD, metabolic
syndrome and sarcopenia.

Obesity and insulin resistance
In overnutrition, obesity and insulin resistance can synergistically
contribute to the development of MASLD and sarcopenia by affecting

lipid and glucose metabolism. Obesity promotes adipose tissue expan-
sion, whereas insulinresistance impairs the regulatory effects of insulin
on adipose tissue lipolysis, leading to immune cell infiltration and
inflammation®**, This persistent adipose inflammation prompts
adipose tissue redistribution to the visceral area and skeletal muscle,
increasing the influx of non-esterified free fatty acids into the liver
and muscles and ultimately inducing MASLD and myosteatosis®>®.
MASLD can further activate various stress pathways, including endo-
plasmic reticulum stress, oxidative stress and mitochondrial dys-
function, triggering inflammatory cascades and exacerbating insulin
resistance®. This effect establishes a vicious cycle of dyslipidaemia,
insulin resistance and low-grade inflammation that accelerates the
progression of MASLD and sarcopenia®*®*, Moreover, insulin resistance
negatively affects skeletal muscle anabolic processes by impairing
insulin-stimulated glucose uptake, accelerating protein degradation
and increasing levels of myostatin, which skew the balance towards
protein catabolism and muscle loss®. By diverting carbohydrates from
muscle glycogen synthesis towards hepatic lipogenesis and triglycer-
ide synthesis, insulin resistance reinforces the interconnection and
co-dependence of MASLD and sarcopenia®.

Hypertension

Hypertensionis closely associated with MASLD and sarcopenia, mainly
through shared pathophysiological factors, including oxidative stress
and inflammation®. A key mechanism connecting hypertensionto these
two conditionsis the activation of the renin-angiotensin-aldosterone
system, which might promote liver fibrosis and muscle protein break-
down through elevated levels of angiotensin Il and altered insulin
signalling® %, A study published in 2024 showed that retinol-binding
protein 4 (RBP4), which is associated with hypertension and CVD,
might exacerbate sarcopeniain older people by activatingthe STRA6
receptor-dependent JAK2-STAT3 pathway, promoting intramuscu-
lar adipose tissue infiltration and muscle loss®’. Furthermore, insulin

MASLD Sarcopenia
Metabolic syndrome

Obesity and ? Adipose inflammation; lipolysis Healthy liver 1 Adipose inflammation Skeletal muscle
dyslipidaemia 1 Liver FFA uptake; ¥ FFA oxidation . 1 Myosteatosis

1 Hepatic insulin resistance 1 Muscle insulin resistance

1 Lipotoxicity and glucotoxicity 1 Lipotoxicity
Insulin resistance 1 Gluconeogenesis ¥ GH-IGF1 axis
and hyperglycaemia 1T DNL 1 Proteolysis l

V B-Oxidation { Protein synthesis

1 FFA delivery Steatosis

o Altered triglyceride transport

1 RAAS activation

1 Sympathetic nervous system activation

T NF-kB l
o Altered adipokine profile

Hypertension

Cirrhosis

1 Muscle degradation Myosteatosis

1 RAAS activation
» Altered myokine profile
1 NF-kB, IL-6 l
» Central nervous system abnormalities
Sarcopenia or

Chronic low-grade ™ TNF 1 CRP sarcopenic obesity
inflammation 1 NF-«kB ™ TNF
-
4

Fig.2|Inter-related pathophysiological mechanisms of MASLD and
sarcopenia. Metabolic syndrome and its components, including obesity,
atherogenic dyslipidaemia, insulin resistance or dysglycaemia, hypertension,
and chroniclow-grade inflammation, are crucial in mediating the pathological
connection between metabolic dysfunction-associated steatotic liver disease
(MASLD) and sarcopenia. These metabolic risk factors independently or
synergistically contribute to systemic metabolic dysregulation and inflammatory
cascades, leading to cellular and tissue damage. This damage accelerates the

progression from normal liver morphology to steatosis, inflammation and
fibrosis, simultaneously promoting structural and functional changes in
skeletal muscle tissue. Additional pathogenic factors, including vitamin D
deficiency, physical inactivity, altered gut microbiota, and liver and muscle-
derived factors, further exacerbate these effects. CRP, C-reactive protein;
DNL, de novo lipogenesis; FFA, free fatty acids; GH, growth hormone; IGF1,
insulin-like growth factor 1; IL-6, interleukin-6; NF-kB, nuclear factor-kB; RAAS,
renin-angiotensin-aldosterone system; TNF, tissue necrosis factor.
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1 TMAO Dysregulation of TLR4 activation Reduced activation Vv PGCla,
FXR and TGR5 of GPR41 and GPR43 SIRT1, AMPK
X I .
[f N
Liver Insulin Muscle
« Impaired glucose metabolism resistance » Reduced muscle protein synthesis and
o Impaired lipid metabolism — increased proteolysis
» Dysregulated energy expenditure e Muscle mitochondrial dysfunction
» Dysregulated immune response Chronic o Systemic chronic inflammation
o Inflammation inflammation| | e Dysregulated energy and glucose metabolism

Fig.3 | Putative molecular mechanisms of the liver-gut-muscle axis in
metabolic dysfunction-associated steatotic liver disease and sarcopenia.
Intestinal dysbiosis, which is often exacerbated by high-fat diets, leads to
increased intestinal permeability and altered gut microbiota composition. These
intestinal disturbances facilitate the translocation of detrimental substances
into the bloodstream, such as endotoxins and bacterial fragments, which can
promote a series of metabolic disorders. Key metabolic byproducts, such as

short-chain fatty acids (SCFAs), lipopolysaccharide (LPS), bile acids and choline,
are crucial in mediating systemic insulin resistance and chronic inflammation,
affecting liver glucolipid and energy metabolism and muscle protein synthesis.
These processes can further aggravate tissue damage associated with metabolic
dysfunction-associated steatotic liver disease and sarcopenia. FXR, farnesoid X
receptor; GPR41, G protein-coupled receptor 41; TGRS, Takeda G protein-coupled
bile acid receptor 5; TMA, trimethylamine; TMAO, trimethylamine-N-oxide.

resistance activates nuclear factor-kB (NF-kB) and the sympathetic
nervous system, contributing to hypertension and CVD®’°, Identi-
fying hypertension as an important risk factor in MASLD diagnosis
represents anotable advancementin metabolic liver disease research,
and the further exploration of increased blood pressure variability
offers a promising marker for both sarcopenia and MASLD owing to
the association of hypertension with adverse health outcomes.

Low-grade inflammation

Obesity-induced low-grade inflammation has an important role in
the pathogenesis of MASLD and sarcopenia. In adipose tissue, mac-
rophages proliferate and release pro-inflammatory cytokines (such as
tissue necrosis factor and interleukin-6 (IL-6)), which recruit more mac-
rophages to the liver and muscles, activating inflammatory pathways
such as the NF-kB and JNK pathways’". In MASLD, there is a transition
from anti-inflammatory M2 macrophages to pro-inflammatory M1
macrophages, which intensify hepatic inflammation. In sarcopenia,
increased numbers of M1-like macrophages contribute to muscle
mass loss and strength decline” 2. IL-6 has a dual role, exacerbating
hepatic inflammation in MASLD while mitigating inflammation dur-
ing skeletal muscle contraction by enhancing fatty acid f3-oxidation
and glucose uptake’. Muscle-derived IL-6 also improves MASLD
through hepatic STAT3 signalling, promoting autophagy and oxygen
consumption’. Furthermore, extracellular vehicles can also transport
pro-inflammatory signals such as microRNAs to the liver or muscle, fur-
theractivating macrophages and releasing inflammatory mediators”.
This low-grade inflammation across adipose tissue, liver and muscle

creates a vicious cycle that accelerates the deterioration of muscle
and liver functions.

Gut microbiota

Disturbancesin the gut-liver-muscle axis areimportantin the patho-
genesis of MASLD and sarcopenia. Both conditions are associated
with gut dysbiosis, characterized by a decrease in beneficial taxa
such as Faecalibacterium prausnitzii (a key butyrate producer with
anti-inflammatory effects) and Prevotella copri (whichis linked to fibre
metabolism and metabolic benefits), along withanincrease in patho-
genic taxasuch as Enterobacteriaceae (endotoxin-producing bacteria)
and Bacteroides (which s linked to pro-inflammatory effects)”*°. This
dysbiosis compromises intestinal barrier integrity, allowing bacterial
metabolites, including short-chain fatty acids, lipopolysaccharides
and bile acids, to translocate systemically’**°-*? (Fig. 3). These bacte-
rial metabolites interact with receptors such as G protein-coupled
receptors, pattern recognition receptors, farnesoid X receptor and
Takeda G protein-coupled bile acid receptor 5, triggering metabolic
and inflammatory cascades that impair liver and muscle functions
while reducing muscle mass® ¥, Targeting these microbial imbal-
ances offers therapeutic potential by promoting a functional shift
towards agut microbiome thatimproves microbial diversity and exerts
anti-inflammatory effects. Some clinical trials have shown that probi-
otics (for example, Bifidobacterium and Lactobacillus) and prebiotics
(such as xylooligosaccharides and inulin) might improve MASLD by
restoring theintestinal barrier, suppressing inflammation and modulat-
ing lipid metabolism®°°, However, a 12-14-month intervention with
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a specific synbiotic that increased Bifidobacterium abundance failed
to reduce hepatic steatosis or fibrosis biomarkers®. Beyond hepatic
outcomes, microbiome-targeted therapies might also improve mus-
cle strength and physical performance in patients with sarcopenia by
stimulating short-chain fatty acid production and activating muscle
anabolic pathways®*?*. Additionally, emerging evidence shows that
faecal microbiota transplantation from healthy donors decreases
hepatic steatosis in patients with MASLD and improves muscle mass
and function when combined with resistance training in individuals
with sarcopenia®*® (Supplementary Table 4), thus emphasizing the
therapeutic potential of microbiota-targeted interventions for these
two interconnected conditions.

Genetic predisposition

Genetic susceptibility has arole in the pathogenesis of MASLD and
sarcopenia. Key genes, such as FNDC5, PNPLA3, IGF1, IRS1, FTO and
MTHFR, can influence susceptibility to these conditions and mediate
their interactions’® (Table 2). Decreased skeletal muscle mass is associ-
ated with MASLD in individuals with the PNPLA3 CC or CG genotypes
but notin GG homozygotes, suggesting agenotype-specific dissocia-
tion possibly due to protective metabolic adaptations in individuals
with the GG genotype”. Moreover, lipid accumulation, which is influ-
enced by genetics, has heterogeneous effects depending on deposi-
tion patterns: one patternis primarily confined to the liver, leading to
more aggressive liver disease, while another is systemic, increasing the

Table 2 | Genetic polymorphisms associated with risk of both MASLD and sarcopenia

Gene (SNP) Population Association Association with Combined effects Mechanisms Ref.
with MASLD sarcopenia
FNDCS5 (rs3480 AA) 370 patients with NSA with NSA Increased incidence of Alters FNDC5-irisin stability 173
MASLD histological severe liver fibrosis in and expression
severity participants with sarcopenia
PNPLA3 (rs738409 G 401 men with MASLD  Increased NSA Increased histological NR 174
allele) histological severity of MASLD in
severity participants with low
skeletal muscle mass
PNPLA3 (rs738409 GG) 1,370 men, Increased risk  NSA with percentage  No significant interaction Affects levels of irisin and 97
2,599 women of appendicular insulin sensitivity
skeletal muscle mass
IRS1 (rs2934656) Patients with T2DM NR Increased skeletal NR Modulates IRST expression 175
(70 women, 106 men) muscle mass
IRS1 (p.Gly972Arg) 702 patients Increased NR NR Regulates insulin receptor 176
with MASLD, 310 histological signalling
controlindividuals severity
FTO, 2 SNPs® 80 patients with NR Increased risk NR Regulates mTOR pathway 177
sarcopenia, 80
controlindividuals
FTO, 4 SNPs® 741 patients with Increased risk  NR NR Influences eating behaviour; 178
MASLD, 825 increased lipid storage
controlindividuals
FTO 8,434 patients with Increased risk  NR NR NR 179
MASLD, 770,180
controlindividuals
MTHFR, 2 SNPs°® 84 patients with NR Increased risk in NR Increased plasma 180
sarcopenia, 223 patients with obesity levels of homocysteine;
without sarcopenia post-transcriptional regulation
MTHFR, 2 SNPs* 1,786 patients with NSA NR NR Reduces MTHFR activity; 181
MASLD increases levels of
homocysteine
MTHFR, 2 SNPs® 785 patients with Increased risk  NR NR Reduces MTHFR activity 182
MASLD, 1,188 and increases levels of
controlindividuals homocysteine
IGF1rs35767 C/C 2,999 people, aged NR Decreased lean mass NR Affects FNDCS5 expression 183
70-79 years and muscle strength
IGF1rs5742612 CC 149 patients Increasedrisk  NR NR Alters IGF1 stability and 184
with MASLD, 153 expression
controlindividuals
IGF1rs6214 AA/AG 154 patients Increasedrisk  NR NR Alters IGF1 stability and 185

with MASLD, 156
controlindividuals

expression; impairs insulin
response

IGF1, insulin-like growth factor 1; MASLD, metabolic dysfunction-associated steatotic liver disease; MTHFR, methylenetetrahydrofolate reductase; NR, not reported; NSA, no significant
association; SNP, single nucleotide polymorphism; T2DM, type 2 diabetes mellitus. *SNPs: rs9939609 TT and rs9936385 TT. °SNPs: rs1421085 C, rs8050136 A, rs3751812 T, rs9939609 A.

°SNPs: rs1801131 G, rs1537516 A. “SNPs: c.A1298C, ¢.C677T. °SNPs: C677T T/T, A1298C C/C.
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Fig. 4| Nutritional and physical therapies for the treatment of MASLD and
sarcopenia. For effective management of metabolic dysfunction-associated
steatotic liver disease (MASLD) and sarcopenia, acomprehensive approach
integrating dietary interventions and physical activity is essential. The
Mediterranean diet is recommended for dietary management in MASLD owing
toits beneficial effects on liver function and metabolic health. Traditional caloric
control diets, such as low-carbohydrate, high-carbohydrate and low-fat regimes,
show variable results, whereas emerging approaches, such as time-restricted
eating, alternate-day fasting and the 5:2 intermittent fasting method, show
potential benefits but still require stronger clinical evidence for specific efficacy
in MASLD. For sarcopenia, the treatment strategy emphasizes increasing protein
intake and engaging in acomprehensive exercise programme, including aerobic
and resistance exercises, which are essential for muscle growth, metabolic
improvement and reducing hepatic lipid accumulation. No pharmacological
treatments have been specifically approved for both MASLD and sarcopenia.
Bariatric surgery, although recognized for potential benefits in patients with
MASLD, obesity and severe metabolic dysfunction, lacks substantial clinical
support for its efficacy and safety in treating sarcopenia.

risk of CVD?®%, Genetic variants in PNPLA3, TM6SF2 and APOE affect
triglyceride export, reducing plasma levels of triglycerides and lev-
els of LDL cholesterol, thereby reducing CVD risk®*'°°. Conversely,
variants in GCKR and TRIBI increase hepatic lipogenesis, increasing
plasmallevels of triglycerides and LDL cholesterol, thereby elevating
CVD risk®®'°°, Understanding the molecular mechanisms underlying
these genetic factors, along with polygenic risk scores, environmental
interactions and metabolic factors, can improve risk prediction for
MASLD and sarcopenia'®. Future research combining multi-gene risk
scores with omics data could resultinmore precise disease risk models
and personalized treatments, leading to better patient outcomes.

Management strategies: potential therapies for
MASLD and sarcopenia

The management of concurrent MASLD and sarcopeniarequires a
comprehensive approach that addresses both metabolic dysfunction
and muscle preservation. Lifestyle interventions, including dietary
optimization and physical activity, are key to achieving weight loss

while maintaining muscle mass (Fig. 4). Although 5-10% weight loss can
histologically improve MASLD by reducing hepatic steatosis, inflam-
mationand hepatocyte ballooning, conventional weight loss strategies
paradoxically risk accelerating sarcopenic muscle loss. To overcome
this challenge, a comprehensive strategy that incorporates aerobic
andresistance training to stimulate muscle protein synthesis, ensures
adequate protein intake while maintaining caloric balance to prevent
further weight gain, and utilizes pharmacological agents targeting
activinand myostatin signalling pathways to preserve lean body mass
during weight loss is essential’®>. Current pharmacological options
remain limited, although the recent conditional FDA approval of res-
metirom for non-cirrhotic MASH with moderate-to-severe fibrosis
represents a therapeutic advancement. However, its application in
coexisting MASLD and sarcopenia requires careful consideration and
further clinical validation. Moreover, given the increased risks of car-
diovascular events and metabolic complications associated withboth
conditions, effective management must include stringent control of
hypertension, dyslipidaemia and hyperglycaemia.

Dietary strategies

Mediterranean diet. The Mediterranean diet is a plant-based diet
comprising approximately 30-40% fats (mainly monounsaturated),
15-20% proteins and 50-60% carbohydrates'®, It is recommended
for patients with MASLD owing toits proven benefits in reducing liver
lipid content and lowering inflammation'**'%>, The Mediterranean
diet also improves insulin sensitivity and the plasma lipid profile,
helping to manage MASLD-related cardiometabolic disturbances'.
Although the long-term effect of the Mediterranean diet on sarcopenia
remains debated, most studies suggest benefits, which are probably
attributable to its nutrient-rich composition, including high-quality
proteins and antioxidants, which improve muscle functionand reduce
inflammation'”'°, Combining the Mediterranean diet with calorie
restriction and physical exercise has been shown to reduce abdominal
adiposity and preserve muscle massin older people!””. Moreover, the
Mediterranean diet also reduces CVD risk and improves overall meta-
bolic health"®. However, variations in sarcopenia definitions, dietary
assessment methods and participant characteristics can influence
observed outcomes. Moreresearchis needed to better understand the
long-term effects of the Mediterranean diet on patients with MASLD
and sarcopenia, considering the variability of the diet. Emerging adap-
tations of the Mediterraneandiet, such asthe green Mediterranean diet
enriched with polyphenol sources such as Mankaiand green tea, and
apesco-Mediterranean dietintegrating time-restricted eating™? show
potential for optimizing dietary interventions to enhance metabolic
health benefits.

High-protein diet. Dietary proteinintakeis crucial for muscle anabo-
lism and sarcopeniamanagement, especially in older adults, who need
more protein than younger individuals'. The recommended daily
intake for healthy olderindividualsis 1.0-1.2 g/kg per day and increases
during inflammation or infections™. Although the muscle benefits of
proteins are well established, their effect on MASLD remains debated.
Short-term intervention studies suggest that high-protein diets can
reduce hepatic lipid content and serum levels of aminotransferase in
patients with MASLD">"¢, However, emerging evidence suggests that
amino acids are amajor carbon source for hepatic lipogenesis, possi-
bly worsening MASLD". Additionally, excessive protein intake might
increase the risk of renal impairment and nitrogen overload, particu-
larlyinvulnerable populations of patients"*"’, These conflicting results
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emphasize the need for further research tounderstand the long-term
hepatic effects of protein consumption. For patients with MASLD and
sarcopenia, a strategic high-protein diet during calorie restriction
might offer potential benefits. This approach might support mus-
cle growth, prevent muscle loss during weight loss programmes and
improve insulin sensitivity. When combined with structured exercise
programmes, a high-protein diet could also improve muscle strength
and decreaseliver lipid content. Further researchis needed to optimize
proteininterventions for patients with MASLD and sarcopenia, focus-
ingondifferent protein sources, ideal timing of intake, specificamino
acid profiles and integration withbroader dietary patterns. Healthcare
providers need to balance the muscle benefits with liver risks when
advising patients on protein consumption.

Calorie restriction. Calorie restriction involves lowering daily
calorie intake without causing malnutrition, primarily through
low-carbohydrate, low-fat and ketogenic diets to support weight man-
agementand improve metabolic health?’. Calorie restriction has been
shown to improve muscle protein synthesis, delay muscle loss and
enhance muscle mitochondrial function and strength, although poten-
tial reductionsin muscle mass might affect adherence'”. Despite their
benefits, traditional calorie restriction approaches carryrisks, such as
potential cholesterolincreases with low-carbohydrate dietsand com-
pensatory carbohydrate increases with low-fat diets, raising concerns
about their suitability for individuals with MASLD and sarcopenia due
toassociated all-cause mortality risks'*>'*. Changing calorie intake tim-
ing through intermittent fasting protocols, including time-restricted
feeding (TRF), alternate-day fasting and the 5:2 intermittent fasting
diet, shows promise in reducing body weight, improving plasmallipid
profiles and decreasing hepatic steatosis in patients with MASLD, thus
potentially offering benefits over traditional diets'**. However, their
suitability for different populations, especially older or vulnerable
populations, requires careful evaluation. Researchindicates that TRF
might benefit overweight, sedentary older individuals by reducing
body weight, increasing walking speed and improving quality of life'>.
Further research is needed to assess the effect of the fasting state on
sarcopenia-related muscle loss and whether intermittent fasting can
meet dietary protein requirements to counteract age-related muscle
decline.Incorporating adequate protein intake and resistance training
isessential for maximizing TRF benefits, especially forindividuals with
MASLD and sarcopenia. Personalized adjustments and management by
healthcare professionals are essential for the effective implementation
of calorie restriction and intermittent fasting strategies.

Physical activity

Physical activity is essential in the management of MASLD and sar-
copenia, offering benefits such as reduced lipid content in the liver,
improved insulin sensitivity, increased muscle mass and strength, and
improved physical function'?*'?%_ A retrospective study suggested
that engaging in more than 600 metabolic equivalent task-minutes
of physical activity per week can considerably reduce the risk of liver
fibrosis, sarcopenia and CVD in patients with MASLD'?, Aerobic exer-
cise, which benefits cardiovascular health and weight management, is
recommended for most patients with MASLD, with at least 150 min of
moderate-intensity aerobic exercise weekly and two to three sessions
of resistance, flexibility, and balance training per week in adults™**",
However, for patients with severe sarcopenia, high-intensity aerobic
exercise might beinappropriate due to theincreased risk of falls. In this
case, resistance training isimportant forimproving muscle quality and

function™. Gradual transitioning from low intensity to moderate or
highintensity and progressing from simple to complex resistance train-
ing can help counteract sarcopenia by increasing muscle strength'>***,
Althoughits effects on MASLD and obesity are still debated, resistance
trainingis crucial for preserving muscle mass during weight loss. A2022
systematic review and meta-analysis has confirmed that resistance
training reduces liver lipid content and liver enzymes and improves
insulinresistance in patients with obesity and MASLD". Future research
should explore personalized exercise plans, optimize exercise types and
modes, and investigate the combined effects of exercise, diet and other
interventions to improve the management of MASLD and sarcopenia
while considering the complexinteractions between muscle function,
liver health and metabolic regulation.

Pharmacological and bariatric surgery therapies
Pharmacotherapies for MASLD and sarcopenia are advancing, and the
FDA approval of resmetirom (Rezdiffra), aliver-targeted selective thy-
roid hormonereceptor- (THRp) agonist, in March 2024 was anotable
development™®'’, As the first approved treatment for non-cirrhotic
MASH with moderate-to-advanced fibrosis, resmetirom has shown
efficacyinreducingliver lipid content and improving histological fea-
tures of MASH in phase Il MAESTRO clinical trials"*"*. Resmetirom
might also offer cardiovascular benefits by lowering plasma levels of
LDL cholesterol, lipoprotein(a) and other atherogenic lipoproteins'®,
Although the drug is generally well tolerated, with mild-to-moderate
gastrointestinal adverse effects, further researchisneeded to assessits
long-term safety and potential off-target effects on thyroid, gonadal,
bone or muscle health'. Another derivative THR agonist, HSK31679
(NCT05531097), modulates myeloid cell dynamics to induce an
anti-inflammatory microenvironment and affects microbial gluco-
sylceramide synthase, offering a novel approach to improving THR3
therapies in MASLD™°, Additionally, a new THRpB-selective agonist in
phase I trials targets and accumulates in adipose tissue, potentially
providing alow-dose treatment for obesity that reduces weight without
causing muscle loss (NCT06427590).

GLP1receptor agonists (GLP1RAs), especially once-weekly sema-
glutide 2.4 mg, are also a promising treatment option for MASLD and
MASH owing to their benefits in achieving MASH resolution, improving
liver fibrosis, and reducing the risk of adverse cardiovascular and renal
outcomes"!*3, However, there are concerns about the long-term effect
of GLP1RA treatment on muscle mass, as weight loss from GLP1RA treat-
ment canlead to reductionsinleanbody mass (muscle and bone)™*'**,
whichcanincrease the risk of sarcopenia and osteoporosis. To address
these concerns, combination therapies are being explored, including
bimagrumab, an ActRII receptor-targeting monoclonal antibody that
preserves muscle mass while promoting adiposity reduction'®. The
BELIEVE trial was designed to evaluate the efficacy of bimagrumab
alone or with semaglutide in adults with overweight or obesity over
48weeks (NCT05616013)'*, aiming to optimize the benefits of GLP1RAs
while minimizing muscle loss.

Furthermore, bariatric surgery has shown efficacy in severe obe-
sity and metabolic disorders, with positive results in individuals with
MASH and liver fibrosis'*'*. Ongoing studies, such as the FLAMES trial
(NCT06374875), are comparing the effectiveness of bariatric surgery
versus non-surgical interventionsto provide more evidence ontherole
of this surgical procedure in the management of MASLD"°. However,
although bariatric surgeryimproves metabolic health and insulin sensi-
tivity, it can cause rapid weight loss that leads to muscle mass reduction,
nutritional deficiencies and changes in body composition, which can
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adversely affect muscle strength and function™'. Toimprove outcomes,
proper nutritional support, including adequate protein intake and
targeted strength training, is essential. Personalized rehabilitation
programmes with dietary advice and supervised physical activity
are also important for long-term health. More research is necessary
to assess the safety and effectiveness of bariatric surgery over time,
especially in patients with MASLD and sarcopenia, and to examine its
effectsin combination with other treatments.

Emerging treatments

Precision nutrition is an emerging approach for managing MASLD and
sarcopeniathrough personalized dietary strategies based on genetics,
lifestyle and metabolic responses™***"*3, This approach could be further
improved by artificial intelligence-driven digital health tools, which
facilitate remote monitoring and tailored support, thereby improv-
ing treatment adherence, especially for older patients with limited
healthcare access”*'**. Advanced deep learning models incorporate
electronic healthrecords, wearable data, imaging techniques and com-
prehensive databases such as SteatoSITE toimprove risk prediction and
early diagnosis"®*. Real-time monitoring of muscle and liver composi-
tionviaartificial intelligence-powered wearables and ultrasonography
facilitates dynamic macronutrient adjustments'®"'>, These technolo-
gies cansupport multidisciplinary virtual coaching platforms (such as
REVERIE) that provide integrated nutrition and exercise guidance for
specific populations such as adolescents with obesity'®>. For compre-
hensive management, precision nutritionintegrates emerging assess-
ment tools, including the Mediterranean Diet Adherence Screener'**,
Stimulated Muscle Contraction Signals'® and ODIASP'*® (automated
SMIdetermination), along with innovative therapies, such as advanced
drugdelivery methods'?, stem cell exosomes'*® and engineered tissue
scaffolds', thatimprove dietary compliance evaluation and support
treatment plans capable of potentially reversing disease progression™*.
Natural products with anti-inflammatory properties, such as propolis,
polyphenols, omega-3 fatty acids and plant proteins, could also offer
affordable, accessible interventions with minimal adverse effects, and
might be incorporated into precision nutrition strategies to support
muscle preservation and hepatic function”*"”’, Personalized interven-
tions should account for sex differences, metabolic profiles, gut micro-
biotaand genetic predispositions as key factorsinfluencing treatment
success. Futureresearchis neededto develop standardized protocols
that incorporate multiple assessment methods and determine the
optimal timing for interventions when managing concurrent MASLD
and sarcopeniain older populations.

Prospects for sarcopenia and MASLD

Research regarding the link between MASLD and sarcopenia has
advanced considerably over the past decade but challenges still exist.
First, more studies are needed to examine how skeletal muscle compo-
sition, such as lean muscle volume and intramuscular adipose tissue,
might affect MASLD development and outcomes. Second, the causal
link between MASLD and sarcopenia needs to be clarified through
mechanistic research, especially considering the role of metabolic syn-
drome. Third, investigating sex hormones and age-related biomarkers
isimportant for understanding potential differences in the relationship
between MASLD and sarcopenia across sex and age groups. Fourth,
standardized diagnostic tools are needed to address the inconsisten-
ciesinsarcopeniadefinitions, especially for patients with MASLD who
have metabolicand inflammatory challenges. Finally, thereis currently
alack oftreatment guidelines and long-termintervention datafor the

management of MASLD and sarcopenia, highlighting the importance of
establishing large-scale research cohorts and developing personalized
assessment and treatment strategies. Addressing these challenges will
require multidisciplinary collaboration among researchers, clinicians
and healthcare professionals to develop acomprehensive management
approach for optimal patient outcomes.

Conclusions

A growing consensus emphasizes the clinicalimportance of multidis-
ciplinary management for MASLD and sarcopenia, recognizing their
synergistic progression through shared metabolic pathways. The clini-
calimportance extends beyond hepatic-muscle crosstalk, positioning
sarcopenia as a multisystem metabolic disorder marker that inde-
pendently affects quality of life, particularly in patients with obesity,
T2DM and CVDs. Early risk assessment incorporating components of
metabolic syndrome is crucial as metabolic syndrome greatly affects
the pathogenesis and severity of both MASLD and sarcopenia. Person-
alized interventions should integrate precision nutrition to develop
individualized dietary and exercise regimens based on patient-specific
metabolic profiles and disease phenotypes. Digital health platforms
might enhance these interventions by enabling remote monitoring
and providing personalized feedback to optimize treatment adher-
ence. Rapid pharmacological advances, particularly within the past
5years, haveintroduced new therapeutic options for both conditions.
Future pharmacotherapies should focus on reducing liver adiposity,
improving metabolic dysfunction, and protecting or even increas-
ing muscle mass and strength. The development of dual-target drugs
presents promising strategies for comprehensive treatment. Future
research is needed to further explore the underlying mechanisms
that link metabolic syndrome, MASLD and sarcopenia, and to estab-
lish standardized diagnostic criteria for sarcopenia in the context of
MASLD. These diagnostic criterianeed to be practical and affordable to
ensure widespread clinical adoption. Cross-disciplinary collaboration
and integrated support platforms are essential forimproving patient
management, treatment outcomes and quality of life for individuals
affected by MASLD and sarcopenia.
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